JPH0241594B2 - - Google Patents

Info

Publication number
JPH0241594B2
JPH0241594B2 JP60170502A JP17050285A JPH0241594B2 JP H0241594 B2 JPH0241594 B2 JP H0241594B2 JP 60170502 A JP60170502 A JP 60170502A JP 17050285 A JP17050285 A JP 17050285A JP H0241594 B2 JPH0241594 B2 JP H0241594B2
Authority
JP
Japan
Prior art keywords
coating layer
corrosion
corrosion resistance
thickness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60170502A
Other languages
Japanese (ja)
Other versions
JPS6230896A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17050285A priority Critical patent/JPS6230896A/en
Priority to AU51449/85A priority patent/AU565129B2/en
Priority to EP85116264A priority patent/EP0210302B1/en
Priority to DE8585116264T priority patent/DE3584634D1/en
Priority to CA000498277A priority patent/CA1288646C/en
Priority to US06/811,761 priority patent/US4731301A/en
Publication of JPS6230896A publication Critical patent/JPS6230896A/en
Publication of JPH0241594B2 publication Critical patent/JPH0241594B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は腐食環境において、被覆欠陥部或いは
被覆端面部等からFe溶出量が極めて少なく、耐
食性に極めて優れたSn系被覆鋼板に関するもの
である。 (従来の技術) 従来から、Snメツキ鋼板(ブリキ)は、外観
性、耐食性、加工性、塗装性能、半田性に優れ、
容器用鋼板として著しく優れた適性を有してい
る。しかし最大の欠点はSn地金の高騰により、
価格が著しく高いことにある。そのためSn付着
量の減少によるコストダウンが計られているが、
その場合、耐食性の低下が問題である。 この問題を解消せしめた鋼板に、例えば特開昭
57−23091号公報、或いは特開昭60−200592号公
報のように、Ni系下地被覆層を有するSn系被覆
鋼板がある。 これらの鋼板は、下地被覆層とSn被覆層の重
畳効果、下地被覆層の効果による均一緻密な合金
層の生成による地鉄露出部の減少等により耐食性
の向上を計つたものである。 上記のようなSn系被覆層を有する容器用鋼板
は、その特性を生かして一部では使用されている
ものの、必ずしも充分に満足すべき耐食性能が得
られているとは云い難い。 また、Snメツキ鋼板はアルコール系燃料用容
器素材として検討されているが、Sn付着量を低
下した場合、加工によつてメツキピンホール部か
ら赤錆発生或いは穿孔腐食等の問題を生じ、必ず
しも満足すべき性能が得られていないとされてい
る。 これらに対応して、この問題点を解決するため
に、特開昭59−126323号公報のようにめつき原板
にCrを0.2%〜5%添加した鋼板にNi系下地被覆
層を付与しその上層にSnめつき層を施したSn系
被覆鋼板がある。 これらの鋼板は鋼中にCrがあるためにNiを含
有するSnとの合金層と鋼板(めつき鋼板)との
間のカツプル電流を小さくし鋼板自体の耐食性を
向上させる効果があり、優れた耐食性を得ること
ができる。しかし、使用環境はより厳しく、また
要求性能はより高度化する傾向にある。例えば、
缶用材料については、塗料の膜厚の低減あるいは
内容物の多様化による腐食環境の変化など、一
方、燃料用容器については耐穿孔腐食寿命の長期
化の要求あるいはエタノールより腐食性の強いメ
タノールの適用、有機酸の混入など腐食環境の劣
悪化などが挙げられる。これらの厳しい要求に対
しては必ずしも十分に満足すべき耐食性能とは言
い難い。 (発明の解決しようとする問題点) 近年容器用鋼板の特性として、製缶様式の多様
化、内容物の多様化或いは消費者の高級化指向に
対応して、より優れた耐食性能、貯蔵時の錆発生
が生じにくい、或いは容器コストの低減化に対処
した容器用鋼板の薄手化より優れた耐食性の向上
(即ち、耐食寿命の向上等)が要求されている。
例えば、ネツクドイン缶のような変形缶の増大に
対応して、従来以上に苛酷な加工を受けた部分の
耐食性がCl-イオンを含有するような内容物には
特に要求されている。 また、缶蓋用素材として、従来以上に開け易さ
が要求され、そのため缶蓋素材の板厚減少、スコ
ア加工部の板厚減少等に対応して、加工部の耐食
寿命の延長が必要とされると同時に、スコア加工
部は缶蓋外面においては鉄面が露出したスコア剪
断部分の耐食性向上、特に耐錆性の向上等が要求
されている。 また、イージーオープン・エンド缶蓋のタブに
鉄系の容器用鋼板を用いる場合には、鋼板端面の
耐食性、特に耐錆性が要求されている。また、王
冠には、王冠端面の耐錆性の向上等が要求されて
いる。さらに、製缶方式においては、溶接端面部
の耐食性が一層要求されている。また、上記のよ
うな容器用以外に、アルコール燃料に対して燃料
容器内、外面ともに、加工部或いは溶接部の被覆
欠陥部で穿孔腐食の生じにくい高耐食性Sn系被
覆鋼板の開発が望まれている。 従来のSn系被覆鋼板は、内容物の種類によつ
ては、Sn被覆層がカソードとなり、被覆欠陥部
(ピンホール部、加工による疵付き部等)からFe
を溶出し穿孔腐食を誘発する問題があつた。 一方環境の外面では、Sn被覆層がカソードと
なり、鋼板とのカツプル腐食電流も極めて大き
い。その結果被覆欠陥部或いは端面部等からFe
の溶出と赤錆を発生し穿孔腐食を生じ易い。 本発明は、上記のような従来の問題点を解決し
て、耐食性能、耐食寿命の極めてすぐれたSn系
被覆鋼板を提供することを目的としたもので、メ
ツキ原板の鋼成分を調整する事によつて、メツキ
原板自体の耐食性を向上せしめ、Sn被覆層にア
ノード防食能を付与せしめると共に、ピンホー
ル、不メツキ等の被覆欠陥部の少ないSn系被覆
鋼板を提供するものである。 (問題点を解決するための手段) すなわち本発明の要旨は、 (1) C;0.10%以下、SolAl;0.005〜0.08%、
Cr;5%超〜20%、Ni;3%以下、を含有し
残部が鉄および不可避的不純物からなる鋼板
に、厚さ0.001〜1.5μのNi系下地被覆層、その
上に厚さ0.05μ以上のSn系被覆層を施した高耐
食性Sn系被覆鋼板。 (2) C;0.10%以下、SolAl;0.005〜0.08%、
Cr;5%超〜20%、Ni;3%以下を含有し、
さらにTi、Nb、Zr、Vの1種又は2種以上で
0.03〜0.5%を含有して残部が鉄および不可避
的不純物からなる鋼板に、厚さ0.001〜1.5μの
Ni系下地被覆層、その上に厚さ0.05μ以上のSn
系被覆層を施した高耐食性Sn系被覆鋼板。 (3) C;0.10%以下、SolAl;0.005〜0.08%、
Cr;5%超〜20%、Ni;3%以下、を含有し
残部が鉄および不可避的不純物からなる鋼板
に、厚さ0.001〜1.5μのNi系下地被覆層、その
上に厚さ0.05μ以上のSn系被覆層を施した後、
加熱溶融処理する高耐食性Sn系被覆鋼板の製
造法。 (4) C;0.10%以下、SolAl;0.005〜0.08%、
Cr;5%超〜20%、Ni;3%以下を含有し、
さらにTi、Nb、Zr、Vの1種又は2種以上で
0.03〜0.5%を含有し残部が鉄および不可避的
不純物からなる鋼板に、厚さ0.001〜1.5μのNi
系下地被覆層、その上に厚さ0.05μ以上のSn系
被覆層を施した後、加熱溶融処理する高耐食性
Sn系被覆鋼板の製造法である。 (作 用) 以下本発明について詳細に説明する。 転炉、電炉等の溶解炉で溶製された溶鋼を連続
鋳造または造塊、分塊法を経てスラブとし、熱間
圧延、冷間圧延さらには焼鈍工程を経て、重量%
で、C;0.10%以下、酸可溶Al(SolAl);0.005〜
0.08%、Cr5%超〜20%、及びNiを3%以下を含
有する鋼板或いはこれにTi、Nb、Zr、Vの1種
又は2種以上で0.03〜0.5%含有したメツキ原板
を製造する。メツキ原板に含まれる5%超のCr
はSn系被覆鋼板が使用される腐食環境において、
被覆欠陥部のFe溶出、穿孔腐食を防止し、耐食
性を向上せしめる。 第1図は容器内に腐食促進液を充填した場合の
Sn被覆層と被覆原板とのカツプル腐食電流を測
定したもので、Cr含有量3%以上、特にCr含有
量5%以上でSnのアノード防食能が著しく高く
なる。その効果はNiがCrと共存される場合に特
に著しい。 第2図は、容器外面を腐食促進液に浸漬した場
合のSn被覆層とメツキ原板とのカツプル腐食電
流を測定したものでCr含有量が5%をこえると
Sn被覆層のアノード防食が可能となり、Niと共
存する場合にその効果が特に著しい。 このようにCrを含有する鋼板をメツキ原板と
して用いた場合に、Sn被覆層の犠牲防食能効果
によつて、地鉄露出部のFe溶出、赤錆の発生或
いは穿孔腐食の発生が防止される。従つて、本発
明のSn系被覆鋼板は耐食性能、耐食寿命が著し
く改善される。 一般にSn被覆鋼板を如何に厳格な管理に基い
て製造しても、ピンホール、不メツキ等の被覆層
欠陥を皆無にする事は困難であり、また使用時に
加工疵等の生成により地鉄に達する被覆層欠陥部
が生成される。それと同時に、Sn被覆鋼板の端
面が地鉄が露出されて使用される状態(例えば溶
接缶の溶接部、缶蓋のスコア加工部、王冠の端面
等)は極めて多い。 従つて、本発明はSn被覆層がメツキ原板を犠
牲防食しうるCrとNiを必須成分とする鋼板をメ
ツキ原板として用いる事によつて、Sn被覆鋼板
の被覆欠陥部や端面部の地鉄の腐食を著しく抑制
する。その結果、被覆原板の耐食性の向上で極め
て耐食寿命のすぐれたSn系被覆鋼板を製造する。
このような効果を得るためのCr含有量は前記し
たように、5%超〜20%、好ましくは8%超〜12
%である。Cr含有量が5%以下では、腐食環境
における充分な犠牲防食効果が得られず、また
Cr含有量が20%をこえるとSn系被覆層の均一被
覆性、密着性を劣化する。 特にCr11%以下のγ相とα相の二相領域組成
の鋼板は、鋼板製造時において結晶粒の粗大化が
生じにくく、苛酷な成形加工を受けた場合にリジ
ングと呼ばれる“ハダ荒れ”現象も生じ難い特徴
がある。Crと共存して耐食性を向上せしめるNi
の含有量が3%以下、好ましくは0.1〜1%であ
る。Niの含有量が3%を超えると、耐食性向上
効果が飽和すると共にNi系下地被覆層の密着性、
特に加工時の密着性を確保する事が困難になる。
尚、NiがCr成分と相埃つて、鋼板自体の耐食性
向上効果とSn被覆層の犠牲防食効果がより一層
確保されるのは、0.1%以上である。 上記のような耐食性能を向上するとCr成分及
びNi成分以外に本発明においては、C及びSolAl
(酸可溶Al)の含有量を規制する。Cは含有量の
増加に伴いクロムカーバイドの析出量が多くなり
鋼の機械的性質と耐食性を劣化すると同時にNi
系下地被覆層の均一被覆性を阻止する。従つて、
C含有量は0.10%以下である。特に本発明におい
てTi、Nb等を添加して、加工性及び耐食性の向
上をさらに計る場合は、そのC含有量を加工性及
びチタンカーバイド等の析出による被覆層の均一
被覆性を阻害することから0.02%以下が好まし
い。 Alは、鋼中に残存する酸可溶Al(SolAl)量が
0.005%未満の少含有量は、酸化性ガスによる気
泡の発生を防止する事が困難であり、鋼の表面欠
陥発生部を著しく高め、綱素材の耐食性劣化の起
点となる。また、0.08%を超える過剰な酸可溶Al
は、Al系酸化物を鋼表面に点在せしめて、耐食
性劣化の起点或いは鋼板に施される被覆層表面に
おいては不メツキ、ピンホール等を発生して、被
覆層の健全性を損じる。従つて、本発明において
はSolAlは0.005〜0.08%である。 又、本発明は、上記の鋼成分の他にTi、Nb、
Zr、Vの1種又は2種以上で0.03〜0.50%を含有
させて、鋼中のCと結合せしめて含有されるCr
の有効化を計り、更にすぐれた加工性、耐食性を
向上せしめる。 Tiなどの鋼成分の含有量が0.03%未満ではクロ
ムカーバイトの析出を防止して、加工性及び耐食
性を向上せしめる効果が少なく、またその含有量
が0.50%を超えると、その効果が飽和に達し経済
的でなくなると共に、これら成分の析出によつて
素材の硬質化を起し、加工性を劣化する傾向にあ
る。好ましい含有量は0.075〜0.20%である。 上記のような組成の鋼板はそのまま使用したの
では従来のCr等を不可避的不純物程度含有する
従来の鋼板に比して、耐食性は優れているもの
の、容器用素材或いは燃料容器用素材を対象とし
た場合必ずしもその耐食性は充分とはいえずな
い。すなわち、容器に充填される内容物の有機
酸、Cl-イオンを含有する水分等によつて、鉄溶
出が生じ、また赤錆の発生も著しい。また、容器
外面はCl-イオンを含有する腐食雰囲気や高温、
高湿状態で貯蔵された場合、比較的短期間で赤錆
を発生し、鋼板のみではその耐食性が充分でな
い。さらに、鋼板に直接塗装しても腐食雰囲気に
長期間曝された場合、塗膜下に侵入した腐食水溶
液によつて鋼板に腐食生成物を発生し塗膜剥離を
生じて塗膜性能を劣化する欠点がある。 上記のような鋼成分の鋼板はガソリン或いはア
ルコール燃料には比較的良好な耐食性を有するも
のの、燃料中に含有される水分、Cl-イオンを含
有する水分等によつて赤錆を発生し或いは穿孔腐
食を生じ易い。また、道路凍結防止塩(剤)が散
布された道路或いは海風地帯等のCl-イオンが存
在する腐食雰囲気では、赤錆を発生し、穿孔腐食
を生じ易い。 従つて、本発明においては、前記の如き、容器
用素材或いは燃料容器等に要求される耐食性或い
は塗装性等を勘案して、メツキ原板に対してSn
被覆層を施す。 而して、Cr及びNiを必須成分として含有する
鋼板は前記したようにSn被覆層が原板の犠牲防
食効果をもたらす。この結果すぐれた耐食性能、
耐食寿命が得られる。 さらに、本発明ではSn系被覆層の下地層にNi
系下地被覆層を施す。Ni系下地被覆層は、上層
のSn被覆層と緻密な合金層を生成して、被覆層
内欠陥部を減少せしめ耐食性と被覆層の密着性を
改善する。これは常温においても加熱溶融処理
(メルト処理)あるいは溶融メツキ法によるSn系
被覆処理においてもNi系金属とSn被覆層とは拡
散反応性或いは濡れ反応性が極めて優れているた
めによるものである。 このようにしてNiとSnとの合金層を生成させ
る事によつて、Sn被覆層の犠牲防食能が一段と
強化される。本発明において、Ni系下地被覆層
とSn系被覆層を施す方法は、特に規定されるも
のではないが、例えばNi系下地被覆層について
はメツキ原板を脱脂、酸洗など通常のメツキ前処
理を施して、電気Niメツキ或いはNi合金メツキ
が施されるが、通常の電気メツキ方式を採用すれ
ばよい。 Niメツキ浴、或いはNi合金系メツキ浴の組成、
メツキ条件等も特に規定しないが、大体電流密度
は3〜300A/dm2、メツキ温度は80℃以下であ
る。Niメツキ浴、或いはNi合金系メツキの組成
例、及びメツキ条件の一例を挙げれば下記の如く
である。 (1) Niメツキ組成;NiSO4・6H2O 240g/ NiCl2・6H2O 45g/H3BO3 40g/ PH;4.0 電流密度;15A/dm2 メツキ浴温;60℃ (2) Ni−Fe合金メツキ組成 浴組成;NiSO4・6H2O 240g/ NiCl2・6H2O 45g/ FeSO4・7H2O, 60〜80g/ H3BO3 40g/ PH;1.5 電流密度;5〜20A/dm2 浴 温;50℃ (3) Ni−Sn合金メツキ組成 浴組成;SnCl2・2H2O 50g/ NiCl2・6H2O 300g/ NaF 28g/ NH4HF2 35g/ PH;2.5 電流密度;2.5〜10A/dm2 浴 温;65℃ 又、Ni−Fe合金下地被覆層の特殊な一例とし
て、Ni電気メツキを前記(1)の如き組成、条件で
行なつてから、非酸化性雰囲気で550〜900℃の温
度で加熱拡散処理を行なつてもよい。特に、この
加熱拡散処理によつてNi−Fe系合金拡散層から
なるNi系下地被覆層を施す方法は、下記の点で
有利である。 本発明に使用されるCrとNiの含有鋼板は、一
般に焼鈍過程において酸化され易い。従つて、焼
鈍工程に先立つて、冷間圧延のまま(As Cold
材)の鋼板に、脱脂、酸洗後Ni系下地メツキを
施し、焼鈍と同時に加熱拡散処理(温度500〜900
℃)を行なう方法が、Ni系下地処理により加熱
時のCr、Ni含有被覆原板表面の酸化を防止しう
る。それと同時に、As Cold材の有する加工歪に
よりNi系下地被覆層と鋼板の相互拡散が促進さ
れるので、短時間の加熱処理によりNi−Fe系の
拡散下地被覆層が均一に生成され易い等の点もす
ぐれている。 次に、Ni系下地被覆層は、Ni、Ni−Fe合金、
Ni−Fe系拡散層、Ni−Sn合金、Ni−Co合金、
Ni−P合金等が使用されるが、この下地被覆層
の厚さは0.001〜1.5μ、好ましくは0.05〜0.5μであ
る。厚さが0.01μ未満では、鋼板に対する均一被
覆性が不充分で、Sn被覆層との合金化反応によ
る前記の如き被覆欠陥部の減少効果が得られな
い。またその厚さが1.5μをこえるとその効果が飽
和するとともに、比較的硬質のNi−Sn系合金層
が厚く生成され、加工時の合金層にSn系被覆表
面に達するクラツクを生成し耐食性が劣化する。 さらに本発明ではNi系下地被覆層が施された
鋼板は、そのまま或いは酸洗等の活性化処理が施
された後、Sn系被覆処理或いはさらにSn被覆後
加熱溶融処理(メルト処理)を施す。この場合の
Sn被覆条件及びSn被覆処理後の加熱溶融処理条
件は、通常の条件を採用すればよく、特に限定さ
れるものではない。例えば、
(Field of Industrial Application) The present invention relates to a Sn-based coated steel sheet that has extremely low Fe elution from coating defects or coating end faces, etc. in a corrosive environment, and has extremely excellent corrosion resistance. (Conventional technology) Sn-plated steel sheets (tinplate) have traditionally had excellent appearance, corrosion resistance, workability, painting performance, and solderability.
It has outstanding suitability as a steel sheet for containers. However, the biggest drawback is that due to the soaring price of Sn metal,
The reason is that the price is extremely high. Therefore, efforts are being made to reduce costs by reducing the amount of Sn attached.
In that case, the problem is a decrease in corrosion resistance. The steel plate that solved this problem, for example,
There is a Sn-based coated steel sheet having a Ni-based base coating layer, as disclosed in Japanese Patent Application Laid-open No. 57-23091 and Japanese Patent Application Laid-Open No. 60-200592. These steel plates are designed to improve corrosion resistance through the superimposition of the base coating layer and the Sn coating layer, and by reducing the exposed portion of the base metal due to the formation of a uniform and dense alloy layer due to the effect of the base coating layer. Although steel sheets for containers having Sn-based coating layers as described above are used in some places to take advantage of their characteristics, it is difficult to say that they have necessarily achieved sufficiently satisfactory corrosion resistance. In addition, Sn-plated steel sheets are being considered as a material for containers for alcohol-based fuels, but if the amount of Sn attached is reduced, problems such as red rust or perforation corrosion may occur from the plating pinholes during processing, so it is not always satisfactory. It is said that the desired performance is not being achieved. In order to solve this problem, a Ni-based base coating layer is applied to a steel sheet to which 0.2% to 5% of Cr is added to the plating original plate, as disclosed in Japanese Patent Application Laid-Open No. 59-126323. There is a Sn-based coated steel sheet with a Sn plating layer on the top layer. These steel plates have Cr in the steel, which has the effect of reducing the coupling current between the alloy layer with Sn containing Ni and the steel plate (plated steel plate), improving the corrosion resistance of the steel plate itself, making it an excellent product. Corrosion resistance can be obtained. However, the usage environment is becoming more severe, and the required performance tends to be more sophisticated. for example,
Regarding materials for cans, there are changes in the corrosive environment due to reductions in paint film thickness and diversification of contents.On the other hand, for fuel containers, there is a demand for longer lifespans of puncture-resistant corrosion, and changes in methanol, which is more corrosive than ethanol, are required. Application, deterioration of the corrosive environment such as the contamination of organic acids, etc. It cannot be said that the corrosion resistance performance is necessarily sufficient to meet these strict requirements. (Problems to be Solved by the Invention) In recent years, the characteristics of steel sheets for containers have been improved in response to the diversification of can manufacturing styles, the diversification of contents, and the consumer's preference for higher quality products. There is a demand for improvements in corrosion resistance (i.e., improvements in corrosion resistance life, etc.) that are better than thinner steel sheets for containers that are less likely to rust or to reduce container costs.
For example, in response to the increase in the number of deformed cans such as closed-in cans, corrosion resistance of parts that have undergone more severe processing than before is particularly required for contents containing Cl - ions. In addition, materials for can lids are required to be easier to open than before, and for this reason, it is necessary to extend the corrosion-resistant life of processed parts in response to reductions in the thickness of can lid materials and the thickness of score processed parts. At the same time, the score processing section is required to improve the corrosion resistance, especially the rust resistance, of the sheared portion of the score where the iron surface is exposed on the outer surface of the can lid. Further, when using an iron-based container steel plate for the tab of an easy-open-end can lid, corrosion resistance, particularly rust resistance, of the end face of the steel plate is required. Furthermore, the crown is required to have improved rust resistance on the end face of the crown. Furthermore, in the can manufacturing method, corrosion resistance of the welded end face portion is further required. In addition to the above-mentioned containers, it is also desired to develop highly corrosion-resistant Sn-based coated steel sheets that are less likely to cause perforation corrosion at coating defects in processed or welded areas, both inside and outside of fuel containers for alcohol fuel. There is. In conventional Sn-based coated steel sheets, depending on the type of contents, the Sn coating layer acts as a cathode, and Fe is removed from coating defects (pinholes, flaws due to processing, etc.).
There was a problem in that it leached out and induced perforation corrosion. On the other hand, on the external surface of the environment, the Sn coating layer acts as a cathode, and the couple corrosion current with the steel plate is also extremely large. As a result, Fe is removed from coating defects or end surfaces, etc.
Elution and red rust occur, which tends to cause perforation corrosion. The purpose of the present invention is to solve the above-mentioned conventional problems and provide a Sn-based coated steel sheet with extremely excellent corrosion resistance and corrosion resistance life. This provides an Sn-based coated steel sheet that improves the corrosion resistance of the plated original plate itself, imparts anodic corrosion protection to the Sn coating layer, and has fewer coating defects such as pinholes and unplated areas. (Means for solving the problems) That is, the gist of the present invention is as follows: (1) C: 0.10% or less, SolAl: 0.005 to 0.08%,
A steel plate containing Cr: more than 5% to 20%, Ni: 3% or less, with the balance consisting of iron and unavoidable impurities, a Ni-based base coating layer with a thickness of 0.001 to 1.5μ, and a 0.05μ thick Ni base coating layer on top of that. A highly corrosion-resistant Sn-based coated steel sheet coated with the above Sn-based coating layer. (2) C; 0.10% or less, SolAl; 0.005 to 0.08%,
Contains Cr; more than 5% to 20%, Ni; 3% or less,
Furthermore, one or more of Ti, Nb, Zr, and V
A steel plate with a thickness of 0.001 to 1.5μ is applied to a steel plate containing 0.03 to 0.5%, with the balance consisting of iron and unavoidable impurities.
Ni-based base coating layer, and Sn with a thickness of 0.05μ or more on top of it
A highly corrosion-resistant Sn-based coated steel sheet with a Sn-based coating layer. (3) C; 0.10% or less, SolAl; 0.005 to 0.08%,
A steel plate containing Cr: more than 5% to 20%, Ni: 3% or less, with the balance consisting of iron and unavoidable impurities, a Ni-based base coating layer with a thickness of 0.001 to 1.5μ, and a 0.05μ thick Ni base coating layer on top of that. After applying the above Sn-based coating layer,
A method for producing highly corrosion-resistant Sn-based coated steel sheets through heating and melting treatment. (4) C; 0.10% or less, SolAl; 0.005 to 0.08%,
Contains Cr; more than 5% to 20%, Ni; 3% or less,
Furthermore, one or more of Ti, Nb, Zr, and V
Ni with a thickness of 0.001 to 1.5μ is added to a steel plate containing 0.03 to 0.5%, the balance being iron and unavoidable impurities.
High corrosion resistance achieved by applying heat-melting treatment after applying a Sn-based base coating layer and a Sn-based coating layer with a thickness of 0.05μ or more on top of it.
This is a manufacturing method for Sn-based coated steel sheets. (Function) The present invention will be explained in detail below. Molten steel produced in a melting furnace such as a converter or electric furnace is made into a slab through continuous casting, ingot making, or blooming, and is then hot rolled, cold rolled, and annealed to reduce weight percentage.
So, C: 0.10% or less, acid-soluble Al (SolAl): 0.005~
A steel plate containing 0.08%, more than 5% to 20% of Cr, and 3% or less of Ni, or a plated original plate containing one or more of Ti, Nb, Zr, and V at 0.03 to 0.5% is produced. More than 5% Cr contained in the original plate
In a corrosive environment where Sn-based coated steel sheets are used,
Prevents Fe elution and perforation corrosion from coating defects and improves corrosion resistance. Figure 1 shows the situation when a corrosion accelerating liquid is filled in the container.
This is a measurement of the couple corrosion current between the Sn coating layer and the coated original plate, and the anodic corrosion protection ability of Sn becomes significantly higher when the Cr content is 3% or more, especially when the Cr content is 5% or more. The effect is particularly remarkable when Ni is co-existed with Cr. Figure 2 shows the measurement of the couple corrosion current between the Sn coating layer and the plating original plate when the outer surface of the container was immersed in a corrosion accelerating liquid.
It becomes possible to protect the Sn coating layer from anodic corrosion, and the effect is particularly remarkable when it coexists with Ni. In this way, when a steel plate containing Cr is used as a plating base plate, the sacrificial anticorrosion effect of the Sn coating layer prevents Fe elution from the exposed portion of the base metal, occurrence of red rust, or occurrence of pitting corrosion. Therefore, the Sn-based coated steel sheet of the present invention has significantly improved corrosion resistance and corrosion resistance life. In general, no matter how strict the control is in manufacturing Sn-coated steel sheets, it is difficult to completely eliminate defects in the coating layer such as pinholes and imperfections, and processing defects may occur during use, which may cause damage to the base steel. A covering layer defect is generated. At the same time, there are many situations where the end face of the Sn-coated steel plate is used with the bare metal exposed (for example, the welded part of a welded can, the scored part of a can lid, the end face of a crown, etc.). Therefore, the present invention uses a steel plate whose Sn coating layer has Cr and Ni as essential components, which can provide sacrificial corrosion protection for the plating base plate, so as to eliminate coating defects and base iron on the end face of the Sn-coated steel plate. Significantly suppresses corrosion. As a result, an Sn-based coated steel sheet with an extremely long corrosion-resistant life can be manufactured by improving the corrosion resistance of the coated original sheet.
As mentioned above, the Cr content to obtain such an effect is more than 5% to 20%, preferably more than 8% to 12%.
%. If the Cr content is less than 5%, a sufficient sacrificial corrosion protection effect in a corrosive environment cannot be obtained, and
If the Cr content exceeds 20%, the uniform coverage and adhesion of the Sn-based coating layer will deteriorate. In particular, steel sheets with a two-phase composition of γ phase and α phase with a Cr content of 11% or less are less likely to cause coarsening of grains during steel sheet manufacturing, and are also prone to the "roughing" phenomenon called ridging when subjected to severe forming processes. There are characteristics that make it difficult to occur. Ni coexists with Cr to improve corrosion resistance
The content is 3% or less, preferably 0.1 to 1%. When the Ni content exceeds 3%, the corrosion resistance improvement effect is saturated and the adhesion of the Ni-based base coating layer is reduced.
In particular, it becomes difficult to ensure adhesion during processing.
It should be noted that when Ni is mixed with the Cr component, the effect of improving the corrosion resistance of the steel sheet itself and the sacrificial anticorrosion effect of the Sn coating layer are further ensured when the content is 0.1% or more. In order to improve the corrosion resistance as described above, in addition to the Cr component and Ni component, in the present invention, C and SolAl
(acid-soluble Al) content is regulated. As the C content increases, the amount of chromium carbide precipitated increases, which deteriorates the mechanical properties and corrosion resistance of the steel.
Prevents uniform coverage of the underlying coating layer. Therefore,
C content is 0.10% or less. In particular, in the present invention, when adding Ti, Nb, etc. to further improve workability and corrosion resistance, the C content may be reduced because it inhibits workability and uniform coverage of the coating layer due to precipitation of titanium carbide, etc. It is preferably 0.02% or less. Al is the amount of acid-soluble Al (SolAl) remaining in the steel.
If the content is less than 0.005%, it is difficult to prevent the formation of bubbles due to oxidizing gas, which significantly increases the number of surface defects on the steel, which becomes the starting point for deterioration of the corrosion resistance of the steel material. Also, excess acid-soluble Al exceeding 0.08%
This method causes Al-based oxides to be scattered on the steel surface, which is the starting point for corrosion resistance deterioration or causes smudges, pinholes, etc. on the surface of the coating layer applied to the steel plate, impairing the integrity of the coating layer. Therefore, in the present invention, SolAl is 0.005 to 0.08%. In addition to the above-mentioned steel components, the present invention also includes Ti, Nb,
Cr contained by containing 0.03 to 0.50% of one or more of Zr and V and combining with C in steel
This will further improve processability and corrosion resistance. If the content of steel components such as Ti is less than 0.03%, the effect of preventing chromium carbide precipitation and improving workability and corrosion resistance will be small, and if the content exceeds 0.50%, the effect will be saturated. In addition, precipitation of these components tends to harden the material and deteriorate workability. The preferred content is 0.075-0.20%. If steel sheets with the above composition are used as is, they have superior corrosion resistance compared to conventional steel sheets that contain unavoidable impurities such as Cr, but when used as materials for containers or fuel containers. In this case, the corrosion resistance cannot necessarily be said to be sufficient. That is, iron elution occurs due to moisture containing organic acids and Cl - ions in the contents filled in the container, and red rust is also significantly generated. In addition, the outer surface of the container may be exposed to corrosive atmospheres containing Cl - ions, high temperatures, etc.
When stored in high humidity conditions, red rust occurs in a relatively short period of time, and steel plates alone do not have sufficient corrosion resistance. Furthermore, even if the steel plate is directly painted, if it is exposed to a corrosive atmosphere for a long period of time, the corrosive aqueous solution that has penetrated under the coating will generate corrosion products on the steel plate, causing the coating to peel and deteriorating the coating performance. There are drawbacks. Although steel sheets with the above-mentioned steel components have relatively good corrosion resistance against gasoline or alcohol fuel, they may develop red rust or suffer from perforation corrosion due to moisture contained in the fuel, moisture containing Cl - ions, etc. tends to occur. In addition, in a corrosive atmosphere where Cl - ions are present, such as on roads where road antifreeze salts (agents) have been sprayed or in sea breeze areas, red rust is likely to occur and pitting corrosion is likely to occur. Therefore, in the present invention, taking into account the corrosion resistance, paintability, etc. required for container materials, fuel containers, etc., as described above, Sn is added to the plating original plate.
Apply a covering layer. As described above, in a steel sheet containing Cr and Ni as essential components, the Sn coating layer provides a sacrificial corrosion protection effect on the original sheet. As a result, excellent corrosion resistance performance,
Corrosion resistant life can be obtained. Furthermore, in the present invention, Ni is added to the base layer of the Sn-based coating layer.
Apply a base coat layer. The Ni-based base coating layer forms a dense alloy layer with the upper Sn coating layer to reduce defects within the coating layer and improve corrosion resistance and adhesion of the coating layer. This is because the Ni-based metal and the Sn coating layer have extremely excellent diffusion reactivity or wetting reactivity, both at room temperature and in the Sn-based coating treatment by heat melting treatment (melt treatment) or hot-melt plating method. By forming an alloy layer of Ni and Sn in this manner, the sacrificial anticorrosion ability of the Sn coating layer is further strengthened. In the present invention, the method of applying the Ni-based base coating layer and the Sn-based coating layer is not particularly specified, but for example, for the Ni-based base coating layer, the plating original plate is subjected to normal plating pretreatment such as degreasing and pickling. Then, electrical Ni plating or Ni alloy plating is applied, but a normal electroplating method may be used. Composition of Ni plating bath or Ni alloy plating bath,
Although the plating conditions are not particularly specified, the current density is generally 3 to 300 A/dm 2 and the plating temperature is 80° C. or less. Examples of the composition of the Ni plating bath or Ni alloy plating and the plating conditions are as follows. (1) Ni plating composition: NiSO 4・6H 2 O 240g/ NiCl 2・6H 2 O 45g/H 3 BO 3 40g/ PH; 4.0 Current density: 15A/dm 2 plating bath temperature: 60℃ (2) Ni− Fe alloy plating composition Bath composition; NiSO 4・6H 2 O 240g/ NiCl 2・6H 2 O 45g/ FeSO 4・7H 2 O, 60~80g/ H 3 BO 3 40g/ PH; 1.5 Current density; 5~20A/ dm 2 Bath Temperature: 50℃ (3) Ni-Sn alloy plating composition Bath composition: SnCl 2・2H 2 O 50g/ NiCl 2・6H 2 O 300g/ NaF 28g/ NH 4 HF 2 35g/ PH; 2.5 Current density; 2.5-10A/dm 2 bath temperature: 65℃ Also, as a special example of the Ni-Fe alloy base coating layer, Ni electroplating is performed with the composition and conditions as described in (1) above, and then in a non-oxidizing atmosphere. The heating diffusion treatment may be performed at a temperature of 550 to 900°C. In particular, the method of applying a Ni-based undercoat layer made of a Ni--Fe alloy diffusion layer by this heating diffusion treatment is advantageous in the following points. The steel sheet containing Cr and Ni used in the present invention is generally easily oxidized during the annealing process. Therefore, prior to the annealing process, as cold rolled
After degreasing and pickling, a Ni-based base plating is applied to the steel plate of
℃) can prevent oxidation of the Cr- and Ni-containing coated original plate surface during heating by Ni-based base treatment. At the same time, the processing strain of the As Cold material promotes mutual diffusion between the Ni-based undercoating layer and the steel plate, so a short heat treatment can easily generate a Ni-Fe-based diffused undercoating layer uniformly. The points are also excellent. Next, the Ni-based base coating layer is made of Ni, Ni-Fe alloy,
Ni-Fe diffused layer, Ni-Sn alloy, Ni-Co alloy,
Ni--P alloy or the like is used, and the thickness of this base coating layer is 0.001 to 1.5 microns, preferably 0.05 to 0.5 microns. If the thickness is less than 0.01 μm, the uniform coverage of the steel plate is insufficient, and the effect of reducing coating defects as described above due to the alloying reaction with the Sn coating layer cannot be obtained. If the thickness exceeds 1.5μ, the effect is saturated and a relatively hard Ni-Sn alloy layer is formed thickly, creating cracks in the alloy layer that reach the Sn-based coating surface during processing, resulting in poor corrosion resistance. to degrade. Furthermore, in the present invention, the steel plate coated with the Ni-based base coating layer is subjected to Sn-based coating treatment or further heat-melting treatment (melt treatment) after Sn coating, either as is or after being subjected to activation treatment such as pickling. In this case
The Sn coating conditions and the heating and melting treatment conditions after the Sn coating treatment are not particularly limited, and may be any conventional conditions. for example,

【表】 フオン酸
で電流密度5〜100A/dm2、浴温30〜60℃で行
なわれる。また加熱溶融処理は、Snメツキ層の
金属光沢の増加による外観向上とNi又はNi合金
系下地被覆層とSnとの合金層をより均一緻密に
生成させ、より一層の耐食性向上を計るために行
なわれるもので、Sn被覆処理後水洗して、その
ままあるいは水溶液フラツクスを塗布して、空気
中、或いは非酸化性雰囲気(例えばN2雰囲気)
中で240〜350℃、好ましくは250〜300℃でSn被
覆層が溶融される。 フラツクスは、浸漬処理又はスプレイ処理によ
り、例えばメツキ浴がフエロスタン浴では、 フエノールスルフオン酸
2〜10g/(硫酸に換算して) SnSO4 2〜10g/ を塗布して溶融される。 尚、Sn系被覆処理に関しては、上記の如き電
気メツキ法以外に、溶融メツキ法或いは真空蒸着
法等の他の被覆法を採用してもよい。 Sn被覆層の厚さは0.05μ以上、好ましくは0.15μ
以上の厚さの被覆層を施す必要がある。厚さが
0.05μ未満では、Sn系被覆層の均一被覆性が不充
分であり、被覆欠陥部におけるSn被覆層のアノ
ード防食によるSnの溶出・消費により、その防
食機能が比較的早期に消失されるので、耐食寿命
が必ずしも充分でない。一方、厚さの上限は特に
規定されるものではないが、その用途によつて、
例えば容器用素材では、0.05〜1.5μ燃料容器用素
材では1〜10μの被膜厚さのものが多く使用され
る。 又、本発明は、容器用素材として使用される場
合は塗装されて使用されることが多いが、長期間
貯蔵した場合には、Sn被覆層表面に生成する酸
化膜によつて外観が変色することがある。したが
つて本発明は、Sn被覆処理或いは加熱溶融処理
後水洗を施して、鋼表面の残査物を除去した後、
無水クロム酸、クロム酸塩(クロム酸アンモン、
クロム酸ソーダー等)或いは重クロム酸塩(重ク
ロム酸アンモン、重クロム酸ソーダー等)の一種
又は二種以上の混合水溶液及びこれらにSO-2 4
オン、弗化物等を添加した水溶液を用いて、クロ
メート処理を行う。クロメート処理の処理浴また
は処理条件は、特に限定するものではないが、例
えば以下の様なクロメート浴及びクロメート条件
で処理される。 (1) クロメート浴組成;60g/CrO3−0.3g/
SO-2 4 電流密度;7.5A/dm2 浴 温;60℃ クロメート被膜量(Cr換算);14.5mg/m2 (2) クロメート浴組成;30g/重クロム酸ソー
ダ 電流密度;10A/dm2 浴 温;45℃ クロメート被膜量;6mg/m2 上記成分組成で製造された本発明は、鋼板(メ
ツキ原板)自体の耐食性向上、Niを含有するSn
被覆層との均一緻密な合金層の生成による被覆欠
陥部の減少及びSn系被覆層の犠牲防食能の確保
により、その耐食性、耐食寿命の向上効果が極め
て著しい。すなわち、本発明は、被覆欠陥が少な
く、又被覆欠陥部が生成された場合或いは加工等
により発生する疵部等のFe露出部、被覆層端面
部等に対して、Sn被覆層による犠牲防食効果、
メツキ原板自体の腐食速度の減少効果によつて、
Fe溶出量の減少が著しく、Fe露出部の穿孔腐食
の危険性が著しく軽減される等その耐食性向上は
著しい。 次に鋼成分の規定において、現在の工業水準に
おける鋼製造過程で不可避的不純物として含有さ
れるMn、P、Si、S等が含まれる事は当然であ
る。同様に、Ni或はNi合金下地メツキ層に対し
ても、不可避的不純物として含有されるCo、S
等についても少ない方が好ましい。 (実施例) 以下に、本発明の実施例について説明する。 実施例 1 第1表は鋼中のCr及びNi含有量を中心に変化
させた場合の本発明におけるメツキ原板を用い
て、脱脂酸洗の通常電気メツキにおいて行なわれ
る前処理を行なつてから、Ni下地被覆メツキ、
Ni−Sn合金下地被覆メツキ、Ni−Fe合金電気メ
ツキによる下地被覆メツキ、及びNi系下地メツ
キ後拡散処理を行なつたNi−Fe系下地メツキを
各所定量行なつた。次いで、Snメツキ層、或い
は、Snメツキ後加熱溶融処理を行ない、CrO3
SO-2 4系陰極電解処理によるクロメート処理を行
なつた被覆鋼板について、無塗装板及び塗装板に
ついて、飲料缶容器を対象とした耐食性試験を行
なつた結果を表示した。比較材として、Cr、Ni
を添加していないアルミキルド鋼及びリムド鋼を
用いたNi系の下地メツキ層を有するSnメツキ鋼
板の耐食性を示した。 Γ評価試験法 被覆欠陥部を対象とした耐食性 0.25×50×50mmの評価材を用い、端面及び表
面をシールして、評価面に地鉄に達するスクラ
ツチ疵を入れ(1.5%クエン酸+1.5%NaCl)水
溶液400ml中に、温度55℃で12日間、酸素の殆
んど存在しないN2ガス通気雰囲気中で浸漬テ
ストを行ない、 被覆欠陥部に相当するスクラツチ疵部から
のFe溶出量及び スクラツチ疵部を評価試験後、断面顕微鏡
により調査してその疵部の穿孔腐食の状況に
より、その耐食性を評価した。 尚、評価基準は以下の基準により、評価を行な
つた。
[Table] The test is carried out using fonic acid at a current density of 5 to 100 A/dm 2 and a bath temperature of 30 to 60°C. In addition, the heat melting treatment was performed to improve the appearance by increasing the metallic luster of the Sn plating layer and to form a more uniform and dense alloy layer of the Ni or Ni alloy base coating layer and Sn, thereby further improving corrosion resistance. After Sn coating treatment, it is washed with water and then exposed to air or a non-oxidizing atmosphere (e.g. N2 atmosphere) either as is or with an aqueous solution applied.
Inside, the Sn coating layer is melted at 240-350°C, preferably 250-300°C. The flux can be treated by dipping or spraying, for example, in plating baths and ferrostan baths, phenolsulfonic acid
2 to 10 g/(in terms of sulfuric acid) of SnSO 4 is applied and melted. Regarding the Sn-based coating treatment, in addition to the electroplating method as described above, other coating methods such as hot-dip plating method or vacuum evaporation method may be employed. The thickness of the Sn coating layer is 0.05μ or more, preferably 0.15μ
It is necessary to apply a coating layer with a thickness greater than that. Thickness
If it is less than 0.05μ, the uniform coverage of the Sn-based coating layer will be insufficient, and the anticorrosion function will be lost relatively quickly due to the elution and consumption of Sn by the anodic corrosion protection of the Sn coating layer in the defective areas. Corrosion resistance life is not necessarily sufficient. On the other hand, the upper limit of the thickness is not particularly defined, but depending on the application,
For example, in the case of materials for containers, those with a coating thickness of 1 to 10μ are often used for materials for fuel containers of 0.05 to 1.5μ. Furthermore, when the present invention is used as a container material, it is often coated, but when stored for a long period of time, the appearance changes color due to the oxide film that forms on the surface of the Sn coating layer. Sometimes. Therefore, in the present invention, after removing the residue on the steel surface by washing with water after Sn coating treatment or heat melting treatment,
Chromic anhydride, chromate (ammonium chromate,
using a mixed aqueous solution of one or more types of dichromates (sodium chromate, etc.) or dichromates (ammonium dichromate, sodium dichromate, etc.), and an aqueous solution to which SO -2 4 ions, fluoride, etc. are added. , perform chromate treatment. The treatment bath or treatment conditions for the chromate treatment are not particularly limited, but the treatment may be performed using, for example, the following chromate bath and chromate conditions. (1) Chromate bath composition; 60g/CrO 3 −0.3g/
SO -2 4 Current density: 7.5 A/dm 2 Bath temperature: 60°C Chromate coating amount (Cr equivalent): 14.5 mg/m 2 (2) Chromate bath composition: 30 g/sodium dichromate Current density: 10 A/dm 2 Bath temperature: 45°C Amount of chromate film: 6 mg/m 2 The present invention manufactured with the above component composition improves the corrosion resistance of the steel plate (metsuki original plate) itself, and the Ni-containing Sn
The formation of a uniform and dense alloy layer with the coating layer reduces coating defects and ensures the sacrificial anticorrosion ability of the Sn-based coating layer, resulting in extremely significant improvements in corrosion resistance and corrosion resistance life. In other words, the present invention has few coating defects, and the sacrificial corrosion protection effect of the Sn coating layer can be applied to exposed Fe parts such as scratches caused by processing, etc., and the end face of the coating layer. ,
Due to the effect of reducing the corrosion rate of the original plate itself,
The improvement in corrosion resistance is remarkable, as the amount of Fe eluted is significantly reduced and the risk of perforation corrosion in exposed Fe areas is significantly reduced. Next, in the specification of steel components, it is natural that Mn, P, Si, S, etc., which are contained as unavoidable impurities in the steel manufacturing process at the current industrial level, are included. Similarly, Co and S, which are unavoidable impurities, are added to the Ni or Ni alloy base plating layer.
It is also preferable to have fewer values. (Example) Examples of the present invention will be described below. Example 1 Table 1 shows the plating original sheets of the present invention in which the Cr and Ni contents in the steel were mainly changed, and after being subjected to the pretreatment performed in normal electroplating for degreasing and pickling, Ni base coating plating,
Ni--Sn alloy base plating, Ni--Fe alloy base plating by electroplating, and Ni--Fe base plating in which diffusion treatment was performed after Ni-based base plating were performed in predetermined amounts. Next, a Sn plating layer or a heat melting treatment after Sn plating is performed to form a CrO 3
The results of a corrosion resistance test for beverage can containers on coated steel sheets that have been subjected to chromate treatment using SO -2 4 -based cathodic electrolytic treatment, unpainted sheets and painted sheets, are displayed. As comparison materials, Cr, Ni
The corrosion resistance of Sn-plated steel sheets with a Ni-based base plating layer using aluminum-killed steel and rimmed steel without the addition of aluminum was demonstrated. Γ evaluation test method Corrosion resistance targeting coating defects Using a 0.25 x 50 x 50 mm evaluation material, the end face and surface were sealed, and scratches reaching the base metal were made on the evaluation surface (1.5% citric acid + 1.5 %NaCl) aqueous solution for 12 days at a temperature of 55°C in an N2 gas atmosphere with almost no oxygen, the amount of Fe eluted from the scratch area corresponding to the coating defect and the scratch were measured. After the evaluation test, the scratches were examined using a cross-sectional microscope, and the corrosion resistance was evaluated based on the state of perforation corrosion in the scratches. The evaluation was performed based on the following criteria.

【表】 被覆欠陥部を対象とした耐食性 と同一評価材を用い、地鉄に達するスクラ
ツチ疵を入れた後、1.5%クエン酸水溶液400ml
中に、温度55℃で15日間、酸素の殆んど存在し
ないN2ガス通気雰囲気中で浸漬テストを行な
い、Fe溶出量の測定及びスクラツチ疵部
からの穿孔腐食の状況を調査し、その耐食性の
評価を行なつた。尚、評価基準はの方法によ
つた。 端面錆の評価 板厚0.24mmの評価材を剪断した後の端面に
ついて、(−5℃の冷凍試験60min)→高
温・高湿(温度49℃、湿度≧98%、60min)
→室内放置(30℃で180min)を1サイクル
として、剪断面に錆が発生するサイクル数の
観察により、その評価を行なつた。尚、評価
基準は以下の方法により行なつた。 ◎…錆の発生が 12 サイクル以上で発生 〇… 〃 9〜11 〃 △… 〃 6〜8 〃 ×… 〃 5 サイクル以下で発生 板厚0.25mmの評価材を用い、カツプ絞りに
より44φ×8mm深さの加工評価材を作成、剪
断面が下部に位置するようにして、屋外曝露
試験により、その端面からの赤錆発生状況を
観察して、その耐食性の評価を行なつた。
尚、評価基準は以下の方法によつた。
[Table] Corrosion resistance targeting defective areas of coating After using the same evaluation material and making scratches reaching the base steel, 400ml of 1.5% citric acid aqueous solution was applied.
During the test, an immersion test was conducted at a temperature of 55℃ for 15 days in an N2 gas aeration atmosphere with almost no oxygen present, and the amount of Fe eluted was measured and the state of perforation corrosion from the scratch area was investigated. We conducted an evaluation. The evaluation criteria were based on the following method. Evaluation of end surface rust After shearing the evaluation material with a thickness of 0.24 mm, the end surface was subjected to (-5℃ freezing test 60 min) → high temperature and high humidity (temperature 49℃, humidity ≧98%, 60 min)
→Evaluation was performed by observing the number of cycles at which rust occurs on the sheared surface, with one cycle being left indoors (180 minutes at 30°C). The evaluation criteria were as follows. ◎…Rust occurs after 12 cycles or more 〇… 〃 9~11 〃 △… 〃 6~8 〃 ×… 〃 5 cycles or less Using evaluation material with a plate thickness of 0.25 mm, 44φ x 8 mm deep by cup drawing A material for evaluation of processing was prepared, the sheared surface was placed at the bottom, and the corrosion resistance was evaluated by observing the occurrence of red rust from the end surface in an outdoor exposure test.
The evaluation criteria were based on the following method.

【表】 塗膜欠陥部を対象とした性能評価 塗膜性能評価 評価材に対して、エポキシフエノール系塗
料を5μ厚さに塗装後地鉄に達するスクラツ
チ疵を入れ、(1.5%クエン酸+1.5%NaCl)
水溶液中に、27℃で酸素の殆んど存在しない
CO2通気雰囲気中で96時間浸漬テスト後に、
乾燥して直ちにセロフアンテープ剥離を行な
つて、スクラツチ部を中心とした塗膜欠陥部
からの塗膜剥離状況の調査により、容器内面
を対象とした経時後の塗膜性能の評価を行な
つた。尚、評価基準は以下の方法によつた。 ◎…スクラツチ部での塗膜剥離が殆んど認め
られない 〇…スクラツチ部での塗膜剥離が僅かに認め
られる △…スクラツチ部での塗膜剥離が明瞭に認め
られる ×…スクラツチ部での塗膜剥離が著しく認め
られる 塗膜欠陥部の耐食性 上記の評価材について、CO2通気雰囲気
中で、55℃で12日間浸漬テスト後に、スクラ
ツチ疵部の穿孔腐食深さの測定により、その
耐食性能の評価を行なつた。尚、評価基準は
以下の方法によつた。 ◎…穿孔腐食殆んど認められない 〇…最大穿孔腐食深さが板厚の10%未満 △… 〃 10%以上〜30
%未満 ×…最大穿孔腐食深さが板厚の30%以上 缶蓋材のスコア加工部を対象とした性能評価
板厚0.21mmの評価材を用いて、スコア残厚75μ
のイージーオープン缶蓋用加工を行なつて、内
面相当側をシールして、酸素存在雰囲気下で
(1.5%クエン酸+1.5%NaCl)水溶液中で、55
℃で5日間浸漬試験後の性能評価を行なつた。 塗膜性能評価 上記評価試験後、乾燥して直ちにセロフア
ンテープ剥離を行なつて、その塗膜剥離状況
より、容器外面を対象とした促進試験による
経時後の塗膜性能の評価を行なつた。尚、評
価基準は以下の方法によつた。
[Table] Performance evaluation targeting paint film defects Paint film performance evaluation The evaluation material was coated with epoxy phenol paint to a thickness of 5 μm, then scratches reaching the base metal were made and treated with (1.5% citric acid + 1. 5% NaCl)
Almost no oxygen exists in the aqueous solution at 27℃
After 96 hours immersion test in CO2 vented atmosphere,
Immediately after drying, peel off the cellophane tape and investigate the peeling status of the paint film from the defective parts of the paint film, mainly the scratches, to evaluate the performance of the paint film after time on the inner surface of the container. Ta. The evaluation criteria were based on the following method. ◎...Almost no peeling of the paint film is observed at the scratch area 〇...Slight peeling of the paint film is observed at the scratch area △...Peeling of the paint film at the scratch area is clearly observed. ×...Paint film peeling at the scratch area is clearly observed. Significant paint film peeling is observed Corrosion resistance of paint film defects The corrosion resistance of the above evaluation materials was determined by measuring the depth of perforation of the scratched areas after a 12-day immersion test at 55°C in a CO2 aerated atmosphere. We conducted an evaluation. The evaluation criteria were based on the following method. ◎...Almost no drilling corrosion observed 〇...Maximum drilling corrosion depth is less than 10% of the plate thickness △... 〃 10% or more ~ 30
Less than % ×...Maximum drilling corrosion depth is 30% or more of the plate thickness Performance evaluation for the scored part of can lid material Using an evaluation material with a plate thickness of 0.21 mm, the score remaining thickness was 75μ
After processing the lid for an easy-open can, sealing the inner surface, and sealing it in an aqueous solution (1.5% citric acid + 1.5% NaCl) in an oxygen atmosphere,
Performance evaluation was performed after a 5-day immersion test at °C. Paint film performance evaluation After the above evaluation test, cellophane tape was removed immediately after drying, and based on the peeling status, the paint film performance after time was evaluated by an accelerated test on the outer surface of the container. . The evaluation criteria were based on the following method.

【表】 穿孔腐食性評価 上記評価試験後に、スコア加工部の穿孔腐
食状況を断面顕微鏡により調査して、その耐
食性を調査した。尚、評価基準は以下の方法
によつた。 ◎…最大穿孔腐食深さがスコア残厚の20%未
満 〇…最大穿孔腐食深さがスコア残厚の20%以
上〜40%未満 △…最大穿孔腐食深さがスコア残厚の40%以
上〜60%未満 ×…最大穿孔腐食深さがスコア残厚の60%以
上 成形加工性の評価 板厚0.28mmの評価材用に、150mmφのブラン
クサイズから深さ60mmの円筒絞りを行ない、そ
の割れ発生状況及び外面の被覆層のカジリ発生
状況を検討し、各評価材の相対比較を行なつ
て、その成形加工性を評価した。尚、評価基準
は以下の方法によつた。 ◎…非常に良好 〇…良好 △…劣る ×…非常に劣る 実施例 2 第2表にCr含有量を中心に変化させた場合の
Cr及びNi添加鋼を用いて、脱脂、酸洗の通常電
気メツキにおいて行なわれる前処理を行なつてか
ら、Ni系の下地メツキを行ない、次いでSnメツ
キ層或いはSnメツキ後の加熱溶融処理を行なつ
た本発明について、アルコールを含有する燃料を
対象とした耐食性試験を行なつた結果を第3表に
示す。比較材として、Cr、Ni等を添加していな
いアルミキルド鋼及びTiキルド鋼を用いたSn系
メツキ鋼板の耐食性を示した。 Γ評価試験 1 外面を対象とした耐食性 (A) 塩水噴霧試験による耐食性 塩水噴霧試験720時間後の燃料容器外面を
対象とした耐食性を評価した。評価材は100
×300mmの試験片に地鉄に達するまでのスク
ラツチ疵をクロスカツト状に入れたものを用
いた。評価基準は100×300mmの試験片サイズ
に対して、10×10mmサイズのゴバン目300個
中に発生する赤錆の発生数を100分率で表示
した。 ◎…赤錆発生率5%未満 〇… 〃 5%以上〜25%未満 △… 〃 25%以上〜50%未満 ×… 〃 50%超 (B) C.C.T試験による耐食性 サイクルコロージヨン試験(C.C.T試験) 塩水噴霧(5%NaCl35℃×4時間)→
乾燥(70℃湿度60% 2時間)→湿潤
(49℃湿度98% 2時間)→冷却(−20
℃×2時間)→塩水噴霧 〜が1サイクルのC.C.T試験70サイ
クルを行ない、0.8mmの板厚の試験片を用
いて赤錆発生・腐食部の板厚減少量の測定
により耐食性評価を行なつた。 ◎…板厚減少量0.25mm未満 〇… 〃 0.25以上〜0.45mm未満 △… 〃 0.45mm以上〜0.75mm未満 ×… 〃 0.75mm以上 (C) 0.8×150mmの試験片を用い、直径1〜2mm
のアランダムを圧力1Kg/cm2で10秒間、試験
片の被覆層面に1cm2当り1.5gを衝突、チツ
ピングさせてから、上記C.C.T試験を50サイ
クル実施し、赤錆発生部の板厚減少量を測定
して、上記(B)の評価基準により評価を行なつ
た。 2 燃料容器内面対象試験 ブランクサイズ0.8×150mmφの試験片より、
ポンチ直径75mmφ、しわ押え力1Tで75mmφ×
高さ40mmの円筒容器を作成、100c.c.の以下のア
ルコール燃料を対象とした腐食促進溶液を充
填、密封して評価試験を行なつた。 (D) ガソホール対象試験 (20%エタノール+0.03%さく酸+0.15%
の1%NaCl水+残ガソリン)溶液を用いて、
6ケ月間評価試験実施 (E) ガソホール対象試験 (70%メタノール+10%イソプロピルアル
コール+0.03%ギ酸+0.3%の1.2%NaCl水+
残ガソリン)溶液を用いて、6ケ月間評価試
験 (F) 100%アルコール対象試験 (99%メタノール+0.01%ギ酸+0.99%の
0.5%NaCl水溶液)からなる溶液を用いて6
ケ月間評価試験を各々実施し、以下の評価基
準によりその評価を行なつた。
[Table] Evaluation of perforation corrosion After the above evaluation test, the state of perforation corrosion in the scored portion was investigated using a cross-sectional microscope to investigate its corrosion resistance. The evaluation criteria were based on the following method. ◎...Maximum drilling corrosion depth is less than 20% of the score residual thickness 〇...Maximum drilling corrosion depth is 20% or more of the score residual thickness and less than 40% △...Maximum drilling corrosion depth is 40% or more of the score residual thickness Less than 60% ×...Maximum drilling corrosion depth is 60% or more of the score remaining thickness Evaluation of formability For the evaluation material with a plate thickness of 0.28 mm, cylindrical drawing to a depth of 60 mm was performed from a blank size of 150 mmφ, and cracks occurred. The conditions and occurrence of galling on the outer surface coating layer were examined, relative comparisons were made between each evaluation material, and the moldability was evaluated. The evaluation criteria were based on the following method. ◎...Very good 〇...Good △...Poor ×...Very poor Example 2 Table 2 shows the results when mainly changing the Cr content.
Using Cr and Ni-added steel, we perform pre-treatments such as degreasing and pickling that are normally performed in electroplating, then perform Ni-based base plating, and then perform Sn plating layer or heat melting treatment after Sn plating. Table 3 shows the results of a corrosion resistance test on alcohol-containing fuel for the present invention. As comparison materials, we showed the corrosion resistance of Sn-based plated steel sheets using aluminum killed steel and Ti killed steel without the addition of Cr, Ni, etc. Γ Evaluation Test 1 Corrosion Resistance Targeting the External Surface (A) Corrosion Resistance by Salt Water Spray Test Corrosion resistance targeting the outer surface of the fuel container after 720 hours of the salt spray test was evaluated. Evaluation material is 100
A 300 mm x 300 mm test piece with cross-cut scratches reaching the base metal was used. The evaluation standard was the number of red rust occurrences in 300 gobans of 10 x 10 mm size for a test piece size of 100 x 300 mm, expressed as a percentage of 100. ◎... Red rust occurrence rate less than 5% 〃... 〃 5% or more and less than 25% △... 〃 25% or more and less than 50% ×... 〃 More than 50% (B) Corrosion resistance by CCT test Cycle corrosion test (CCT test) Salt water Spraying (5% NaCl 35℃ x 4 hours) →
Drying (2 hours at 70℃ and 60% humidity) → Humidity (2 hours at 49℃ and 98% humidity) → Cooling (-20℃)
℃ × 2 hours) → salt water spray 70 cycles of 1 cycle of CCT test were performed, and corrosion resistance was evaluated by measuring the amount of thickness reduction in areas where red rust occurred and corrosion using a 0.8 mm thick test piece. . ◎…Plate thickness reduction less than 0.25mm 〃… 〃 0.25 or more to less than 0.45mm △… 〃 0.45mm or more to less than 0.75mm ×… 〃 0.75mm or more (C) Using a 0.8 x 150mm test piece, diameter 1 to 2mm
Alundum was applied to the surface of the coating layer of the test piece for 10 seconds at a pressure of 1 kg/cm 2 and chipped at 1.5 g per 1 cm 2 , and then the above CCT test was conducted for 50 cycles to determine the amount of thickness reduction in the area where red rust occurred. It was measured and evaluated according to the evaluation criteria in (B) above. 2 Test on the inner surface of fuel container From a test piece with a blank size of 0.8 x 150 mmφ,
Punch diameter 75mmφ, wrinkle holding force 1T 75mmφ×
A cylindrical container with a height of 40 mm was created, filled with 100 c.c. of a corrosion accelerating solution for the following alcohol fuels, sealed and evaluated. (D) Gasohol target test (20% ethanol + 0.03% succinic acid + 0.15%
Using 1% NaCl water + residual gasoline) solution,
Conducted 6-month evaluation test (E) Test on gasohol (70% methanol + 10% isopropyl alcohol + 0.03% formic acid + 0.3% of 1.2% NaCl water +
(F) 100% alcohol test (99% methanol + 0.01% formic acid + 0.99%
6 using a solution consisting of 0.5% NaCl aqueous solution)
A monthly evaluation test was conducted for each, and the evaluation was performed according to the following evaluation criteria.

【表】 多数発生
(G) 燃料容器対象・シーム溶接部対象試験 燃料容器内面に相当する内面対象被覆層同
志を重ね合わせて、0.8mmの試験材を用い、
4mm巾の台形電極で加圧力400Kg.f、溶接
速度2.5m/min、溶接時間2−2でシーム溶
接を行ない、第3図の様な試験片を作成し、
下記に示す溶液を充填して上部にプラスチツ
ク製の蓋をして、3ケ月後の外観観察により
評価を行なつた。第3図中1は溶接部、2は
試験液を示す。 Γガソホール対象試験液 (80%メタノール+5%イソプロピルアル
コール+0.01%ギ酸+0.1%のNaCl水0.3%+
残ガソリン)溶液を用いて6ケ月間評価試験 Γ評価基準 ◎…下面及び側面の赤錆発生率5%未満 〇… 〃 5〜10%未満 △… 〃 10〜20%未満 ×… 〃 20%以上 (H) ガソリン対象試験 (70%ガソリン+30%の1%NaCl水)系
ガソリン対象促進溶液を用いて、6ケ月間評
価試験・実施、尚、評価試験は前頁(D)〜(F)の
試験に対する評価基準を用いた。 (I) 半田性 燃料容器の配管に使用されるSn−Zn合金
(Sn≒80〜90%)メツキ鋼板と本評価材の外
面の半田接合性を評価するため、ZnCl2
HCl系フラツクス及び60%Sn−40%Pb半田
を用いて、Sn−Zn合金メツキ面と被覆層面
間の半田昇り性と半田接合部の強度を測定し
て、総合的に評価材、比較材の相対評価を行
なつた。 ◎…極めて良好 〇…比較的良好 △…やや劣る ×…非常に劣る (J) 成形加工性 ブランクサイズ0.8×500×500mm、潤滑油
塗布後、シワ押え圧力30Tの条件で150×150
mm角のポンチで角筒絞りを行ない、絞り深さ
の限界と角筒絞り材外面のカジリの発生状況
より評価した。 ◎…被覆層のカジリによる損傷なく、成形加
工性極めて良好 〇…被覆層のカジリによる損傷なく、また成
形加工性可成り良好 △…加工度によつては被覆層のカジリによる
損傷若干発生 ×…成形加工性極めて劣る
[Table] Many occurrences
(G) Test for fuel containers and seam welds The inner surface coating layers corresponding to the inner surface of the fuel container were overlapped, and a 0.8 mm test material was used.
Pressure force 400Kg with 4mm width trapezoidal electrode. Seam welding was performed at a welding speed of 2.5 m/min and a welding time of 2-2 to create a test piece as shown in Figure 3.
The solution shown below was filled, the top was covered with a plastic lid, and the appearance was observed after 3 months for evaluation. In Fig. 3, 1 indicates the welded part and 2 indicates the test liquid. Γ Gasohol target test solution (80% methanol + 5% isopropyl alcohol + 0.01% formic acid + 0.1% NaCl water 0.3% +
6-month evaluation test using residual gasoline solution H) Gasoline target test (70% gasoline + 30% 1% NaCl water)-based gasoline target accelerator solution was used to conduct a 6-month evaluation test, and the evaluation tests were the tests (D) to (F) on the previous page. We used evaluation criteria for (I) Solderability In order to evaluate the solderability of the Sn-Zn alloy (Sn≒80-90%) plated steel plate used for fuel container piping and the outer surface of this evaluation material, ZnCl 2
Using HCl-based flux and 60% Sn-40% Pb solder, we measured the solder climbability between the Sn-Zn alloy plating surface and the coating layer surface and the strength of the solder joint, and comprehensively evaluated the evaluation materials and comparison materials. We conducted a relative evaluation. ◎...Very good 〇...Comparatively good △...Slightly inferior ×...Very poor (J) Formability Blank size 0.8 x 500 x 500 mm, 150 x 150 after applying lubricating oil and wrinkle pressing pressure of 30T
Square tube drawing was performed using a mm square punch, and evaluation was made based on the limit of drawing depth and the occurrence of galling on the outer surface of the square tube drawing material. ◎...No damage due to galling of the coating layer, very good moldability 〇...No damage due to galling of the coating layer, and fairly good moldability △...Depending on the degree of processing, some damage may occur due to galling of the coating layer ×... Extremely poor moldability

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はCr含有鋼板にNi添加の一例として0.5
%Ni−Cr鋼に対するCr量とSn被覆層(1.5%クエ
ン酸+1.5%食塩)系水溶液(溶器内面を対象と
した促進溶液)に対するカツプル腐食電流の測定
結果を示す図、第2図はCr−0.8%Ni含有鋼板に
Ni−Fe系拡散被覆層(Cr−0.8%Ni含有鋼板に
0.11μのNi下地メツキ後780℃で60秒間加熱処理)
を設けた鋼板のCr含有量とSn被覆層との1%
Na2SO4+0.35%NaCl水溶液(外面腐食を対象と
した促進溶液)に対するカツプル腐食電流の測定
結果を示す図、第3図はシーム溶接部対象試験に
用いる試験片の説明図である。 1…溶接部、2…試験液。
Figure 1 shows an example of adding 0.5Ni to a Cr-containing steel plate.
Figure 2 shows the measurement results of the amount of Cr for %Ni-Cr steel and the cupple corrosion current for Sn coating layer (1.5% citric acid + 1.5% salt) based aqueous solution (promoting solution targeted at the inner surface of the melter). is a Cr-0.8%Ni steel plate.
Ni-Fe diffusion coating layer (Cr-0.8%Ni containing steel plate)
After plating with 0.11μ Ni undercoat, heat treatment at 780℃ for 60 seconds)
The difference between the Cr content of the steel plate and the Sn coating layer is 1%.
Figure 3 shows the measurement results of couple corrosion current for Na 2 SO 4 +0.35% NaCl aqueous solution (promoting solution for external corrosion). 1...Welded part, 2...Test liquid.

Claims (1)

【特許請求の範囲】 1 C;0.10%以下、 SolAl;0.005〜0.08%、 Cr;5%超〜20%、 Ni;3%以下 を含有し、残部が鉄および不可避的不純物からな
る鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、
その上に厚さ0.05μ以上のSn系被覆層を施した事
を特徴とする高耐食性Sn系被覆鋼板。 2 C;0.10%以下、 SolAl;0.005〜0.08%、 Cr;5%超〜20%、 Ni;3%以下、 さらにTi、Nb、Zr、Vの1種又は2種以上で
0.03〜0.5% を含有し、残部が鉄および不可避的不純物からな
る鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、
その上に厚さ0.05μ以上のSn系被覆層を施した事
を特徴とする高耐食性Sn系被覆鋼板。 3 C;0.10%以下、 SolAl;0.005〜0.08%、 Cr;5%超〜20%、 Ni;3%以下 を含有し、残部が鉄および不可避的不純物からな
る鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、
その上に厚さ0.05μ以上のSn系被覆層を施した後、
加熱溶融処理する事を特徴とする高耐食性Sn系
被覆鋼板の製造法。 4 C;0.10%以下、 SolAl;0.005〜0.08%、 Cr;5%超〜20%、 Ni;3%以下 さらにTi、Nb、Zr、Vの1種又は2種以上で
0.03〜0.5% を含有し、残部が鉄および不可避的不純物からな
る鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、
その上に厚さ0.05μ以上のSn系被覆層を施した後、
加熱溶融処理する事を特徴とする高耐食性Sn系
被覆鋼板の製造法。
[Claims] 1 A steel plate containing C: 0.10% or less, SolAl: 0.005 to 0.08%, Cr: more than 5% to 20%, Ni: 3% or less, with the balance consisting of iron and inevitable impurities, Ni-based base coating layer with a thickness of 0.001 to 1.5μ,
A highly corrosion-resistant Sn-based coated steel sheet characterized by having a Sn-based coating layer with a thickness of 0.05μ or more applied thereon. 2 C: 0.10% or less, SolAl: 0.005 to 0.08%, Cr: more than 5% to 20%, Ni: 3% or less, and one or more of Ti, Nb, Zr, and V.
A Ni-based base coating layer with a thickness of 0.001 to 1.5μ is applied to a steel plate containing 0.03 to 0.5%, with the remainder consisting of iron and unavoidable impurities.
A highly corrosion-resistant Sn-based coated steel sheet characterized by having a Sn-based coating layer with a thickness of 0.05μ or more applied thereon. 3 A steel plate containing C: 0.10% or less, SolAl: 0.005 to 0.08%, Cr: more than 5% to 20%, Ni: 3% or less, with the balance consisting of iron and unavoidable impurities, with a thickness of 0.001 to 1.5μ. Ni-based base coating layer,
After applying a Sn-based coating layer with a thickness of 0.05μ or more on top of it,
A method for manufacturing highly corrosion-resistant Sn-based coated steel sheets, which is characterized by heating and melting treatment. 4 C: 0.10% or less, SolAl: 0.005 to 0.08%, Cr: more than 5% to 20%, Ni: 3% or less, and one or more of Ti, Nb, Zr, and V.
A Ni-based base coating layer with a thickness of 0.001 to 1.5μ is applied to a steel plate containing 0.03 to 0.5%, with the remainder consisting of iron and unavoidable impurities.
After applying a Sn-based coating layer with a thickness of 0.05μ or more on top of it,
A method for manufacturing highly corrosion-resistant Sn-based coated steel sheets, which is characterized by heating and melting treatment.
JP17050285A 1985-07-23 1985-08-01 Sn coated steel sheet having high corrosion resistance and its manufacture Granted JPS6230896A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP17050285A JPS6230896A (en) 1985-08-01 1985-08-01 Sn coated steel sheet having high corrosion resistance and its manufacture
AU51449/85A AU565129B2 (en) 1985-07-23 1985-12-18 Steel sheet with ni and sn coatings for improved corrosion protection
EP85116264A EP0210302B1 (en) 1985-07-23 1985-12-19 Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same
DE8585116264T DE3584634D1 (en) 1985-07-23 1985-12-19 TINNED STEEL SHEET WITH HIGH CORROSION RESISTANCE AND METHOD FOR THE PRODUCTION THEREOF.
CA000498277A CA1288646C (en) 1985-07-23 1985-12-20 Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same
US06/811,761 US4731301A (en) 1985-07-23 1985-12-20 Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17050285A JPS6230896A (en) 1985-08-01 1985-08-01 Sn coated steel sheet having high corrosion resistance and its manufacture

Publications (2)

Publication Number Publication Date
JPS6230896A JPS6230896A (en) 1987-02-09
JPH0241594B2 true JPH0241594B2 (en) 1990-09-18

Family

ID=15906146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17050285A Granted JPS6230896A (en) 1985-07-23 1985-08-01 Sn coated steel sheet having high corrosion resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPS6230896A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646105B1 (en) 2013-06-27 2014-12-24 日新製鋼株式会社 Sn plated stainless steel sheet
JP7056313B2 (en) * 2018-03-29 2022-04-19 日本製鉄株式会社 Evaluation method of hydrogen embrittlement characteristics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605884A (en) * 1983-03-14 1985-01-12 インダクトアロイ・コ−ポレ−シヨン Method and device for forming metal layer inside pipe material
JPS616293A (en) * 1984-06-21 1986-01-11 Nippon Steel Corp Production of sn-plated steel sheet having high corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605884A (en) * 1983-03-14 1985-01-12 インダクトアロイ・コ−ポレ−シヨン Method and device for forming metal layer inside pipe material
JPS616293A (en) * 1984-06-21 1986-01-11 Nippon Steel Corp Production of sn-plated steel sheet having high corrosion resistance

Also Published As

Publication number Publication date
JPS6230896A (en) 1987-02-09

Similar Documents

Publication Publication Date Title
JP2000104180A (en) Surface treated steel sheet for fuel vessel excellent in corrosion resistance, workability and weldability
EP0210302B1 (en) Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JP3399729B2 (en) Manufacturing method of rustproof steel plate for fuel tank with excellent press workability and corrosion resistance
JP2001355051A (en) HOT DIP Zn-Sn PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE
JPH0241594B2 (en)
JP3126622B2 (en) Rustproof steel plate for fuel tank
JPS616293A (en) Production of sn-plated steel sheet having high corrosion resistance
JPS6160896A (en) Steel plate for vessel for alcohol or alcohol-containing fuel
JPH0241593B2 (en)
JP2002038250A (en) HOT-DIP PLATED STEEL-SHEET WITH Sn-Zn SUPERIOR IN CORROSION RESISTANCE
JPS61246058A (en) High corrosion-resistant coated steel plate for fuel vessel
JPS6217199A (en) Sn coated steel sheet for vessel having superior paintability and corrosion resistance and its manufacture
JPS6123786A (en) Manufacture of steel sheet for vessel having superior corrosion resistance
JPS61270389A (en) Steel sheet for fuel vessel
JPS642195B2 (en)
JPS61270391A (en) Steel sheet for fuel vessel
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPH0520514B2 (en)
JPS61270390A (en) Steel sheet for fuel vessel
JPH0536516B2 (en)
JPS6187881A (en) Steel sheet for alcohol or alcoholic fuel container
JPS61243192A (en) Surface-treated steel sheet for fuel vessel
JPH0567710B2 (en)
JPS6213594A (en) Steel sheet for sn-coated vessel having excellent property to be coated and corrosion resistance and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees