JPH0567710B2 - - Google Patents

Info

Publication number
JPH0567710B2
JPH0567710B2 JP21887889A JP21887889A JPH0567710B2 JP H0567710 B2 JPH0567710 B2 JP H0567710B2 JP 21887889 A JP21887889 A JP 21887889A JP 21887889 A JP21887889 A JP 21887889A JP H0567710 B2 JPH0567710 B2 JP H0567710B2
Authority
JP
Japan
Prior art keywords
coating layer
coating
corrosion
corrosion resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21887889A
Other languages
Japanese (ja)
Other versions
JPH02125885A (en
Inventor
Yukinobu Higuchi
Toshinori Katayama
Masao Ikeda
Fumio Yamamoto
Tomoya Ooga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21887889A priority Critical patent/JPH02125885A/en
Publication of JPH02125885A publication Critical patent/JPH02125885A/en
Publication of JPH0567710B2 publication Critical patent/JPH0567710B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、塗装性、塗装後耐食性、塗装経時後
の塗料密着性(所謂、二次塗料密着性)、及び耐
食性、端面の耐食性に優れたSn被覆層を施した
容器用鋼板の製造法に関するものである。 (従来の技術) 塗装して使用される容器用鋼板として、特開昭
55−69297号公報のようにSnメツキ層に金属Cr層
と水和酸化物を主体とする酸化クロム層の二層被
膜組成からなるクロメート被膜層を施したSn系
被覆鋼板があり、塗料密着性、塗装後耐食性がす
ぐれている。 また、Sn系被覆層を有する容器用鋼板の耐食
性を向上せしめた鋼板に、例えば特開昭57−
23091号公報、或いは特開昭60−5884号公報のよ
うに、Ni系下地被覆層を有するSn系被覆鋼板が
ある。 これらの鋼板は、下地被覆層とSn被覆層の重
畳効果、下地被覆層の効果による均一緻密な合金
層の生成による地鉄露出部の減少等により耐食性
の向上を計つたものである。 上記のようなSn系被覆容器用鋼板は、その特
性を生かして一部では作用されているものの、必
ずしも充分に満足すべき塗装性と耐食性が得られ
ているとは言い難い点があつた。 (発明が解決しようとする課題) 近年容器用鋼板の特性は、製缶方式の多様化、
或いは消費者の高級化指向に対応してより優れた
塗装性、貯蔵時に錆発生が生じにくいなど諸性能
の向上或いは缶コストの低減化に対処した容器用
鋼板の薄手化に対処してより優れた耐食性の向上
(即ち、耐食寿命の向上)等が要求されている。
例えば、ネツクドイン缶のように変形缶の増大に
対応して、従来以上に苛酷な加工を受けた部分の
塗装後の耐食性の向上或いは長期貯蔵された場合
の塗料密着向上等が望まれている。 また、缶蓋用素材として、従来以上に開け易さ
が要求され、缶蓋素材の板厚減少、スコア加工部
の板厚減少等に対応して、加工部の塗装後の耐食
性、塗料密着性向上が必要とされると同時に、ス
コア加工部の缶蓋外面においては鉄面が露出した
スコア剪断部分の耐食性向上、特に耐錆性の向上
が要求されている。 また、イージーオープン・エンド缶蓋のタブに
鉄系の素材を用いる場合には、素材端面の耐食
性、特に耐錆性が要求される。 また、王冠には、王冠端面の耐錆性の向上或い
は王冠加工部分の塗装後耐食性、塗精密着性の向
上等が要求されている。 さらに、溶接製缶方式においては、溶接端面部
の耐食性、塗装性に一層の向上が要求されてい
る。また、内容物の多様物に対して或いは変形缶
等の如き加工により被覆層(Sn被覆層、塗膜層)
が損傷等を受けても、地鉄からのFe溶出が少な
く、穿孔腐食が生じにくい、耐食性能、耐食寿命
の優れた素材開発の要求が高い。これらの要求に
対処して本発明者らは種々検討した結果、上記し
たような従来の容器用鋼板(所謂ブリキ)は、メ
ツキ原板に耐食性向上元素が意識的に添加されて
いないアルミキルド鋼板が使用されているため、
Snメツキ層とメツキ原板との間のカツプル腐食
電流が極めて大きいことを知見した。 その結果として、缶内のごとき酸素が殆んど存
在しない雰囲気において、メツチ原板はSnのア
ノード溶解により腐食速度が大きいため、塗膜欠
陥部や塗膜の庇付き部においてもSnの溶解によ
り塗膜が剥離し易く、塗膜を剥離した部分から腐
食が著しく進行することが分かつた。 また、缶外面の腐食環境等においては、メツキ
原板の剪断部端面或いはメツキ欠陥部では鉄のア
ノード溶解によつて鉄の腐食が進行し錆の発生、
或いは穿孔腐食を生じ、また塗膜欠陥部や塗膜庇
付き部で鋼素地の腐食による錆の発生や穿孔腐食
を起して耐食寿命を劣化する事も分かつた。 従つて、本発明はこれらの問題点を解決するた
めに、メツキ原板の鋼成分を調整する事によつ
て、メツキ原板自体の耐食性を向上せしめるとと
もに、Sn系被覆層とメツキ原板との間のカツプ
ル腐食電流を減少せしめることによつて、腐食環
境におけるSn被覆層或いは地鉄のアノード腐食
による溶解を抑制し、塗装後耐食性経時後の塗料
密着性及び塗膜欠陥部等における耐食性などの劣
化を防止するとともに、被覆層欠陥部の穿孔腐食
による耐食性の劣化を防止し、さらには端面部等
から錆の発生を防止した高性能なSn被覆層の容
器用鋼板の製造法を提供するものである。 (課題の解決手段) すなわち本発明要旨は、 (1) 重量%で、 C;0.15%以下、酸可溶Al;0.005〜0.10%、
Cr;1.5〜11%、を含有し残部が鉄及び不可避
的不純物からなる鋼板の片面当りの付着量が
300mg/m2以上のSn被覆層を施した後、加熱溶
融処理を施し、続いて金属Cr量換算で片面当
りの付着量が、1.5〜150mg/m2のクロメート系
被膜層を施すことを特徴とする塗装性と耐食性
に優れたSn系被覆容器用鋼板の製造法。 (2) 重量%で、 C;0.15%以下、酸可溶Al;0.005〜0.10%、
Cr;1.5〜11%、を含有し、さらにTi、Nb、
Zr、Vの1種又は2種以上で0.03〜0.50%を含
有し、残部が鉄及び不可避的不純物からなる鋼
板に片面当りの付着量が300mg/m2以上のSn被
覆層を施した後、加熱溶融処理を施し、続いて
金属Cr量換算で片面当りの付着量が1.5〜150
mg/m2のクロメート系被膜層は施すことを特徴
とする塗装性と耐食性に優れたSn系被覆容器
用鋼板の製造法。 にある。 (作用) 以下に本発明の詳細について説明する。 転炉、電炉等の溶解炉で溶製された溶綱を連続
鋳造法、または造塊、分塊法を経てスラブとし、
熱間圧延、冷間圧延さらに焼鈍工程を経て、重量
%でC;0.15%以下、酸可溶Al;0.005〜0.10%、
Cr;1.5〜11%を含有し残部が鉄および不可避的
不純物からなるメツキ原板或いはこれにTi、
Nb、Zr、Vの1種又は2種以上で0.03〜0.5%含
有したメツキ原板を使用する。 Sn被覆容器用鋼板は使用される腐食環境にお
いて、Sn被覆との複合効果による耐食性及び塗
装性向上効果から、鋼中のCr含有量は1.5%以上、
好ましくは3%以上である。 第1図は、容器内に腐食促進液を充填した場合
のSn被覆層とCr含有鋼板との間のカツプル腐食
電流を測定したもので、カツプル腐食電流はCr
含有量1.5〜11%の範囲で極めて小さい。一方、
第2図は、容器外面を腐食促進液に浸漬した場合
のSn被覆層とCr含有鋼板とのカツプル腐食電流
を測定したもので、カツプル腐食電流はCr含有
量の増加に減少し、Cr含有量3%以上で極めて
小さい。 この結果、従来のようにCrを不可避的不純物
程度含有する鋼板ではSn被覆層との間のカツプ
ル腐食電流が極めて大きいため被覆層欠陥部や加
工時において生成された被覆層庇付き欠陥部が存
在する容器内面においてはSn被覆層の犠牲防食
使用による溶解で消失が著しくなる。したがつて
本発明では、Sn被覆層の溶解によつて低下する
耐食寿命を鋼中Cr添加によつて防止しようとす
るものである。 また、容器外面の腐食環境においても上記の如
き欠陥部や被覆層の端面部における地鉄露出部の
腐食速度が著しく、赤錆や穿孔腐食を発生して
Sn被覆鋼板の耐食寿命を著しく低下するが、本
発明のごときCr含有鋼板を用いることによつて
防止することができる。 このように耐食寿命の劣化は、塗装して使用す
る場合に、加工、運搬時に発生した地鉄に達する
塗膜欠陥部或いは被覆層端面部で誘発されるもの
である。 すなわち、Snの犠牲防食作用によるアノード
溶解が著しい容器内面等の腐食環境では、Snの
溶解と腐食生成物の生成によつて塗膜フクレ(所
謂、ブリスター)を発生し、また塗膜腐食環境に
長期間曝された場合の塗膜剥離を生じ易くなる等
の原因によつて塗膜性能を劣化する。また、Sn
被覆層はカソード(貴)であるが、地鉄のアノー
ド溶解が著しい腐食環境においては、塗膜性能の
劣化を生じにくいものの、地鉄露出部の欠陥部か
ら穿孔腐食を著しく促進させ、塗膜後の耐食性を
劣化する。このような塗装後の性能劣化は、Cr
含有鋼のメツキ原板を用いることによつて防止す
ることができる。 一般にSn被覆鋼板と如何なる厳格な管理に基
いて製造してもピンホール、不メツキ等の被覆層
欠陥を皆無にすることは困難であり、また使用時
に加工庇等の生成により地鉄に達する被覆層欠陥
部が生成される。それと同時に、Sn被覆鋼板の
端面が地鉄面に露出されて使用される状態(例え
ば溶接缶の溶接部、缶蓋のスコア加工部、王冠の
端面等)は極めて多い。 従つて、本発明はSn被覆層とメツキ原板との
間のカツプル腐食電流を著しく減じるCrを必須
成分とする鋼板をメツキ原板として用いることに
よつてSn被覆鋼板のメツキ欠陥部や端面部、Sn
被覆層の溶解速度が著しく抑制される。その結
果、Sn被覆層自体の耐食寿命の増加と、また、
メツキ原板の耐食性の向上効果が相まつて、耐食
寿命にすぐれたSn系被覆鋼板を製造する。 またこの効果は、塗装された使用される場合に
おいても塗膜経時後の密着性或いは塗装後の耐食
性に向上をもたらす。 一方、Sn被覆層はメツキ原板に比して、電位
的に貴(カソード)な場合には、メツキ欠陥部や
端面部等において地鉄の優先・腐食速度を著しく
抑制する。その結果、地鉄露出場分の穿孔腐食や
赤錆発生を抑制し耐食寿命の延長効果が著しく大
きい。また、塗装して使用する場合も、穿孔腐食
を抑制するとともに、地鉄腐食生成物の生成を抑
制して塗膜剥離が防止され、塗膜密着性と塗装後
耐食性を著しく改善する。 而して、このような効果を得るためのCr含有
量は、前記したように、1.5〜11%、好ましくは
3〜9%である。Cr含有量が1.5%未満では、Sn
被覆層とメツキ原板とのカツプル腐食電流の減少
効果が得られず、またメツキ原板自体の耐食性向
上効果が得られない。 一方、Cr含有量が11%をこえると、メツキ原
板自体の耐食性向上効果は更に増大するが、Sn
被覆層とのカツプル腐食電流の減少効果が腐食環
境によつて得られなくなるとともに、Sn被覆層
との充分良好な密着性が得られにくくなり、溶接
性と加工性を劣化する。 上記のように耐食性と塗膜性能からは、Cr添
加の効果が大きいが、本発明においては下記理由
から、C及び酸可溶Al、その他の成分について
も、その含有量を限定する。Cは含有量の増加に
クロムカーバイトの析出が多くなり、鋼の機械的
性質と耐食性を劣化すると同時に、Sn系被覆層
の均一被覆層を阻害する。 従つて、C含有量は0.15%以下、好ましくは
0.10以下とする。 尚、本発明においてTi、Nb等を添加する場合
のC含有量は、加工性及びチタンカーバイド等の
析出による被覆層の均一被覆性を阻害することか
ら0.02%以下が好ましい。 Alは、鋼中に残存する酸可溶Al(Sal、Al)量
が0.005%未満の少含有量は、酸化性ガスによる
気泡の発生を防止することが困難であり、鋼の表
面欠陥発生率を著しく高め、鋼素材の耐食性劣化
の起点となる。また、0.10%を越える過剰な酸可
溶Alは、Al系酸化物を鋼表面に点在せしめて、
耐食性劣化の起点或いは本鋼板に対して施される
被覆層表面においては不メツキ、ピンホール等を
発生して、被覆層の健全性を損じる。 従つて、本発明においては、酸可溶Alは0.005
〜0.1%、好ましくは0.01〜0.08%である。 又、本発明は、上記の鋼成分の他にTi、Nb、
Zr、Vの1種又は2種以上で0.03〜0.50%を含有
させて、鋼中とCと結合せしめて含有されるCr
の有効化を計り、更にすぐれた加工性と、耐食性
を向上せしめる。 Tiなどの鋼成分の含有量が0.03%未満ではクロ
ムカーバイドの析出を防止して、加工性及び耐食
性の向上せしめる効果が少なく、またその含有量
が0.50%を超えると、その効果が飽和に達し経済
的でなくなると共に、これらの成分の析出によつ
て素材の硬質化を起し、加工性を劣化する傾向に
ある。好ましい含有量は0.075〜0.20%である。 上記のような組成成分で構成された鋼板をその
まま使用したのでは、Cr等を不可避的不純物程
度含有する従来の鋼板に比して、耐食性は優れて
いるものの、容器用素材として耐食性は充分とは
いえない。すなわち、容器に充填される内容物の
有機酸、Cl-イオンを含有する水分等によつて鉄
の溶出を生じ、赤錆の発生も著しい。また、容器
外面は、Cl-イオンを含有する腐食雰囲気や高温、
高湿状態で貯蔵された場合、比較的短期間で赤錆
を発生し、鋼板のみでは耐食性が充分でない。さ
らに、鋼板に直接塗装しても、腐食雰囲気に長期
間曝された場合、塗膜下に侵入した腐食水溶液に
よつて鋼板に腐食生成物を発生し塗膜剥離を生じ
て塗膜性能を劣化する。 従つて、本発明では容器用素材に要求される耐
食性及び塗装性能を付与するために、メツキ原板
にSn被覆層とクロメート被膜層を施す。 而して、Crを必須成分として含有する鋼板に
Sn被覆層を施した場合、前記したように、Sn被
覆層とメツキ原板のカツプル腐食電流が著しく減
少する。 この効果により前記したように、メツキ原板の
耐色性向上効果及びSn被覆層との複合効果によ
つて、腐食環境における耐食寿命、塗装性能を著
しく向上する。 この性能向上効果を得るめためのSn被覆方法
については、特に規定されるものではなく、鋼板
表面を清浄化、活性化処理後、電気メツキ法、溶
融メツキ法、真空蒸着法によつて、Sn被覆層を
施す、例えば、電気メツキ法では、フエロスタン
浴、ハロゲン浴、ホウフツ化浴等を用いて、陰極
電解処理により鋼板の両面に目的とする付着量で
Sn被覆層が施される。そのSn被覆層の付着量は、
片面当りの付着量で300mg/m2以上が必要である。
即ち、Sn被覆層の付着量が300mg/m2未満では、
その均一被覆性を欠き不メツキ、ピンホールの生
成が多くなり、メツキ原板とSn被覆層とのカツ
プル腐食電流が小さくなるといえども、Sn被覆
層の容器内面におけるアノード防食が可能な範囲
が限定されるため、地鉄の溶解を防止するとは困
難である。また、Sn被覆層がカソードな腐食雰
囲気においても地鉄の露出部が多いため、地鉄の
アノード防食が促進し、地鉄の溶解量が増し、穿
孔腐食の危険性を増大する。 従つて、Sn被覆量は、片面当りの付着量で300
mg/m2以上、好ましくは700mg/m2以上が好まし
い。特に、Sn付着量が700mg/m2以上の場合に
は、加工により生成される端面がSn被覆層のカ
ブリによるカバーリング(被覆)効果によつて、
剪断面、加工面等の端面の防食効果を一段と助長
するので特に好ましい。 また、Sn被覆量の上限は、特に規定されるも
のではないが、その経済性の点から15g/m2
下、好ましくは7.5g/m2以下程度の付着量で充
分である。 さらに、本発明においては、一層の性能向上を
計るために、Sn被覆層を設けてから、Snの溶融
点(231℃)直上から300℃、好ましくは240〜280
℃の温度でSn被覆層が加熱溶融処理される。該
処理により、メツキ原板とSn被覆層の合金化反
応によつて、Fe−Sn系の合金層がメツキ原板と
Sn被覆層の中間層として生成され、Sn被覆層の
ピンホールが一段と減少するため、Snのアノー
ド防食によるSn被覆層の溶解或いはSnカソード
の腐食雰囲気でのメツキ原板からの鉄溶解が一層
抑制されSn被覆鋼板の耐食寿命が一層向上する。
この加熱溶融処理については、特に規定されるも
のではなく、従来のSnメツキ鋼板の加熱溶融処
理方法と同じでよい。例えば、240〜280℃の加熱
温度で0.3〜3秒間の短時間で加熱溶融処理が、
加熱雰囲気としてN2ガス雰囲気、MiXガス雰囲
気、或いはフエノールスルフオン酸Snの水溶液、
フエノールスルフオン酸Snとフイチン酸の水溶
液やZnCl2の水溶液等をフラツクスとして塗布と
して大気中または上記の雰囲気中で行なわれるさ
らに。本発明は、貯蔵時の黄変を防止し塗装性能
を向上するために、クロメート系被覆層を施す。
クロメート系被覆層は、その用途、目的に応じて
付着量が規制されるが、全目的に対してはその付
着量は金属Cr量換算で片面当り1.5〜150mg/m2
範囲で設ける。 すなわち、貯蔵時の黄変防止から1.5mg/m2
上あれば充分であり、1.5mg/m2未満ではSn被覆
層表面の均一被覆性が不充分であり、その後に施
される塗油との複合効果によつても貯蔵時の黄変
を防止することが困難である。 また、塗装後の性能を確保するためには、Sn
被覆層表面のクロメート被膜効果を更に向上せし
めることが必要であり、その付着量は1.5mg/m2
以上、好ましくは7.5mg/m2以上である。 すなわち、クロメート被膜層が1.5mg/m2以上
では、クロメート被覆の均一被覆性を向上し、
Sn被覆層表面と塗料との付着がクロメート被膜
を介して塗料密着性を一層確保する。 一方、クロメート被膜量の上限は150mg/m2
下、好ましくは50.mg/m2以下である。クロメー
ト被膜量が150mg/m2をこえると、前記の効果が
飽和するとともに、加工によりクロメート被膜に
クラツクが生成し、またカジリ発生の原因とな
る。 また、クロメート被膜については、塗装性能の
向上、特に腐食環境に長期間曝された場合の経時
塗料密着性、塗装後耐食性の向上に、金属Cr層
と水和酸化物を主体とする酸化クロム層からなる
クロメート被膜層が有効である。この被膜構成の
クロメート被膜は、金属Cr層が片面当りの付着
量で1〜30mg/m2、水和酸化物を主体とする酸化
クロム層が金属Cr量換算で5〜50mg/m2の範囲
が好ましい。このクロメート被膜層を設ける方法
については、特に規定されるものではなく、Cr+6
イオンを含有するクロム酸、クロム酸塩、重クロ
ム酸塩及びこれらにSO4 -2イオン、フツ化物を含
有する水溶液を用いて、浸漬処理又は陰極電解処
理が施される。例えば、Na2Cr2O7水溶液、CrO3
−PO4 -3系水溶液中での浸漬処理或いは陰極電解
処理により、水和酸化クロム層を主成分とするク
ロメート処理が行なわれる。 また、金属Cr層と水和酸化物を主体とする酸
化クロム層からなるクロメート被膜を設ける場合
には、CrO3−SO4 -2系浴、CrO3−Na2SiF6
NH4F系浴を用いて、電流密度を調整した陰極電
解処理により設けられる。 尚、塗装性能向上のためのクロメート被膜処理
は、本発明の製品に対して、加工後(例えば、
Di成形加工後)に表面清浄化処理を行なつて施
される場合も同様の効果が得られる。 (実施例) 以下に、本発明の実施例について説明する。 第1表に示すCr含有量を中心に変化させた鋼
成分の鋼板を用い、3%NaOH水溶液に界面活
性剤を0.3%添加した脱脂浴を用い脱脂、水洗後
に20%H2SO4水溶液を用いて50℃で電流密度
20A/dm2で1秒間陽極酸洗、続いて1秒間陰極
酸洗、水洗を行なつて、表面の洗浄化、活性化処
理を行なつてから、第1表に示すSn系被覆層及
びクロメート被膜処理層を設け、各種の性能評価
試験を行なつた。 尚、その性能評価は以下に示す各方法で実施
し、その性能評価結果は第1表に示す。 この結果、本発明の製品は比較材に較べて、塗
装性能、耐食性能、端面部の耐錆性能等おいて極
めてすぐれた性能を有し、容器用素材として極め
てすぐれた特性を有する。 ●評価試験法 被覆層欠陥部を対象とした耐食性 0.25×50×50mmの評価材を用い、端面及び
裏面をシールして、評価面に地鉄に達するス
クラツチ庇を入れ、(1.5%クエン酸+1.5%
NaCl)、水溶液400ml中に、温度50℃で、288
時間、酸素の殆んど存在しないN2ガス通気
雰囲 気中で浸漬テストを行ない、 被覆層欠陥部に相当するスクラツチ庇部か
らのFe溶出量及び スクラツチ庇部を評価試験後、断面顕境
により調査してその庇部の穿孔腐食の状況
により、その耐食性を評価した。 尚、評価基準は以下の基準により評価を行
なつた。 Fe溶出量・評価 ◎……Fe溶出量が評価材の1cm2当り
2.5ppm未満 ○……Fe溶出量が評価材の1cm2当り
2.5ppm以上〜5ppm未満 △……Fe溶出量が評価材の1cm2当り5ppm
以上〜7.5ppm未満 ×……Fe溶出量が評価材の1cm2当り
7.5ppm以上 穿孔腐食性・評価 ◎……スクラツチ庇部からの最大穿孔腐食
深さが板厚の25%未満 ○……スクラツチ庇部からの最大穿孔腐食
深さが板厚の25%以上〜40%未満 △……スクラツチ庇部からの最大穿孔腐食
深さが板厚の40%以上〜60%未満 ×……スクラツチ庇部からの最大穿孔腐食
深さが板厚の60%以上 被覆層欠陥部を対象とした耐食性 と同一評価材を用い、地鉄に達するスク
ラツチ庇を入れた後(1.0%クエン酸+0.25
%リン酸)水溶液400ml中に、温度50℃で、
288時間、酸素の殆んど存在しないN2ガス通
気雰囲気中で浸漬テストを行ない、Fe溶
出量の測定及びスクラツチ疵部からの穿孔腐
食の状況を調査し、その耐食性の評価を行な
つた。 尚、評価基準はの方法によつた。 端面錆の評価 板厚0.25mmの評価材を剪断した後の端面
について、冷凍(−15℃、30min)→高
温・高湿(温度49℃、湿度≧98%、
60min)→室内放置(30℃で2時間)を1
サイクルとして、剪断面に錆が発生するサ
イクル数の観察により、その評価を行なつ
た。 尚、評価基準は以下の方法によつた。 ◎……錆の発生が5サイクル以上で発生 ○……錆の発生が4サイクル以上で発生 △……錆の発生が3サイクル以上で発生 ×……錆の発生が2サイクル以上で発生 板厚0.25mmの評価材を用い、カツプ絞り
により44φ×8mm深さの加工評価材を作
成、剪断面が下部に位置するようにして、
屋外曝露試験により、その端面からの赤錆
発生状況を観察して、その耐所性の評価を
行なつた。 尚、評価基準は以下の方法によつた。 ◎……錆の発生が7日以上の曝露試験で発
生 ○……錆の発生が5日以上〜6日以内の曝
露試験で発生 △……錆の発生が4日以上〜5日以内の曝
露試験で発生 ×……錆の発生が3日以上の曝露試験で発
生 塗膜欠陥部を対象とした性能評価 評価材に対して、エポキシフエノール
系塗料を5μ厚さに塗装後、地鉄に達する
スクラツチ庇を入れ(1.5%クエン酸+1.5
%NaCl)水溶液中に、27℃で酸素の殆ん
ど存在しないCO2通気雰囲気中で96時間浸
漬テスト後に、乾燥して直ちにセロフアン
テープ剥離を行なつて、スクラツチ部を中
心とした塗膜欠陥部からの塗膜剥離状況の
調査により、容器内面を対象とした経時後
の塗膜性能の評価を行なつた。 尚、評価基準は以下の方法によつた。 ◎……スクラツチ部での塗膜剥離が殆んど
認められない。 ○……スクラツチ部での塗膜剥離がわずか
に認められる。 △……スクラツチ部での塗膜剥離が明瞭に
認められる。 ×……スクラツチ部での塗膜剥離が著しく
認められる。 塗膜性能評価 評価材に対して、Zn未顔料入りエポキ
シフエノール系塗料を5.5μ厚さに塗装後、
地鉄に達する1mm×1mm角の基盤目を100
マス作成して、1.5%クエン酸水溶液中に、
27℃で酸素の殆んど存在しないN2通気雰
囲気中で240時間浸漬テスト後に、乾燥し
て直ちにセロフアンテープ剥離を行なつ
て、その塗膜状況から容器内面を対象とし
た経時後の塗膜性能の評価を行なつた。 尚、評価基準は以下の方法によつた。 ◎……塗膜剥離面積5%未満 ○……塗膜剥離面積5%以上〜10%未満 △……塗膜剥離面積10%以上〜20%未満 ×……塗膜剥離面積20%以上 缶蓋材のスコア加工部を対象とした性能評
価板厚0.21mmの評価材を用いて、スコア残厚
75μのイメージーオープン缶蓋用加工を行な
つて、内面相当側をシールして、酸素存在雰
囲気下で(1.5%クエン酸+1.5%NaCl)水溶
液中で50℃、120時間浸漬試験後の性能評価
を行なつた。 塗膜性能評価 上記評価試験後、乾燥して直ちにセロフ
アンテープ剥離を行なつて、その塗膜剥離
状況より、容器外面を対象とした促進試験
による経時後の塗膜性能の評価を行なつ
た。 尚、評価基準は以下の方法によつた。 ◎……塗膜剥離面積がスコア加工部を中心
に0.40mm未満 ○……塗膜剥離面積がスコア加工部を中心
に0.40mm以上〜0.60mm未満 △……塗膜剥離面積がスコア加工部を中心
に0.60mm以上〜1.0mm未満 ×……塗膜剥離面積がスコア加工部を中心
に1.0mm以上 穿孔腐食性評価 上記評価試験後に、スコア加工部の穿孔
腐食状況を断面顕境により調査して、その
耐食性を調査した。 尚、評価基準は以下の方法によつた。 ◎……最大穿孔腐食深さがスコア残厚の20
%未満 ○……最大穿孔腐食深さがスコア残厚の20
%未満〜40%未満 △……最大穿孔腐食深さがスコア残厚の40
%未満〜60%未満 ×……最大穿孔腐食深さがスコア残厚の60
%以上 成形加工性の評価 板厚0.28mmの評価材を用い、150mmφのブ
ランクサイズから深さ60mmの円筒絞りを行な
い、その割れ発生状況及び外面の被覆層のカ
ジリ発生状況を検討し、各評価材の相対比較
を行なつて、その成形加工性を評価した。 尚、評価基準は以下の方法によつた。 ◎……非常に良好 ○……良好 △……劣る ×……非常に劣る
(Field of Industrial Application) The present invention provides a Sn coating layer that has excellent paintability, corrosion resistance after painting, paint adhesion after painting (so-called secondary paint adhesion), corrosion resistance, and corrosion resistance on the end face. This invention relates to a method for producing steel sheets for containers. (Conventional technology) As a steel sheet for containers that is painted and used,
As in Publication No. 55-69297, there is a Sn-based coated steel sheet with a chromate coating layer consisting of a two-layer coating composition of a metal Cr layer and a chromium oxide layer mainly composed of hydrated oxides on the Sn plating layer, which improves paint adhesion. , has excellent corrosion resistance after painting. In addition, for example, Japanese Patent Application Laid-Open No. 57-1999 has developed a steel sheet with an Sn-based coating layer that improves the corrosion resistance of steel sheets for containers.
There is a Sn-based coated steel sheet having a Ni-based base coating layer, as disclosed in Japanese Patent Application Laid-open No. 23091 and Japanese Patent Application Laid-Open No. 60-5884. These steel plates are designed to improve corrosion resistance through the superimposition of the base coating layer and the Sn coating layer, and by reducing the exposed portion of the base metal due to the formation of a uniform and dense alloy layer due to the effect of the base coating layer. Although the above-mentioned Sn-based coated steel sheets for containers have been used in some areas to take advantage of their properties, it is difficult to say that they have achieved sufficiently satisfactory paintability and corrosion resistance. (Problem to be solved by the invention) In recent years, the characteristics of steel sheets for containers have changed due to the diversification of can manufacturing methods,
Or, in response to consumers' preference for higher-end products, improvements in performance such as better paintability and less rusting during storage, or thinner steel sheets for containers to reduce can cost, can be achieved. There is a demand for improvements in corrosion resistance (that is, improvements in corrosion resistance life), etc.
For example, in response to the increasing number of deformed cans such as connected cans, it is desired to improve the corrosion resistance after painting of parts that have undergone more severe processing than before, or to improve paint adhesion when stored for a long time. In addition, the material for can lids is required to be easier to open than before, and in response to the reduction in the thickness of the can lid material and the thickness of the score processed area, we are increasing the corrosion resistance and paint adhesion of the processed area after painting. At the same time, there is a need to improve the corrosion resistance, especially the rust resistance, of the sheared portion of the score where the iron surface is exposed on the outer surface of the can lid in the score processing section. Furthermore, when an iron-based material is used for the tab of an easy-open-end can lid, corrosion resistance, especially rust resistance, is required for the end face of the material. In addition, the crown is required to have improved rust resistance on the end face of the crown, corrosion resistance after painting of the processed portion of the crown, and improved coating precision adhesion. Furthermore, in the welded can making method, further improvements are required in the corrosion resistance and paintability of the welded end face. In addition, coating layers (Sn coating layer, coating layer) can be applied to various contents or by processing such as deformed cans.
There is a high demand for the development of materials with excellent corrosion resistance and corrosion resistance, which are less prone to elution of Fe from the base steel even if they are damaged, are less prone to perforation corrosion, and have excellent corrosion resistance and long life. In response to these demands, the present inventors conducted various studies and found that the conventional steel sheets for containers (so-called tinplate) as described above are made of aluminum-killed steel sheets in which no corrosion-resistance-enhancing elements are consciously added to the plated base sheet. Because it has been
It was found that the couple corrosion current between the Sn plating layer and the plating original plate was extremely large. As a result, in an atmosphere where there is almost no oxygen, such as inside a can, the corrosion rate of the Metsch original plate is high due to the anode dissolution of Sn, so even in the defective parts of the coating film and the areas where the coating film has eaves, the dissolution of Sn causes the coating to be coated. It was found that the film peeled off easily and corrosion progressed significantly from the parts where the paint film was peeled off. In addition, in a corrosive environment on the outer surface of the can, corrosion of the iron progresses due to anode melting of the iron at the end surface of the sheared part of the plating original plate or the defective part of the plating, and rust occurs.
Alternatively, it was found that pitting corrosion occurs, and rust occurs due to corrosion of the steel base in the defective parts of the coating film or parts with the coating eaves, and pitting corrosion occurs, which deteriorates the corrosion resistance life. Therefore, in order to solve these problems, the present invention improves the corrosion resistance of the plating original plate itself by adjusting the steel composition of the plating original plate, and also improves the corrosion resistance between the Sn-based coating layer and the plating original plate. By reducing the couplet corrosion current, it suppresses the dissolution of the Sn coating layer or base metal due to anode corrosion in a corrosive environment, and prevents deterioration of corrosion resistance after painting, paint adhesion over time, and corrosion resistance in defective parts of the paint film. The present invention provides a method for producing a high-performance steel plate for containers with a Sn coating layer that prevents the deterioration of corrosion resistance due to pitting corrosion in defective areas of the coating layer, and further prevents the occurrence of rust from end faces, etc. . (Means for Solving the Problem) That is, the gist of the present invention is as follows: (1) In weight%, C: 0.15% or less, acid-soluble Al: 0.005 to 0.10%,
The amount of adhesion per side of a steel plate containing 1.5 to 11% Cr, with the remainder being iron and unavoidable impurities.
After applying a Sn coating layer of 300 mg/m 2 or more, heat melting treatment is performed, and then a chromate-based coating layer is applied with a coating amount of 1.5 to 150 mg/m 2 per side in terms of metal Cr amount. A method for manufacturing Sn-based steel plate for containers with excellent paintability and corrosion resistance. (2) In weight%, C: 0.15% or less, acid-soluble Al: 0.005 to 0.10%,
Contains Cr; 1.5 to 11%, and further contains Ti, Nb,
After applying a Sn coating layer with an adhesion amount of 300 mg/m 2 or more per side to a steel plate containing 0.03 to 0.50% of one or more of Zr and V, with the balance consisting of iron and unavoidable impurities, Heat melting treatment is applied, followed by a coating amount of 1.5 to 150 per side in terms of metal Cr amount.
A method for producing Sn-coated steel sheets for containers with excellent paintability and corrosion resistance, characterized by applying a chromate-based coating layer of mg/m 2 . It is in. (Function) The details of the present invention will be explained below. Molten steel melted in a melting furnace such as a converter or electric furnace is made into a slab through continuous casting, ingot making, or blooming.
After hot rolling, cold rolling and annealing process, C: 0.15% or less, acid soluble Al: 0.005-0.10%,
A plated original plate containing Cr; 1.5 to 11%, with the remainder consisting of iron and inevitable impurities, or a plated original plate containing Ti,
A plated original plate containing 0.03 to 0.5% of one or more of Nb, Zr, and V is used. In the corrosive environment in which Sn-coated steel sheets are used, the Cr content in the steel should be 1.5% or more, due to the combined effect with the Sn coating to improve corrosion resistance and paintability.
Preferably it is 3% or more. Figure 1 shows the measurement of the couple corrosion current between the Sn coating layer and the Cr-containing steel plate when the container was filled with a corrosion accelerating liquid.
The content is extremely small, ranging from 1.5 to 11%. on the other hand,
Figure 2 shows the measurement of the couple corrosion current between the Sn coating layer and the Cr-containing steel plate when the outer surface of the container was immersed in a corrosion-promoting solution.The couple corrosion current decreases as the Cr content increases. It is extremely small at 3% or more. As a result, in conventional steel sheets that contain Cr as an unavoidable impurity, the couple corrosion current between the Sn coating layer and the Sn coating layer is extremely large, resulting in coating layer defects and coating layer eaves defects generated during processing. On the inner surface of the container, the loss becomes significant due to the dissolution of the Sn coating layer due to sacrificial corrosion protection. Therefore, the present invention aims to prevent the corrosion resistance life from being reduced due to the dissolution of the Sn coating layer by adding Cr to the steel. In addition, even in a corrosive environment on the outer surface of the container, the corrosion rate of exposed areas of the base metal at the above-mentioned defects and end faces of the coating layer is remarkable, causing red rust and perforation corrosion.
Although this significantly reduces the corrosion resistance life of the Sn-coated steel sheet, it can be prevented by using a Cr-containing steel sheet such as the one of the present invention. As described above, when the steel is coated and used, the deterioration of the corrosion resistance life is caused by defects in the coating film that reach the base metal during processing and transportation, or at the end faces of the coating layer. In other words, in a corrosive environment such as the inner surface of a container where anode dissolution is significant due to the sacrificial anticorrosive action of Sn, the dissolution of Sn and the formation of corrosion products will cause paint film blisters (so-called blisters), and the corrosion of the paint film will also occur. The performance of the coating film deteriorates due to factors such as the tendency for the coating film to peel off when exposed for a long period of time. Also, Sn
The coating layer is a cathode (noble), but in a corrosive environment where the anode of the base metal is significantly dissolved, the coating film performance is unlikely to deteriorate, but it can significantly accelerate perforation corrosion from the defective parts of the exposed base metal, causing the paint film to deteriorate. Deteriorates later corrosion resistance. This kind of performance deterioration after painting is caused by Cr
This can be prevented by using a plated original plate containing steel. In general, no matter how strict the control is when manufacturing Sn-coated steel sheets, it is difficult to completely eliminate defects in the coating layer such as pinholes and imperfections. Layer defects are generated. At the same time, there are many situations where the end face of the Sn-coated steel plate is exposed to the base metal surface (for example, the welded part of a welded can, the scored part of a can lid, the end face of a crown, etc.). Therefore, the present invention uses a steel sheet containing Cr as an essential component, which significantly reduces the couple corrosion current between the Sn coating layer and the plating original plate, to prevent the plating defects and end faces of the Sn coated steel sheet, and the Sn
The dissolution rate of the coating layer is significantly suppressed. As a result, the corrosion resistance life of the Sn coating layer itself is increased, and
Combined with the effect of improving the corrosion resistance of the plating base plate, a Sn-based coated steel sheet with an excellent corrosion-resistant life is manufactured. This effect also improves the adhesion of the coating over time or the corrosion resistance after coating, even when the coating is used. On the other hand, if the Sn coating layer is more noble in potential (cathode) than the plating original plate, it will significantly suppress the priority and corrosion rate of the base metal in plating defects, end faces, etc. As a result, it suppresses the occurrence of perforation corrosion and red rust in areas where the bare metal is exposed, and has a significant effect of extending the corrosion-resistant life. In addition, when used as a coating, it suppresses pitting corrosion, suppresses the formation of corrosion products on the base metal, prevents coating peeling, and significantly improves coating adhesion and post-coating corrosion resistance. As mentioned above, the Cr content for obtaining such effects is 1.5 to 11%, preferably 3 to 9%. When the Cr content is less than 1.5%, Sn
The effect of reducing the couple corrosion current between the coating layer and the plating original plate cannot be obtained, and the effect of improving the corrosion resistance of the plating original plate itself cannot be obtained. On the other hand, when the Cr content exceeds 11%, the effect of improving the corrosion resistance of the plated original plate itself further increases, but the Sn
The effect of reducing the couple corrosion current with the coating layer cannot be obtained due to the corrosive environment, and it becomes difficult to obtain sufficiently good adhesion with the Sn coating layer, resulting in deterioration of weldability and workability. As mentioned above, the addition of Cr has a great effect in terms of corrosion resistance and coating performance, but in the present invention, the contents of C, acid-soluble Al, and other components are also limited for the following reasons. As the C content increases, more chromium carbide precipitates, which deteriorates the mechanical properties and corrosion resistance of the steel, and at the same time inhibits the uniform coating layer of the Sn-based coating layer. Therefore, the C content is 0.15% or less, preferably
Should be 0.10 or less. In the present invention, when adding Ti, Nb, etc., the C content is preferably 0.02% or less since it inhibits workability and uniform coverage of the coating layer due to precipitation of titanium carbide, etc. When the amount of Al (Sal, Al) remaining in steel is small, less than 0.005%, it is difficult to prevent the formation of bubbles due to oxidizing gas, which increases the incidence of surface defects in steel. This significantly increases the corrosion resistance of steel materials, and becomes the starting point for deterioration of the corrosion resistance of steel materials. In addition, excess acid-soluble Al exceeding 0.10% causes Al-based oxides to be scattered on the steel surface.
At the starting point of corrosion resistance deterioration or on the surface of the coating layer applied to the steel sheet, smudges, pinholes, etc. occur, impairing the integrity of the coating layer. Therefore, in the present invention, acid-soluble Al is 0.005
~0.1%, preferably 0.01-0.08%. In addition to the above-mentioned steel components, the present invention also includes Ti, Nb,
Cr contained in steel by combining one or more of Zr and V with 0.03 to 0.50% and combining with C.
This will further improve processability and corrosion resistance. When the content of steel components such as Ti is less than 0.03%, the effect of preventing chromium carbide precipitation and improving workability and corrosion resistance is small, and when the content exceeds 0.50%, the effect reaches saturation. In addition to being uneconomical, precipitation of these components tends to harden the material and deteriorate workability. The preferred content is 0.075-0.20%. If a steel plate composed of the above-mentioned composition components is used as is, it has superior corrosion resistance compared to conventional steel plates that contain unavoidable impurities such as Cr, but the corrosion resistance is not sufficient as a material for containers. No, no. That is, iron is leached out due to organic acids, moisture containing Cl - ions, etc. contained in the container, and the occurrence of red rust is also significant. In addition, the outer surface of the container may be exposed to corrosive atmospheres containing Cl - ions, high temperatures, etc.
When stored in high humidity conditions, red rust occurs in a relatively short period of time, and steel plates alone do not have sufficient corrosion resistance. Furthermore, even if the steel plate is directly painted, if it is exposed to a corrosive atmosphere for a long period of time, the corrosive aqueous solution that has penetrated under the coating will generate corrosion products on the steel plate, causing the coating to peel and deteriorating the coating performance. do. Therefore, in the present invention, a Sn coating layer and a chromate coating layer are applied to the plating original plate in order to impart the corrosion resistance and coating performance required for container materials. Therefore, steel sheets containing Cr as an essential component
When a Sn coating layer is applied, as described above, the couple corrosion current between the Sn coating layer and the plating original plate is significantly reduced. As described above, this effect significantly improves the corrosion resistance life and coating performance in a corrosive environment due to the color fastness improvement effect of the plating base plate and the combined effect with the Sn coating layer. The Sn coating method to obtain this performance improvement effect is not particularly stipulated. After cleaning and activating the surface of the steel plate, the Sn coating method is applied by electroplating, hot-dip plating, or vacuum evaporation. For example, in the electroplating method where a coating layer is applied, a ferrostane bath, a halogen bath, a borosilicate bath, etc. are used to apply a coating layer to both sides of the steel sheet by cathodic electrolytic treatment with the desired coating amount.
A Sn coating layer is applied. The amount of the Sn coating layer is
A coating amount of 300 mg/m 2 or more is required per side.
That is, if the amount of Sn coating layer is less than 300mg/ m2 ,
The lack of uniform coverage increases the occurrence of unplated spots and pinholes, and although the coupled corrosion current between the plated original plate and the Sn coating layer decreases, the range in which anodic corrosion protection can be applied to the Sn coating layer on the inner surface of the container is limited. Therefore, it is difficult to prevent the melting of the base steel. Furthermore, even in a corrosive atmosphere where the Sn coating layer is cathodic, there are many exposed parts of the steel base, which promotes anodic corrosion protection of the base steel, increases the amount of dissolved steel, and increases the risk of pitting corrosion. Therefore, the Sn coating amount is 300 per side.
mg/m 2 or more, preferably 700 mg/m 2 or more. In particular, when the Sn adhesion amount is 700mg/ m2 or more, the end face produced by processing is affected by the covering effect due to fogging of the Sn coating layer.
It is particularly preferable because it further promotes the anticorrosion effect on end surfaces such as sheared surfaces and processed surfaces. Further, the upper limit of the Sn coating amount is not particularly specified, but from the point of view of economic efficiency, a coating amount of about 15 g/m 2 or less, preferably about 7.5 g/m 2 or less is sufficient. Furthermore, in the present invention, in order to further improve the performance, after providing the Sn coating layer, the temperature is increased from just above the melting point (231°C) of Sn to 300°C, preferably from 240 to 280°C.
The Sn coating layer is heated and melted at a temperature of °C. Through this treatment, the Fe-Sn alloy layer is combined with the plating original plate through an alloying reaction between the plating original plate and the Sn coating layer.
It is generated as an intermediate layer between Sn coating layers, and pinholes in the Sn coating layer are further reduced, so dissolution of the Sn coating layer due to Sn anode corrosion protection or iron dissolution from the plated original plate in the corrosive atmosphere of the Sn cathode is further suppressed. The corrosion resistance life of Sn-coated steel sheets is further improved.
This heating and melting treatment is not particularly specified, and may be the same as the conventional heating and melting treatment method for Sn-plated steel sheets. For example, heat melting treatment can be performed in a short time of 0.3 to 3 seconds at a heating temperature of 240 to 280℃.
The heating atmosphere is N2 gas atmosphere, MiX gas atmosphere, or an aqueous solution of Sn phenolsulfonate.
Furthermore, coating is carried out in the air or in the above atmosphere by applying a flux such as an aqueous solution of Sn phenolsulfonic acid and phytic acid or an aqueous solution of ZnCl 2 . In the present invention, a chromate-based coating layer is applied to prevent yellowing during storage and improve coating performance.
The amount of the chromate-based coating layer is regulated depending on its use and purpose, but for all purposes, the amount of the chromate coating layer should be in the range of 1.5 to 150 mg/m 2 per side in terms of the amount of metal Cr. In other words, 1.5mg/m 2 or more is sufficient to prevent yellowing during storage, and if it is less than 1.5mg/m 2 , uniform coverage of the surface of the Sn coating layer is insufficient, and the oil applied afterwards Even with these combined effects, it is difficult to prevent yellowing during storage. In addition, to ensure performance after painting, Sn
It is necessary to further improve the effect of the chromate film on the surface of the coating layer, and the coating amount is 1.5mg/m 2
The amount is preferably 7.5 mg/m 2 or more. In other words, when the chromate coating layer is 1.5mg/m2 or more, the uniform coverage of the chromate coating is improved,
The adhesion of the paint to the surface of the Sn coating layer further ensures paint adhesion through the chromate film. On the other hand, the upper limit of the amount of chromate coating is 150 mg/m 2 or less, preferably 50.mg/m 2 or less. When the amount of chromate coating exceeds 150 mg/m 2 , the above-mentioned effect is saturated, and cracks are formed in the chromate coating due to processing, which also causes galling. In addition, chromate coatings are used to improve coating performance, especially paint adhesion over time when exposed to corrosive environments for long periods of time, and corrosion resistance after coating. A chromate coating layer consisting of is effective. The chromate film with this coating structure has a metal Cr layer with a coating amount of 1 to 30 mg/m 2 per side, and a chromium oxide layer mainly composed of hydrated oxide in a range of 5 to 50 mg/m 2 in terms of the amount of metal Cr. is preferred. The method of providing this chromate film layer is not particularly stipulated, and Cr +6
Immersion treatment or cathodic electrolysis treatment is performed using chromic acid, chromate, dichromate containing ions, and an aqueous solution containing SO 4 -2 ions and fluoride. For example, Na 2 Cr 2 O 7 aqueous solution, CrO 3
Chromate treatment with a hydrated chromium oxide layer as the main component is performed by immersion treatment in a -PO 4 -3 aqueous solution or cathodic electrolysis treatment. In addition, when providing a chromate coating consisting of a metal Cr layer and a chromium oxide layer mainly composed of hydrated oxide, a CrO 3 −SO 4 -2 bath, CrO 3 −Na 2 SiF 6
It is provided by cathodic electrolysis treatment using an NH 4 F bath with adjusted current density. The chromate coating treatment for improving coating performance is applied to the products of the present invention after processing (for example,
A similar effect can be obtained when a surface cleaning treatment is performed after the Di molding process. (Example) Examples of the present invention will be described below. Using a steel plate with a steel composition whose Cr content was mainly varied as shown in Table 1, it was degreased using a degreasing bath containing 3% NaOH aqueous solution with 0.3% surfactant added, and after washing with water, a 20% H 2 SO 4 aqueous solution was applied. Current density at 50 °C using
After cleaning and activating the surface by anodic pickling for 1 second at 20 A/dm 2 , followed by cathodic pickling for 1 second and water washing, the Sn-based coating layer and chromate shown in Table 1 are applied. A coating layer was provided and various performance evaluation tests were conducted. The performance evaluation was carried out using the following methods, and the performance evaluation results are shown in Table 1. As a result, the product of the present invention has extremely superior performance in terms of coating performance, corrosion resistance, end surface rust resistance, etc., as compared to comparative materials, and has extremely excellent properties as a material for containers. ●Evaluation test method Corrosion resistance targeting coating layer defects Using a 0.25 x 50 x 50 mm evaluation material, seal the end and back surfaces, put a scratch eave that reaches the base steel on the evaluation surface, and (1.5% citric acid + 1 .Five%
NaCl) in 400 ml of aqueous solution at a temperature of 50°C, 288
An immersion test was conducted in an N2 gas aeration atmosphere with almost no oxygen present for several hours, and the amount of Fe eluted from the scratch eaves corresponding to the defective coating layer and the scratch eaves were evaluated. The corrosion resistance was evaluated based on the state of perforation corrosion in the eaves. The evaluation criteria were as follows. Fe elution amount/evaluation ◎……Fe elution amount per 1 cm 2 of the evaluation material
Less than 2.5ppm ○...Fe elution amount per cm2 of evaluation material
2.5ppm or more - less than 5ppm △...Fe elution amount is 5ppm per 1cm2 of the evaluation material
More than 7.5 ppm ×……Fe elution amount per 1 cm 2 of evaluation material
7.5ppm or more Drilling corrosion resistance/evaluation ◎... Maximum drilling corrosion depth from the scratch eaves is less than 25% of the plate thickness ○... Maximum drilling corrosion depth from the scratch eaves is 25% or more of the plate thickness ~ 40 Less than % △... Maximum drilling corrosion depth from the scratch eaves is 40% or more and less than 60% of the plate thickness ×... Maximum drilling corrosion depth from the scratch eaves is 60% or more of the plate thickness Coating layer defect area After inserting a scratch eave that reaches the base steel using the same material evaluated for corrosion resistance (1.0% citric acid + 0.25
% phosphoric acid) in 400 ml of aqueous solution at a temperature of 50°C,
An immersion test was conducted for 288 hours in an N 2 gas aeration atmosphere with almost no oxygen present, and the amount of Fe eluted was measured, the state of perforation corrosion from scratches was investigated, and the corrosion resistance was evaluated. The evaluation criteria were based on the following method. Evaluation of end surface rust After shearing the evaluation material with a thickness of 0.25 mm, the end surface was frozen (-15°C, 30 min) → high temperature and high humidity (temperature 49°C, humidity ≥98%,
60min)→Leave indoors (2 hours at 30℃) for 1
Evaluation was made by observing the number of cycles at which rust occurs on the sheared surface. The evaluation criteria were based on the following method. ◎...Rust occurs in 5 or more cycles ○...Rust occurs in 4 or more cycles △...Rust occurs in 3 or more cycles ×...Rust occurs in 2 or more cycles Plate Thickness Using 0.25mm evaluation material, create a processing evaluation material of 44φ x 8mm depth by cup drawing, with the sheared surface located at the bottom.
An outdoor exposure test was conducted to observe the occurrence of red rust from the end face, and to evaluate its location resistance. The evaluation criteria were based on the following method. ◎... Rust occurs in an exposure test of 7 days or more ○... Rust occurs in an exposure test of 5 or more days to less than 6 days △... Rust occurs in an exposure test of 4 days or more to less than 5 days Occurred during the test ×... Rust occurred during the exposure test for 3 days or more Performance evaluation targeting defective parts of the coating After coating the evaluation material with epoxy phenol paint to a thickness of 5μ, it reached the base metal. Add Scratch Eaves (1.5% citric acid + 1.5
%NaCl) aqueous solution at 27°C in a CO 2 aeration atmosphere with almost no oxygen, the coating film centered on the scratched area was removed immediately after drying with cellophane tape. The performance of the paint film over time was evaluated on the inner surface of the container by investigating the state of paint film peeling from defective areas. The evaluation criteria were based on the following method. ◎...Almost no peeling of the paint film was observed at the scratched area. ○... Slight peeling of the paint film is observed at the scratched area. △...Paint film peeling at the scratched area is clearly observed. ×... Significant peeling of the paint film at the scratched area is observed. Paint film performance evaluation After coating the evaluation material with epoxy phenol paint containing Zn-free pigment to a thickness of 5.5μ,
100 pieces of 1mm x 1mm square base that reach the base metal
Make a mass and add it to a 1.5% citric acid aqueous solution.
After a 240-hour immersion test at 27°C in an N2 aeration atmosphere with almost no oxygen, the cellophane tape was removed immediately after drying, and based on the condition of the coating film, the inner surface of the container was coated after aging. Membrane performance was evaluated. The evaluation criteria were based on the following method. ◎...Paint peeling area less than 5% ○...Paint peeling area 5% or more and less than 10% △...Paint peeling area 10% or more and less than 20% ×...Paint peeling area 20% or more Can lid Performance evaluation for the score processed part of the material Using the evaluation material with a plate thickness of 0.21 mm, the score remaining thickness
75μ image - after processing for open can lid, sealing the inner side, and immersion test at 50℃ in an aqueous solution (1.5% citric acid + 1.5% NaCl) for 120 hours in an oxygen atmosphere. Performance evaluation was performed. Coating film performance evaluation After the above evaluation test, cellophane tape was removed immediately after drying, and based on the peeling status, the coating film performance after time was evaluated by an accelerated test on the outer surface of the container. . The evaluation criteria were based on the following method. ◎... The peeled area of the paint film is less than 0.40 mm around the score processed area. ○... The peeled area of the paint film is 0.40 mm or more and less than 0.60 mm around the score processed area. △... The peeled area of the paint film is less than 0.40 mm around the score processed area. 0.60 mm or more to less than 1.0 mm at the center ×...The peeled area of the paint film is 1.0 mm or more around the score processed area Puncture corrosion evaluation After the above evaluation test, the perforation corrosion status of the score process area was investigated by cross-sectional observation. , its corrosion resistance was investigated. The evaluation criteria were based on the following method. ◎……Maximum drilling corrosion depth is 20 of the score residual thickness
Less than % ○……Maximum drilling corrosion depth is 20 of the score residual thickness
Less than % to less than 40% △……Maximum drilling corrosion depth is 40 of the score residual thickness
Less than % to less than 60% ×……Maximum drilling corrosion depth is 60 of the score residual thickness
% or more Evaluation of formability Using the evaluation material with a thickness of 0.28 mm, perform cylindrical drawing to a depth of 60 mm from a blank size of 150 mmφ, examine the occurrence of cracks and galling of the outer coating layer, and evaluate each A relative comparison was made between the materials to evaluate their moldability. The evaluation criteria were based on the following method. ◎...Very good ○...Good △...Poor ×...Very poor

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼中Cr添加量とSn被覆層との間の缶
内容物を対象とした場合のカツプル腐食電流
(1.5%クエン、O2less雰囲気、Sn被覆層アノー
ド)の関係を示す図、第2図は鋼中Cr添加量と
Sn被覆層との間の容器外面を対象とした場合の
カツプル腐食電流(1%NaSO4+0.35%NaCl水
溶液、酸素飽和、Feアノード)の関係を示す図
である。
Figure 1 is a diagram showing the relationship between the amount of Cr added in steel and the coupler corrosion current (1.5% citric, O 2 less atmosphere, Sn coating layer anode) for the can contents between the Sn coating layer and the content of the can. Figure 2 shows the amount of Cr added in steel.
FIG. 3 is a diagram showing the relationship between couple corrosion current (1% NaSO 4 +0.35% NaCl aqueous solution, oxygen saturation, Fe anode) when targeting the outer surface of the container between the Sn coating layer and the outer surface of the container.

Claims (1)

【特許請求の範囲】 1 重量%で C;0.15%以下、 酸可溶Al;0.005〜0.10%、 Cr;1.5〜11%、 残部鉄及び不可避的不純物からなる鋼板に片面
当りの付着量が300mg/m2以上のSn被覆層を施し
た後、加熱溶融処理を施し、続いて金属Cr量換
算で片面当りの付着量が1.5〜150mg/m2のクロメ
ート系被膜層を施すことを特徴とする塗装性と耐
食性に優れたSn系被覆容器用鋼板の製造法。 2 重量%で、 C;0.15%以下、 酸可溶Al;0.005〜0.10%、 Cr;1.5〜11%、 Ti、Nb、Zr、Vの1種又は2種以上で0.03〜
0.50% を含有し、残部が鉄及び不可避的不純物からなる
鋼板に、片面当りの付着量が300mg/m2以上のSn
被覆層を施した後、加熱溶融処理を施し、続いて
金属Cr量換算で片面当りの付着量が1.5〜150mg/
m2のクロメート系被膜層を施すことを特徴とする
塗装性と耐食性に優れたSn系被覆容器用鋼板の
製造法。
[Claims] 1% by weight: C: 0.15% or less, acid-soluble Al: 0.005 to 0.10%, Cr: 1.5 to 11%, the balance being iron and unavoidable impurities. After applying a Sn coating layer of /m 2 or more, heating and melting treatment is performed, followed by applying a chromate-based coating layer with a coating amount of 1.5 to 150 mg/m 2 per side in terms of metal Cr amount. A manufacturing method for Sn-based steel plate for containers with excellent paintability and corrosion resistance. 2% by weight, C: 0.15% or less, acid-soluble Al: 0.005-0.10%, Cr: 1.5-11%, 0.03-0.03% with one or more of Ti, Nb, Zr, and V
0.50%, with the balance consisting of iron and unavoidable impurities, with an adhesion amount of 300mg/m2 or more per side.
After applying the coating layer, heat melting treatment is performed, followed by a coating amount of 1.5 to 150 mg per side in terms of metal Cr amount.
A method for producing a Sn-coated steel sheet for containers, which has excellent paintability and corrosion resistance, and is characterized by applying a chromate-based coating layer of m 2 .
JP21887889A 1989-08-25 1989-08-25 Production of sn coated steel sheet for vessel having superior coatability and corrosion resistance Granted JPH02125885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21887889A JPH02125885A (en) 1989-08-25 1989-08-25 Production of sn coated steel sheet for vessel having superior coatability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21887889A JPH02125885A (en) 1989-08-25 1989-08-25 Production of sn coated steel sheet for vessel having superior coatability and corrosion resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15375385A Division JPS6213594A (en) 1985-07-12 1985-07-12 Steel sheet for sn-coated vessel having excellent property to be coated and corrosion resistance and its production

Publications (2)

Publication Number Publication Date
JPH02125885A JPH02125885A (en) 1990-05-14
JPH0567710B2 true JPH0567710B2 (en) 1993-09-27

Family

ID=16726724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21887889A Granted JPH02125885A (en) 1989-08-25 1989-08-25 Production of sn coated steel sheet for vessel having superior coatability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH02125885A (en)

Also Published As

Publication number Publication date
JPH02125885A (en) 1990-05-14

Similar Documents

Publication Publication Date Title
EP0210302B1 (en) Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JP6315153B1 (en) Fused Al-Zn plated steel sheet
US4713301A (en) Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability
JP3126622B2 (en) Rustproof steel plate for fuel tank
JP2001355051A (en) HOT DIP Zn-Sn PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE
JPH0567710B2 (en)
JPS6217199A (en) Sn coated steel sheet for vessel having superior paintability and corrosion resistance and its manufacture
JPH02274866A (en) Production of cr-ni diffusion-treated steel sheet having excellent corrosion resistance
US4842958A (en) Chromate surface treated steel sheet
JPH0216396B2 (en)
JP3126623B2 (en) Rustproof steel plate for fuel tank
JPS61177378A (en) Chromated cr-containing steel sheet having superior suitability to coating with paint
JP2002038250A (en) HOT-DIP PLATED STEEL-SHEET WITH Sn-Zn SUPERIOR IN CORROSION RESISTANCE
JP3129628B2 (en) Rustproof steel plate for fuel tank
JPH0241594B2 (en)
JPH0241593B2 (en)
JPS60145380A (en) Ni plated steel sheet having excellent corrosion resistance
JPS642195B2 (en)
JPS61270390A (en) Steel sheet for fuel vessel
CA1285459C (en) Chromate surface treated steel sheet
JPH0689475B2 (en) Steel plate for fuel container
JPS61270389A (en) Steel sheet for fuel vessel
JPS61253377A (en) Chromated cr-containing steet having superior suitability to painting and superior strength characteristic
JPS61288083A (en) Chromated steel sheet containing cr and having superior paintability, corrosion resistance and workability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees