JPH0241593B2 - - Google Patents

Info

Publication number
JPH0241593B2
JPH0241593B2 JP60162592A JP16259285A JPH0241593B2 JP H0241593 B2 JPH0241593 B2 JP H0241593B2 JP 60162592 A JP60162592 A JP 60162592A JP 16259285 A JP16259285 A JP 16259285A JP H0241593 B2 JPH0241593 B2 JP H0241593B2
Authority
JP
Japan
Prior art keywords
coating layer
corrosion
corrosion resistance
plating
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60162592A
Other languages
Japanese (ja)
Other versions
JPS6223997A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16259285A priority Critical patent/JPS6223997A/en
Priority to AU51449/85A priority patent/AU565129B2/en
Priority to EP85116264A priority patent/EP0210302B1/en
Priority to DE8585116264T priority patent/DE3584634D1/en
Priority to CA000498277A priority patent/CA1288646C/en
Priority to US06/811,761 priority patent/US4731301A/en
Publication of JPS6223997A publication Critical patent/JPS6223997A/en
Publication of JPH0241593B2 publication Critical patent/JPH0241593B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は腐食環境において、被覆欠陥部或いは
被覆端面部等からFe溶出量が極めて少なく、耐
食性に極めて優れたSn系メツキ鋼板に関するも
のである。 (従来の技術) 従来から、Snメツキ鋼板(ブリキ)は、外観
性、耐食性、加工性、塗装性能、半田性に優れ、
容器用鋼板として著しく優れた適性を有してい
る。しかし最大の欠点はSn地金の高騰により、
価格が著しく高いことにある。そのためSn付着
量の減少によるコストダウンが計られているが、
その場合、耐食性の低下が問題である。 この問題を解消せしめた鋼板に、例えば特開昭
57−23091号公報、或いは特開昭57−200592号公
報のように、Ni系下地被覆層を有するSn系被覆
層鋼板がある。 これらの鋼板は、下地被覆層とSn被覆層の重
畳効果、下地被覆層の効果による均一緻密な合金
層の生成による地鉄露出部の減少等により耐食性
の向上を計つたものである。 上記のようなSn系被覆容器用鋼板(素材)は、
その特性を生かして一部では使用されているもの
の、必ずしも充分に満足すべき耐食性能が得られ
ているとは云い難い。 また、Snメツキ鋼板はアルコール系燃料用容
器素材として、検討されているが、Sn付着量を
低下した場合、加工によつてメツキピンホール部
から赤錆発生或いは穿孔腐食等の問題を生じ、必
ずしも充分に満足すべき性能が得られないとされ
ている。 これらに対応して、この問題点を解決するため
に、特開昭59−126323号公報のようにめつき原板
にCrを0.2%〜5%添加した鋼板にNi系下地被覆
層を付与しその上層にSnめつき層を施したSn系
被覆鋼板がある。 これらの鋼板は鋼中にCrがあるためにNiを含
有するSnとの合金層と鋼板(めつき鋼板)との
間のカツプル電流を小さくし鋼板自体の耐食性を
向上させる効果があり、優れた耐食性を得ること
ができる。しかし、使用環境はより厳しく、また
要求性能はより高度化する傾向にある。例えば、
缶用材料については、塗料の膜厚の低減あるいは
内容物の多様化による腐食環境の変化など、一
方、燃料用容器については耐穿孔腐食寿命の長期
化の要求あるいはエタノールより腐食性の強いメ
タノールの適用、有機酸の混入など腐食環境の劣
悪化などが挙げられる。これらの厳しい要求に対
しては必ずしも十分に満足すべき耐食性能とは言
い難い。 (発明の解決しようとする問題点) 近年容器用鋼板の特性として、製缶様式の多様
化、内容物の多様化或いは消費者の高級化指向に
対応して、より優れた耐食性、貯蔵時の錆発生が
生じにくい、或いは容器コストの低減化に対処し
た容器用鋼板の薄手化により優れた耐食性の向上
(即ち、耐食寿命の向上等)が要求されている。 例えば、ネツクドイン缶のような変形缶の増大
に対応して、従来以上に苛酷な加工を受けた部分
の耐食性向上等がCl-イオンを含有するような内
容物には特に要求されている。 また、缶蓋用素材として、従来以上に開け易さ
が要求され、その缶蓋素材の板厚減少、スコア加
工部の板厚減少等に対応して、加工部の耐食寿命
の延長が必要とされると同時に、スコア加工部は
缶蓋外面においては鉄面が露出したスコア剪断部
分の耐食性向上、特に耐錆性の向上等が要求され
ている。 また、イージーオープンエンド缶蓋のタブに鉄
系容器用鋼板を用いる場合には、鋼板端面の耐食
性、特に耐錆性が要求されている。 また、王冠には、王冠端面の耐錆性の向上等が
要求されている。 さらに、製缶方式においては、溶接端面部の耐
食性が一層要求されている。 また、上記のような容器用以外に、アルコール
燃料に対して、燃料容器内、外面ともに、加工部
或いは溶接部の被覆欠陥部で穿孔腐食の生じにく
い高耐食性Sn系被覆鋼板の開発が望まれている。 従来のSn系被覆鋼板は、内容物の種類によつ
ては、Sn被覆層がカソードとなり、被覆欠陥部
(ピンホール部、加工による疵付き部等)からFe
を溶出し穿孔腐食を誘発する問題があつた。 一方環境の外面では、Sn被覆層がカソードと
なり、鋼板とのカツプル腐食電流も極めて大き
い。その結果、被覆欠陥部或いは端面部からFe
の溶出と赤錆を発生し、穿孔腐食を生じ易い。 本発明は、上記のような従来の問題点を解決し
て、耐食性、耐食寿命の極めてすぐれたSn系被
覆鋼板を提供することを目的としたもので、メツ
キ原板の鋼成分を調整する事によつて、メツキ原
板自体の耐食性を向上せしめてSn被覆層にアノ
ード防食能を付与せしめると共に、ピンホール、
不メツキ等の被覆欠陥部の少ないSn系被覆鋼板
を提供するものである。 (問題点の解決手段) すなわち、本発明の要旨は、 (1) C;0.10%以下、SolAl;0.005〜0.08%、
Cr;5%超〜20%、を含有し、残部が鉄およ
び不可避的不純物からなる鋼板に、厚さ0.001
〜1.5μのNi系下地被覆層、その上に厚さ0.5μ以
上のSn系被覆層を施した高耐食性Sn系メツキ
鋼板。 (2) C;0.10%以下、SolAl;0.005〜0.08%、
Cr;5%超〜20%を含有し、さらにTi、Nb、
Zr、Vの1種又は2種以上で、0.03〜0.5%を
含有して残部が鉄および不可避的不純物からな
る鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、
その上に厚さ0.5μ以上のSn系被覆層を施した高
耐食性Sn系メツキ鋼板。 (3) C;0.10%以下、SolAl;0.005〜0.08%、
Cr;5%超〜20%を含有し、残部が鉄および
不可避的不純物からなる鋼板に、厚さ0.001〜
1.5μのNi系下地被覆層、その上に厚さ0.5μ以上
のSn系被覆層を施した後加熱溶融処理する高
耐食性Sn系メツキ鋼板の製造法。 (4) C;0.10%以下、SolAl;0.05〜0.08%、
Cr;5%超〜20%を含有し、さらにTi、Nb、
Zr、Vの1種又は2種以上で0.03〜0.5%を含
有し、残部が鉄および不可避的不純物からなる
鋼板に、厚さ0.001〜1.5μのNi系下地被覆層そ
の上に厚さ0.5以上のSn系被覆層を施した後加
熱溶融処理する高耐食性Sn系メツキ鋼板の製
造法である。 (作 用) 以下本発明の詳細について説明する。 転炉、電炉等の溶解炉で溶製された溶鋼を連続
鋳造または造塊、分塊法を経てスラブとし、熱間
圧延、冷間圧延さらには焼鈍工程を経て、重量%
で、C;0.10%以下、酸可溶Al(SolAl);0.005〜
0.08%、Cr5%超〜20%を含有する鋼板或いはこ
れにTi、Nb、Zr、Vの1種又は2種以上で0.03
〜0.5%含有するメツキ原板を製造する。 メツキ原板に含まれる5%超のCrは、Sn系被
覆鋼板が使用される腐食環境において、被覆欠陥
部のFe溶出、穿孔腐食を防止し、耐食性を向上
せしめる。 第1図は容器内に腐食促進液を充填した場合の
Sn被覆層とメツキ原板とのカツプル腐食電流を
測定したもので、Cr含有量3%以上、特にCr含
有量5%以上でSnのアノード防食能が著しく高
くなる。 また第2図は、容器外面を腐食促進液に浸漬し
た場合のSn被覆層とメツキ原板とのカツプル腐
食電流を測定したものでCr含有量が5%をこえ
るとSn被覆層のアノード防食が可能となる。 このようにCrを含有する鋼板をメツキ原板と
して用いた場合、Sn被覆層の犠牲防食能効果に
よつて、メツキ原板の地鉄露出部のFe溶出、赤
錆の発生或いは穿孔腐食の発生が防止される。従
つて、本発明のSn系被覆鋼板は耐食性、耐食寿
命が著しく改善される。 一般にSn被覆鋼板を如何に厳格な管理に基い
て製造しても、ピンホール、不メツキ等の被覆層
欠陥を皆無にする事は困難であり、また使用時に
加工疵等の生成により地鉄に達する被覆層欠陥部
が生成される。 それと同時に、Sn被覆鋼板の端面が地鉄が露
出されて使用される状態(例えば溶接缶の溶接
部、缶蓋のスコア加工部、王冠の端面等)は極め
て多い。従つて、本発明は、Sn被覆層がメツキ
原板を犠牲防食しうるCrを必須成分とする鋼板
をメツキ原板として用いる事によつて、Sn被覆
鋼板の被覆欠陥部や端面部の地鉄の腐食を著しく
抑制する。その結果、メツキ原板の耐食性の向上
で極めて耐食寿命のすぐれたSn系被覆鋼板を製
造するものである。このような効果を得るための
Cr含有量は前記したように、5%超〜20%、好
ましくは8%超〜12%である。Cr含有量が5%
以下では、腐食環境におけるSn系被覆層の犠牲
防食効果が得られず、またCr含有量が20%をこ
えるとSn系被覆層の均一被覆性、密着性を劣化
する。 特に、Crが11%以下のγ相とα相の二相領域
組成の鋼板は、鋼板製造時において結晶粒の粗大
化が生じにくく、苛酷な成形加工を受けた場合に
リジングと呼ばれる“ハダ荒れ”現象も生じ難い
特徴がある。 さらに本発明においては、C及び酸可溶Al
(SolAl)についても含有量を規制する必要があ
る。 Cは含有量の増加に伴いクロムカーバイトの析
出量が多くなり、鋼の機械的性質と耐食性を劣化
すると同時に、亜鉛メツキ層の均一被覆性を阻害
する。従つて、C含有量は0.10%以下である。 尚本発明においてTi、Nb、Zr、V等を添加す
る場合は、そのC含有量を加工性及びチタンカー
バイト等の析出による被覆層の均一被覆性を阻害
することから0.02%以下が好ましい。 Alは、鋼中に残存する酸可溶Al(SolAl)量が
0.005%末満の少含有量は、酸化性ガスによる気
泡の発生を防止する事が困難であり、鋼の表面欠
陥発生率を著しく高め、鋼素材の耐食性劣化の起
点となる。また、0.08%を超える過剰な酸可溶Al
は、Al系酸化物を鋼表面に点在せしめて、耐食
性劣化の起点或いは本鋼板に対して施される被覆
層表面においては不メツキ、ピンホール等を発生
して、被覆層の健全性を損じる。 従つて、本発明においては、酸可溶Alは0.005
〜0.08%である。 又、本発明は、上記の鋼成分の他にTi、Nb、
Zr、Vの1種又は2種以上で0.03〜0.50%を含有
させて、鋼中のCと結合せしめて含有されるCr
の有効化を計り、更にすぐれた加工性と、耐食性
を向上せしめる。 Tiなどの鋼成分の含有量が0.03%未満ではクロ
ムカーバイトの析出を防止して、加工性及び耐食
性を向上せしめる効果が少なく、またその含有量
が0.50%を超えると、その効果が飽和に達し経済
的でなくなると共に、これら成分の析出によつて
素材の硬質化を起し、加工性を劣化する傾向にあ
る。好ましい含有量は0.075〜0.20%である。 上記のような組成の鋼板をそのまま使用したの
では従来のCr等を不可避的不純物程度含有する
従来の鋼板に比して、耐食性は優れているもの
の、容器用素材或いは燃料容器用素材を対象とし
た場合必ずしもその耐食性は充分とはいえない。 すなわち、容器に充填される内容物の有機酸、
Cl-イオンを含有する水分等によつて、鉄溶出が
生じ、また赤錆の発生も著しい。また、容器外面
は、Cl-イオンを含有する腐食雰囲気や高温、高
湿状態で貯蔵された場合、比較的短期間で赤錆を
発生し、鋼板のみでは耐食性が充分でない。さら
に、鋼板に直接塗装しても腐食雰囲気に長期間曝
された場合、塗膜下に侵入した腐食水溶液によつ
て鋼板に腐食生成物を発生し塗膜剥離を生じて塗
膜性能を劣化する欠点がある。 上記のような鋼成分のメツキ原板は、ガソリン
或いはアルコール燃料には比較的良好な耐食性を
有するものの、燃料中に含有される水分やCl-
オンを含有する水分等によつて赤錆の発生或いは
穿孔腐食を生じ易い。また、道路凍結防止塩
(剤)が散布された道路或いは海風地帯等のCl-
オンが存在する腐食雰囲気では、赤錆や、穿孔腐
食を生じ易い。 従つて、本発明においては、前記の如き、容器
用素材或いは燃料容器等に要求される耐食性或い
は塗装性等を勘案して、メツキ原板に対して、
Sn被覆層を施す。 Crを5%超えて含有した鋼板は、前記したよ
うに、Sn被覆層がメツキ原板の犠牲防食効果を
もたらす。この結果本発明の鋼板はすぐれた耐食
性能と耐食寿命が得られる。 さらに、本発明では、Ni系下地被覆層をメツ
キ原板表面とSn系被覆層の中間に設ける。 Ni系下地被覆層は、上層のSn被覆層と、緻密
な合金層を生成して、被覆層内欠陥部を減少せし
め耐食性と被覆層の原板に対する密着性を改善す
る。 これは常温においても加熱溶融処理(メルト処
理)あるいは溶融メツキ法によるSn系被覆処理
においてもNi系金属とSn被覆層とは拡散反応性
或いは濡れ反応性が極めて優れているためによ
る。 このようにNiとSnの合金層を生成させる事に
よつて、Sn被覆層の犠牲防食能が一段と強化さ
れる。 本発明によつて、Ni系下地被覆層とSn系被覆
層を施す方法は、特に規定されるものではない
が、例えばNi系下地被覆層については、メツキ
原液を、脱脂、酸洗など通常のメツキ前処理を施
して、電気Niメツキ或いはNi合金メツキが施さ
れるが、通常の電気メツキ方式を採用すればよ
い。 Niメツキ浴、或いはNi合金系メツキ浴の組成、
メツキ条件等も特に規定しないが、大体電流密度
は3〜300A/dm2、メツキ温度は80℃以下であ
る。Niメツキ浴、或いはNi合金系メツキの組成
例、及びメツキ条件の一例を挙げれば下記の如く
である。 (1) Niメツキ組成;NiSO4・6H2O 240g/ NiCl2・6H2O 45g/
H3BO340g/ PH;4.0 電流密度;15A/dm2 メツキ浴温;60℃ (2) Ni−Fe合金メツキ組成 浴組成;NiSO4・6H2O 240g/ NiCl2・6H2O 45g/ FeSO4・7H2O 60〜80g/ H3BO3 40g/ PH;1.5 電流密度;5〜20A/dm2 浴 温;50℃ (3) Ni−Sn合金メツキ組成 浴組成;SnCl2・2H2O 50g/ NiCl2・6H2O 300g/ NaF 28g/ NH4HF2 35g/ PH;2.5 電流密度;2.5〜10A/dm2 浴 温 ;65℃ 又、Ni−Fe合金下地被覆層の特殊な一例とし
て、Ni電気メツキを前記(1)の如き組成、条件で
行なつてから、非酸化性雰囲気で550〜900℃の温
度で加熱拡酸処理を行なつてもよい。 特に、この加熱拡散処理によつてNi−Fe系合
金拡散層からなるNi系下地被覆層を施す方法は、
下記の点で有利である。 本発明に使用されるCr含有鋼板は、一般に焼
鈍過程において酸化され易い。従つて、焼鈍工程
に先立つて、冷間圧延のまま(As Cold材)の鋼
板に、脱脂、酸洗後、Ni系下地メツキを施し、
焼鈍と同時に加熱拡散処理(温度500〜900℃)を
行なう方法がNi系下地処理により加熱時のCr含
有メツキ原板表面の酸化を防止しうる。それと同
時に、As Cold材の有する加工歪により、Ni系
下地被覆層と鋼板の相互拡散が促進されるので、
短時間の加熱処理によりNi−Fe系の拡散下地被
覆層が均一に生成され易い等の点でもすぐれてい
る。 次に、Ni系下地被覆層は、Ni、Ni−Fe合金、
Ni−Fe系拡散層、Ni−Sn合金、Ni−Co合金、
Ni−P合金等が使用されるが、この被覆層の厚
さは0.001〜1.5μ、好ましくは0.05〜0.5μに規制す
る必要がある。厚さが0.001μ未満では、鋼板に対
する均一被覆性が不充分で、Sn被覆層との合金
化反応による前記の如き被覆欠陥部の減少効果が
得られない。またその厚さが1.5μをこえると、そ
の効果が飽和するとともに、比較的硬質のNi−
Sn系合金層が厚く生成され、加工時の合金層に
Sn系被覆表面まで達するクラツクを生成し耐食
性を劣化する。 さらに本発明ではNi系下地被覆層が施された
鋼板は、そのまま或いは酸洗等の活性化処理が施
された後、Sn系被覆処理或いはさらにSn被覆後
加熱溶融処理(メルト処理)を施す。 この場合のSn被覆条件及びSn被覆処理後の加
熱溶融処理条件は、通常の条件を採用すればよ
く、特に限定されるものでない。例えば、
(Industrial Application Field) The present invention relates to a Sn-based plated steel sheet that has extremely low Fe elution from coating defects or coating end faces, etc. in a corrosive environment, and has extremely excellent corrosion resistance. (Conventional technology) Sn-plated steel sheets (tin plate) have traditionally had excellent appearance, corrosion resistance, workability, painting performance, and solderability.
It has outstanding suitability as a steel sheet for containers. However, the biggest drawback is that due to the soaring price of Sn metal,
The reason is that the price is extremely high. Therefore, efforts are being made to reduce costs by reducing the amount of Sn attached.
In that case, the problem is a decrease in corrosion resistance. The steel plate that solved this problem, for example,
There is a Sn-based coated steel sheet having a Ni-based base coating layer, as disclosed in Japanese Patent Application Laid-open No. 57-23091 and Japanese Patent Application Laid-Open No. 57-200592. These steel sheets are designed to improve corrosion resistance through the superimposition of the base coating layer and the Sn coating layer, and by reducing the exposed portion of the base metal due to the formation of a uniform and dense alloy layer due to the effect of the base coating layer. The steel plate (material) for Sn-based coated containers as mentioned above is
Although it is used in some places to take advantage of its properties, it is difficult to say that it has always achieved sufficiently satisfactory corrosion resistance. In addition, Sn-plated steel sheets are being considered as a material for alcohol-based fuel containers, but if the amount of Sn attached is reduced, problems such as red rust or perforation corrosion may occur from the plating pinholes during processing, so it is not always sufficient. It is said that satisfactory performance cannot be obtained. In order to solve this problem, a Ni-based base coating layer is applied to a steel sheet to which 0.2% to 5% of Cr is added to the plating original plate, as disclosed in Japanese Patent Application Laid-Open No. 59-126323. There is a Sn-based coated steel sheet with a Sn plating layer on the top layer. These steel plates have Cr in the steel, which has the effect of reducing the coupling current between the alloy layer with Sn containing Ni and the steel plate (plated steel plate), improving the corrosion resistance of the steel plate itself, making it an excellent product. Corrosion resistance can be obtained. However, the usage environment is becoming more severe, and the required performance tends to be more sophisticated. for example,
Regarding materials for cans, there are changes in the corrosive environment due to reductions in paint film thickness and diversification of contents.On the other hand, for fuel containers, there is a demand for longer lifespans of puncture-resistant corrosion, and changes in methanol, which is more corrosive than ethanol, are required. Application, deterioration of the corrosive environment such as the contamination of organic acids, etc. It cannot be said that the corrosion resistance performance is necessarily sufficient to meet these strict requirements. (Problems to be Solved by the Invention) In recent years, the characteristics of steel sheets for containers have been improved in response to the diversification of can manufacturing styles, the diversification of contents, and the consumer's preference for higher quality products. There is a demand for improved corrosion resistance (i.e., improved corrosion resistance life, etc.) by making thinner steel plates for containers that are less likely to rust or reduce container costs. For example, in response to the increase in the number of deformed cans such as closed-in cans, there is a particular need for contents containing Cl - ions to improve the corrosion resistance of parts that have undergone more severe processing than before. In addition, the material for can lids is required to be easier to open than before, and in response to the reduction in the thickness of can lid materials and the thickness of the score-processed parts, it is necessary to extend the corrosion-resistant life of the processed parts. At the same time, the score processing section is required to improve the corrosion resistance, especially the rust resistance, of the sheared portion of the score where the iron surface is exposed on the outer surface of the can lid. Furthermore, when a steel plate for iron-based containers is used for the tab of an easy-open-end can lid, corrosion resistance, particularly rust resistance, of the end face of the steel plate is required. Furthermore, the crown is required to have improved rust resistance on the end face of the crown. Furthermore, in the can manufacturing method, corrosion resistance of the welded end face portion is further required. In addition to the above-mentioned containers, it is desired to develop highly corrosion-resistant Sn-based coated steel sheets for alcohol fuels that are less prone to pitting corrosion at coating defects in processed or welded areas, both inside and outside the fuel container. ing. In conventional Sn-based coated steel sheets, depending on the type of contents, the Sn coating layer acts as a cathode, and Fe is removed from coating defects (pinholes, flaws due to processing, etc.).
There was a problem in that it leached out and induced perforation corrosion. On the other hand, on the external surface of the environment, the Sn coating layer acts as a cathode, and the couple corrosion current with the steel plate is also extremely large. As a result, Fe is removed from the coating defect or end face.
Elution and red rust occur, and drilling corrosion is likely to occur. The purpose of the present invention is to solve the above-mentioned conventional problems and provide a Sn-based coated steel sheet with extremely excellent corrosion resistance and corrosion-resistant life. Therefore, the corrosion resistance of the plating original plate itself is improved and the Sn coating layer is given anode corrosion protection ability, and pinholes and
The present invention provides a Sn-based coated steel sheet with fewer coating defects such as unmetallic spots. (Means for solving problems) That is, the gist of the present invention is as follows: (1) C: 0.10% or less, SolAl: 0.005 to 0.08%,
A steel plate with a thickness of 0.001
A highly corrosion-resistant Sn-based plated steel sheet with a ~1.5μ Ni-based base coating layer and a 0.5μ-thick or more Sn-based coating layer on top. (2) C; 0.10% or less, SolAl; 0.005 to 0.08%,
Contains Cr; more than 5% to 20%, and further contains Ti, Nb,
A Ni-based undercoating layer with a thickness of 0.001 to 1.5μ on a steel plate containing 0.03 to 0.5% of one or more of Zr and V, with the remainder being iron and unavoidable impurities.
A highly corrosion-resistant Sn-based plated steel sheet with a Sn-based coating layer of 0.5μ or more thick on top. (3) C; 0.10% or less, SolAl; 0.005 to 0.08%,
A steel plate containing Cr; more than 5% to 20%, with the balance consisting of iron and unavoidable impurities, with a thickness of 0.001 to 20%.
A method for manufacturing highly corrosion-resistant Sn-based plated steel sheets, in which a 1.5μ Ni-based base coating layer is applied, a Sn-based coating layer with a thickness of 0.5μ or more is applied, and then heated and melted. (4) C: 0.10% or less, SolAl: 0.05-0.08%,
Contains Cr; more than 5% to 20%, and further contains Ti, Nb,
A steel plate containing 0.03 to 0.5% of one or more of Zr and V, with the balance being iron and unavoidable impurities, and a Ni-based base coating layer with a thickness of 0.001 to 1.5μ and a thickness of 0.5 or more This is a method for manufacturing highly corrosion-resistant Sn-based plated steel sheets, in which a Sn-based coating layer is applied and then heated and melted. (Function) The details of the present invention will be explained below. Molten steel melted in a melting furnace such as a converter or electric furnace is made into a slab through continuous casting, ingot making, or blooming method, and then hot rolled, cold rolled, and annealed to reduce weight percentage.
So, C: 0.10% or less, acid-soluble Al (SolAl): 0.005~
Steel plate containing 0.08%, more than 5% to 20% Cr, or 0.03 with one or more of Ti, Nb, Zr, and V
A plating base plate containing ~0.5% is produced. More than 5% Cr contained in the plated base plate prevents Fe elution from coating defects and perforation corrosion in the corrosive environment where Sn-based coated steel sheets are used, improving corrosion resistance. Figure 1 shows the situation when a corrosion accelerating liquid is filled in the container.
This is a measurement of the couple corrosion current between the Sn coating layer and the plating original plate, and the anodic corrosion protection ability of Sn becomes significantly higher when the Cr content is 3% or more, especially when the Cr content is 5% or more. In addition, Figure 2 shows the measurement of the couple corrosion current between the Sn coating layer and the plating original plate when the outer surface of the container was immersed in a corrosion accelerating solution.If the Cr content exceeds 5%, the Sn coating layer can be protected from anodic corrosion. becomes. In this way, when a steel plate containing Cr is used as a plating base plate, the sacrificial anticorrosion effect of the Sn coating layer prevents Fe elution, red rust formation, or perforation corrosion from the exposed portion of the base metal of the plating base plate. Ru. Therefore, the Sn-based coated steel sheet of the present invention has significantly improved corrosion resistance and corrosion resistance life. In general, no matter how strict the control is in manufacturing Sn-coated steel sheets, it is difficult to completely eliminate defects in the coating layer such as pinholes and imperfections, and processing defects may occur during use, which may cause damage to the base steel. A covering layer defect is generated. At the same time, there are many situations where the end face of the Sn-coated steel plate is used with the bare metal exposed (for example, the welded part of a welded can, the scored part of a can lid, the end face of a crown, etc.). Therefore, the present invention prevents corrosion of the base metal at coating defects and end faces of the Sn-coated steel sheet by using a steel plate whose Sn coating layer has Cr as an essential component and which can provide sacrificial corrosion protection for the plating base plate. significantly suppresses As a result, an Sn-based coated steel sheet with an extremely long corrosion-resistant life can be manufactured by improving the corrosion resistance of the plated original sheet. To obtain such an effect
As mentioned above, the Cr content is more than 5% to 20%, preferably more than 8% to 12%. Cr content is 5%
Below, the sacrificial corrosion protection effect of the Sn-based coating layer in a corrosive environment cannot be obtained, and if the Cr content exceeds 20%, the uniform coverage and adhesion of the Sn-based coating layer will deteriorate. In particular, steel sheets with a two-phase composition of γ phase and α phase with a Cr content of 11% or less are less likely to cause grain coarsening during steel sheet manufacturing, and when subjected to severe forming processes, they are prone to "hardening" called ridging. ``It has the characteristic that it is difficult to cause this phenomenon. Furthermore, in the present invention, C and acid-soluble Al
It is also necessary to regulate the content of (SolAl). As the C content increases, the amount of chromium carbide precipitated increases, which deteriorates the mechanical properties and corrosion resistance of the steel and at the same time inhibits the uniform coverage of the galvanized layer. Therefore, the C content is 0.10% or less. In the present invention, when Ti, Nb, Zr, V, etc. are added, the C content is preferably 0.02% or less since it inhibits workability and uniform coverage of the coating layer due to precipitation of titanium carbide and the like. Al is the amount of acid-soluble Al (SolAl) remaining in the steel.
If the content is less than 0.005%, it is difficult to prevent the formation of bubbles due to oxidizing gas, which significantly increases the incidence of surface defects in steel, and becomes the starting point for deterioration of the corrosion resistance of steel materials. Also, excess acid-soluble Al exceeding 0.08%
In this method, Al-based oxides are dotted on the steel surface, which can be the starting point for deterioration of corrosion resistance, or cause blemishes, pinholes, etc. on the surface of the coating layer applied to the steel sheet, thereby impairing the integrity of the coating layer. Lose. Therefore, in the present invention, acid-soluble Al is 0.005
~0.08%. In addition to the above-mentioned steel components, the present invention also includes Ti, Nb,
Cr contained by containing 0.03 to 0.50% of one or more of Zr and V and combining with C in steel
This will further improve processability and corrosion resistance. If the content of steel components such as Ti is less than 0.03%, the effect of preventing chromium carbide precipitation and improving workability and corrosion resistance will be small, and if the content exceeds 0.50%, the effect will be saturated. In addition, precipitation of these components tends to harden the material and deteriorate workability. The preferred content is 0.075-0.20%. If a steel plate with the above composition is used as is, it has superior corrosion resistance compared to conventional steel plates that contain unavoidable impurities such as Cr, but it is not suitable for container materials or fuel container materials. In this case, the corrosion resistance cannot necessarily be said to be sufficient. That is, the organic acids in the contents filled in the container,
Iron elution occurs due to moisture containing Cl - ions, and red rust occurs significantly. Furthermore, if the container's outer surface is stored in a corrosive atmosphere containing Cl - ions or in a high-temperature, high-humidity condition, red rust will develop in a relatively short period of time, and a steel plate alone will not have sufficient corrosion resistance. Furthermore, even if the steel plate is directly painted, if it is exposed to a corrosive atmosphere for a long period of time, the corrosive aqueous solution that has penetrated under the coating will generate corrosion products on the steel plate, causing the coating to peel and deteriorating the coating performance. There are drawbacks. Although the plated base plate made of the above-mentioned steel composition has relatively good corrosion resistance against gasoline or alcohol fuel, it may develop red rust or perforate due to moisture contained in the fuel or moisture containing Cl - ions. Prone to corrosion. In addition, in corrosive atmospheres where Cl - ions are present, such as on roads sprayed with road antifreeze salts (agents) or in areas with sea breezes, red rust and pitting corrosion are likely to occur. Therefore, in the present invention, taking into consideration the corrosion resistance, paintability, etc. required for container materials, fuel containers, etc., as described above, for the plating original plate,
Apply Sn coating layer. As described above, in a steel sheet containing more than 5% of Cr, the Sn coating layer provides a sacrificial corrosion protection effect for the plated original sheet. As a result, the steel plate of the present invention has excellent corrosion resistance and corrosion resistance life. Furthermore, in the present invention, a Ni-based base coating layer is provided between the surface of the plating original plate and the Sn-based coating layer. The Ni-based base coating layer forms a dense alloy layer with the upper Sn coating layer to reduce defects within the coating layer and improve corrosion resistance and adhesion of the coating layer to the original plate. This is because the Ni-based metal and the Sn coating layer have extremely excellent diffusion reactivity or wetting reactivity, both at room temperature and in the Sn-based coating treatment by heat melting treatment (melt treatment) or hot-melt plating method. By forming an alloy layer of Ni and Sn in this way, the sacrificial anticorrosion ability of the Sn coating layer is further strengthened. According to the present invention, the method of applying the Ni-based base coating layer and the Sn-based coating layer is not particularly specified, but for example, for the Ni-based base coating layer, the method of applying the plating stock solution, degreasing, pickling, etc. Electrical Ni plating or Ni alloy plating is performed after plating pretreatment, but a normal electroplating method may be used. Composition of Ni plating bath or Ni alloy plating bath,
Although the plating conditions are not particularly specified, the current density is generally 3 to 300 A/dm 2 and the plating temperature is 80° C. or less. Examples of the composition of the Ni plating bath or Ni alloy plating and the plating conditions are as follows. (1) Ni plating composition; NiSO 4・6H 2 O 240g/ NiCl 2・6H 2 O 45g/
H 3 BO 3 40g/ PH; 4.0 Current density: 15A/dm 2 Plating bath temperature: 60℃ (2) Ni-Fe alloy plating composition Bath composition: NiSO 4・6H 2 O 240g/ NiCl 2・6H 2 O 45g/ FeSO 4・7H 2 O 60~80g/ H 3 BO 3 40g/ PH; 1.5 Current density: 5~20A/dm 2 Bath temperature: 50℃ (3) Ni-Sn alloy plating composition Bath composition: SnCl 2・2H 2 O 50g/ NiCl 2・6H 2 O 300g/ NaF 28g/ NH 4 HF 2 35g/ PH; 2.5 Current density: 2.5 to 10A/dm 2 bath temperature: 65℃ Also, a special example of Ni-Fe alloy base coating layer Alternatively, Ni electroplating may be performed using the composition and conditions as described in (1) above, and then heating and acid expansion treatment may be performed at a temperature of 550 to 900° C. in a non-oxidizing atmosphere. In particular, the method of applying a Ni-based base coating layer consisting of a Ni-Fe-based alloy diffusion layer by this heating diffusion treatment is as follows:
It is advantageous in the following points. The Cr-containing steel plate used in the present invention is generally easily oxidized during the annealing process. Therefore, prior to the annealing process, the steel plate as cold rolled (As Cold material) is degreased, pickled, and then Ni-based underplating is applied.
A method of performing heat diffusion treatment (temperature 500 to 900°C) simultaneously with annealing can prevent oxidation of the Cr-containing plating original plate surface during heating by Ni-based base treatment. At the same time, the processing strain of the As Cold material promotes mutual diffusion between the Ni base coating layer and the steel plate.
It is also excellent in that a Ni-Fe based diffusion base coating layer can be easily formed uniformly by short-time heat treatment. Next, the Ni-based base coating layer is made of Ni, Ni-Fe alloy,
Ni-Fe diffused layer, Ni-Sn alloy, Ni-Co alloy,
A Ni--P alloy or the like is used, but the thickness of this coating layer must be regulated to 0.001 to 1.5 microns, preferably 0.05 to 0.5 microns. If the thickness is less than 0.001 μm, the uniformity of coating the steel plate is insufficient, and the effect of reducing coating defects as described above due to the alloying reaction with the Sn coating layer cannot be obtained. Moreover, when the thickness exceeds 1.5μ, the effect is saturated and the relatively hard Ni−
A thick Sn-based alloy layer is generated and becomes the alloy layer during processing.
Cracks that reach the surface of the Sn-based coating are generated and corrosion resistance deteriorates. Furthermore, in the present invention, the steel plate coated with the Ni-based base coating layer is subjected to Sn-based coating treatment or further heat-melting treatment (melt treatment) after Sn coating, either as is or after being subjected to activation treatment such as pickling. In this case, the Sn coating conditions and the heating and melting treatment conditions after the Sn coating treatment are not particularly limited, and may be any conventional conditions. for example,

【表】 フオン酸
で電流密度5〜100A/dm2、浴温30〜60℃で行
なわれる。また加熱溶融処理は、Snメツキ層の
金属光沢の増加による外観向上とNi又はNi合金
系下地被覆層とSnとの合金層をより均一緻密に
生成させ、より一層の耐食性向上を計るために行
なわれるもので、Sn被覆処理後水洗して、その
ままあるいは水溶液フラツクスを塗布して、空気
中、或いは非酸化性雰囲気(例えばN2雰囲気)
中で240〜350℃、好ましくは250〜300℃でSn被
覆層が溶融される。 フラツクスは、浸漬処理又はスプレイ処理によ
り、例えばメツキ浴がフエロスタン浴では、 フエノールスルフオン酸
2〜10g/(硫酸に換算して) SnSO4 2〜10g/ を塗布して溶融される。 尚、Sn系被覆処理に関しては、上記の如き電
気メツキ法以外に、溶融メツキ法、或いは真空蒸
着法等の他の被覆法を採用してもよい。 Sn被覆層の厚さは、0.05μ以上、好ましくは
0.15μ以上設ける必要がある。厚さが0.05μ未満で
は、Sn系被覆層の均一被覆性が不充分であり、
被覆欠陥部におけるSn被覆層のアノード防食に
よるSnの溶出・消費により、その防食機能が比
較的早期に消失されるので、耐食寿命が必ずしも
充分でない。一方厚さの上限は特に規定されるも
のではないが、その用途によつて、例えば容器用
素材では、0.05〜1.5μ、燃料容器用素材では1〜
10μの被覆厚さのものが多く使用される。 又、本発明は、容器用素材として使用される場
合は塗装されて使用されることが多いが、長期間
貯蔵した場合には、Sn被覆層表面に生成する酸
化膜によつて外観が変色する時がある。したがつ
て本発明は、Sn被覆処理或いは加熱溶融処理後
水洗を施して、鋼表面の残査物を除去した後、無
水クロム酸、クロム酸塩(クロム酸アンモン、ク
ロム酸ソーダー等)或いは重クロム酸塩(重クロ
ム酸アンモン、重クロム酸ソーダー等)の一種又
は二種以上の混合水溶液及びこれらにSO4 -2イオ
ン、弗化物等を添加した水溶液を用いて、クロメ
ート処理を行うとよい。クロメート処理の処理浴
または処理条件は、特に限定するものではない
が、例えば以下の様なクロメート浴及びクロメー
ト条件で処理される。 (1) クロメート浴組成;60g/ CrO3−0.3g/
SO4 - 2 電流密度;7.5A/dm2 浴 温;60℃ クロメート被膜量(Cr換算);14.5mg/m2 (2) クロメート浴組成;30g/重クロム酸ソー
ダ 電流密度;10A/dm2 浴 温;45℃ クロメート被膜量;6mg/m2 上記成分組成で製造された本発明は、鋼板(メ
ツキ原板)自体の耐食性向上Niを含有するSn被
覆層との均一緻密な合金層の生成による被覆欠陥
部の減少及びSn系被覆層の犠牲防食能の確保に
より、その耐食性、耐食寿命の向上効果が極めて
著しい。 すなわち、本発明は、被覆欠陥が少なく、又被
覆欠陥部が生成された場合或いは加工等により発
生する疵部等のFe露出部、被覆端面部等に対し
て、Sn被覆層による犠牲防食効果、メツキ原板
自体の腐食速度の減少効果によつて、Fe溶出量
の減少が著しく、Fe露出部の穿孔腐食の危険性
が著しく軽減される等その耐食性向上は著しい。 次に鋼成分の規定において、Ti、Nb等、現在
の工業水準における鋼製造過程で不可避的不純物
として含有されるMn、P、Si、S等が含まれる
事は当然である。同様に、Ni或はNi合金下地メ
ツキ層に対しても、不可避不純物として含有され
るCo、S等についても少ない方が好ましい。 (実施例) 以下、本発明の実施例について説明する。 第1表は鋼中成分組成が相違する各種のCr添
加鋼を用いて、脱脂酸洗の通常電気メツキにおい
て行なわれる前処理を行なつてから、Ni下地被
覆メツキ、Ni−Sn合金下地被覆メツキ、Ni−Fe
合金電気メツキによる下地被覆メツキ、及びNi
系下地メツキ後拡散処理を行なつたNi−Fe系下
地メツキを各所定量行なつた。次いで、Snメツ
キ層、或いは、Snメツキ後加熱溶融処理を行な
い、CrO3−SO4 -2系陰極電解処理によるクロメー
ト処理を行なつた被覆鋼板について、無塗装板及
び塗装板について、飲料缶容器を対象とした耐食
性試験を行なつた結果を表示した。比較材とし
て、Crを添加していないアルミキルド鋼及びリ
ムド鋼を用いたNi系の下地メツキ層を有するSn
メツキ鋼板の耐食性を示した。 Γ評価試験法 被覆・欠陥部を対象とした耐食性 0.25×50×50mmの評価材を用い、端面及び表
面をシールして、評価面に地鉄に達するスクラ
ツチ疵を入れ、(1.5%クエン酸+1.5%NaCl)
水溶液400ml中に、温度50℃で、300時間、酸素
の殆んど存在しないN2ガス通気雰囲気中で浸
漬テストを行ない、 被覆・欠陥部に相当するスクラツチ疵部か
らのFe溶出量及び スクラツチ疵部を評価試験後、断面顕微鏡
により調査してその疵部の穿孔腐食の状況に
より、その耐食性を評価した。尚、評価基準
は以下の基準により、評価を行なつた。
[Table] The test is carried out using fonic acid at a current density of 5 to 100 A/dm 2 and a bath temperature of 30 to 60°C. In addition, the heat melting treatment was performed to improve the appearance by increasing the metallic luster of the Sn plating layer and to form a more uniform and dense alloy layer of the Ni or Ni alloy base coating layer and Sn, thereby further improving corrosion resistance. After Sn coating treatment, it is washed with water and then exposed to air or a non-oxidizing atmosphere (e.g. N2 atmosphere) either as is or with an aqueous solution applied.
Inside, the Sn coating layer is melted at 240-350°C, preferably 250-300°C. The flux can be treated by dipping or spraying, for example, in plating baths and ferrostan baths, phenolsulfonic acid
2 to 10 g/(in terms of sulfuric acid) of SnSO 4 is applied and melted. Regarding the Sn-based coating treatment, in addition to the electroplating method described above, other coating methods such as hot-dip plating method or vacuum evaporation method may be employed. The thickness of the Sn coating layer is 0.05μ or more, preferably
It is necessary to provide 0.15μ or more. If the thickness is less than 0.05μ, the uniform coverage of the Sn-based coating layer is insufficient;
The anti-corrosion function is lost relatively quickly due to the elution and consumption of Sn by the anodic corrosion protection of the Sn coating layer in the defective parts of the coating, so the corrosion resistance life is not necessarily sufficient. On the other hand, the upper limit of the thickness is not particularly defined, but it depends on the application, for example, 0.05 to 1.5μ for container materials, and 1 to 1.5μ for fuel container materials.
A coating thickness of 10μ is often used. Furthermore, when the present invention is used as a container material, it is often coated, but when stored for a long period of time, the appearance changes color due to the oxide film that forms on the surface of the Sn coating layer. There is a time. Therefore, in the present invention, after Sn coating treatment or heat melting treatment, water washing is performed to remove residues on the steel surface, and then chromic anhydride, chromate (ammonium chromate, sodium chromate, etc.) or heavy It is recommended to perform chromate treatment using a mixed aqueous solution of one or more chromates (ammonium dichromate, sodium dichromate, etc.) and an aqueous solution to which SO 4 -2 ions, fluoride, etc. are added. . The treatment bath or treatment conditions for the chromate treatment are not particularly limited, but the treatment may be performed using, for example, the following chromate bath and chromate conditions. (1) Chromate bath composition; 60g/ CrO 3 −0.3g/
SO 4 - 2 current density: 7.5A/dm 2 bath temperature: 60℃ Chromate coating amount (Cr equivalent): 14.5mg/m 2 (2) Chromate bath composition: 30g/sodium dichromate Current density: 10A/dm 2 Bath temperature: 45℃ Amount of chromate coating: 6mg/m 2 The present invention manufactured with the above component composition improves the corrosion resistance of the steel sheet (metsuki original sheet) itself by forming a uniform and dense alloy layer with the Sn coating layer containing Ni. By reducing the number of coating defects and ensuring the sacrificial anticorrosion ability of the Sn-based coating layer, the effect of improving corrosion resistance and corrosion resistance life is extremely significant. In other words, the present invention has a sacrificial anticorrosion effect by the Sn coating layer on Fe exposed parts such as flaws, coating end faces, etc., where coating defects are generated or due to processing, etc. Due to the effect of reducing the corrosion rate of the plating original plate itself, the amount of Fe elution is significantly reduced, and the risk of perforation corrosion in exposed Fe parts is significantly reduced, resulting in a remarkable improvement in corrosion resistance. Next, in the specification of steel components, it is natural that Ti, Nb, etc., and Mn, P, Si, S, etc., which are contained as unavoidable impurities in the steel manufacturing process at the current industrial level, are included. Similarly, it is preferable that the amount of Co, S, etc. contained as unavoidable impurities in the Ni or Ni alloy base plating layer is smaller. (Example) Examples of the present invention will be described below. Table 1 shows the results of various Cr-added steels with different steel compositions, which were subjected to pretreatment that is carried out in normal electroplating for degreasing and pickling, followed by plating with a Ni base coating and plating with a Ni-Sn alloy base coating. , Ni−Fe
Base coating plating by alloy electroplating and Ni
A predetermined amount of Ni--Fe base plating was performed using diffusion treatment after plating the base plating. Next, for coated steel sheets that have been subjected to Sn plating layer or heat melting treatment after Sn plating and chromate treatment by CrO 3 - SO 4 -2 cathodic electrolytic treatment, unpainted sheets and painted sheets, beverage can containers. The results of a corrosion resistance test are shown below. As comparison materials, Sn with a Ni-based base plating layer using aluminum-killed steel and rimmed steel without the addition of Cr.
This shows the corrosion resistance of plated steel sheets. Γ evaluation test method Corrosion resistance targeting coating/defects Using a 0.25 x 50 x 50 mm evaluation material, seal the end face and surface, make scratches that reach the base steel on the evaluation surface, and add (1.5% citric acid + 1 .5% NaCl)
An immersion test was conducted in 400 ml of an aqueous solution at a temperature of 50°C for 300 hours in a N2 gas atmosphere with almost no oxygen. After the evaluation test, the parts were examined using a cross-sectional microscope and the corrosion resistance was evaluated based on the state of perforation corrosion in the flaws. The evaluation was performed based on the following criteria.

【表】 被覆・欠陥部を対象とした耐食性 と同一評価材を用い、地鉄に達するスクラ
ツチ疵を入れた後、1.5%クエン酸水溶液400ml
中に、温度50℃で、480時間、酸素の殆んど存
在しないN2ガス通気雰囲気中で浸漬テストを
行ない、Fe溶出量の測定及びスクラツチ
疵部からの穿孔腐食の状況を調査し、その耐食
性の評価を行なつた。尚、評価基準はの方法
によつた。 端面錆の評価 板厚0.24mmの評価材を剪断した後の端面に
ついて、(−5℃の冷凍試験60min)→高
温・高湿(温度49℃、湿度≧98%、60min)
→室内放置(30℃で180min)を1サイクル
として、剪断面に錆が発生するサイクル数の
観察により、その評価を行なつた。尚、評価
基準は以下の方法により行なつた。 ◎…錆の発生が 10サイクル以上で発生 〇… 〃 8〜9 〃 △… 〃 5〜7 〃 ×… 〃 4サイクル以下で発生 板厚0.25mmの評価材を用い、カツプ絞りに
より44φ×8mm深さの加工評価材を作成、剪
断面が下部に位置するようにして、屋外曝露
試験により、その端面からの赤錆発生状況を
観察して、その耐食性の評価を行なつた。
尚、評価基準は以下の方法によつた。 ◎…錆の発生が7日以上の曝露試験で発生 〇… 〃 5日以上〜6日以内の曝露試
験で発生 △…錆の発生が3日以上〜4日以内の曝露試
験で発生 ×…錆の発生が2日以内の曝露試験で発生 塗膜欠陥部を対象とした性能評価 塗膜性能評価 評価材に対して、エポキシフエノール系塗
料を5μ厚さ塗装後に、地鉄に達するスクラ
ツチ疵を入れ、(1.5%クエン酸+1.5%NaCl)
水溶液中に、27℃で酸素の殆んど存在しない
CO2通気雰囲気中で96時間浸漬テスト後に、
乾燥して直ちにセロフアンテープ剥離を行な
つて、スクラツチ部を中心とした塗膜欠陥部
からの塗膜剥離状況の調査により、容器内面
を対象とした経時後の塗膜性能の評価を行な
つた。尚評価基準は以下の方法によつた。 ◎…スクラツチ部での塗膜剥離が殆んど認め
られない。 〇…スクラツチ部での塗膜剥離が僅かに認め
られる。 △…スクラツチ部での塗膜剥離が明瞭に認め
られる ×…スクラツチ部での塗膜剥離が著しく認め
られる。 塗膜欠陥部の耐食性 上記の評価材について、CO2通気雰囲気
中で、55℃で200時間浸漬テスト後に、スク
ラツチ疵部の穿孔腐食深さの測定により、そ
の耐食性能の評価を行なつた。尚、評価基準
は以下の方法によつた。
[Table] Corrosion resistance targeting coating/defects Using the same evaluation material, after making scratches that reach the base steel, 400ml of 1.5% citric acid aqueous solution was applied.
During the test, an immersion test was conducted at a temperature of 50°C for 480 hours in an N2 gas aeration atmosphere with almost no oxygen, and the amount of Fe eluted was measured and the state of perforation corrosion from the scratch area was investigated. Corrosion resistance was evaluated. The evaluation criteria were based on the following method. Evaluation of end surface rust After shearing the evaluation material with a thickness of 0.24 mm, the end surface was subjected to (-5℃ freezing test 60 min) → high temperature and high humidity (temperature 49℃, humidity ≧98%, 60 min)
→Evaluation was performed by observing the number of cycles at which rust occurs on the sheared surface, with one cycle being left indoors (180 minutes at 30°C). The evaluation criteria were as follows. ◎…Rust occurs after 10 cycles or more 〇… 〃 8~9 〃 △… 〃 5~7 〃 ×… 〃 Occurs after 4 cycles or less Using evaluation material with a plate thickness of 0.25 mm, 44φ x 8 mm deep by cup drawing A material for evaluation of processing was prepared, the sheared surface was placed at the bottom, and the corrosion resistance was evaluated by observing the occurrence of red rust from the end surface in an outdoor exposure test.
The evaluation criteria were based on the following method. ◎...Rust occurs in an exposure test of 7 days or more. 〃...Rust occurs in an exposure test of 5 days or more and within 6 days. △...Rust occurs in an exposure test of 3 days or more and within 4 days. ×...Rust occurs. Occurred in an exposure test within 2 days Performance evaluation targeting paint film defects Paint film performance evaluation After coating the evaluation material with epoxy phenol paint to a thickness of 5 μm, scratches reaching the base metal were added. , (1.5% citric acid + 1.5% NaCl)
Almost no oxygen exists in the aqueous solution at 27℃
After 96 hours immersion test in CO2 vented atmosphere,
Immediately after drying, peel off the cellophane tape and investigate the peeling status of the paint film from the defective parts of the paint film, mainly the scratches, to evaluate the performance of the paint film after time on the inner surface of the container. Ta. The evaluation criteria were based on the following method. ◎...Almost no peeling of the paint film was observed at the scratched area. 〇…Slight peeling of the paint film is observed at the scratched area. △...Paint peeling is clearly observed at the scratch area. ×...Paint film peeling is significantly observed at the scratch area. Corrosion Resistance of Paint Film Defects The corrosion resistance of the above evaluation materials was evaluated by measuring the depth of perforation of the scratches after a 200-hour immersion test at 55°C in a CO 2 aerated atmosphere. The evaluation criteria were based on the following method.

【表】 缶蓋材のスコア加工部を対象とした性能評価
板厚0.21mmの評価材を用いて、スコア残厚75μ
のイージーオープン缶蓋用加工を行なつて、内
面相当側をシールして、酸素存在雰囲気下で
(1.5%クエン酸+1.5%NaCl)水溶液中で55℃
96時間浸漬試験後の性能評価を行なつた。 塗膜性能評価 上記評価試験後、乾燥して直ちにセロフア
ンテープ剥離を行なつて、その塗膜剥離状況
より、容器外面を対象とした促進試験による
経時後の塗膜性能の評価を行なつた。尚、評
価基準は以下の方法によつた。
[Table] Performance evaluation for the score processing part of can lid material Using evaluation material with a board thickness of 0.21 mm, the score remaining thickness was 75μ
After processing for easy-open can lids, sealing the inner side, and heating in an aqueous solution (1.5% citric acid + 1.5% NaCl) in an oxygen atmosphere at 55°C.
Performance evaluation was performed after a 96-hour immersion test. Paint film performance evaluation After the above evaluation test, cellophane tape was removed immediately after drying, and based on the peeling status, the paint film performance after time was evaluated by an accelerated test on the outer surface of the container. . The evaluation criteria were based on the following method.

【表】 穿孔腐食性評価 上記評価試験後に、スコア加工部の穿孔腐
食状況を断面顕微鏡により調査して、その耐
食性を調査した。尚、評価基準は以下の方法
によつた。
[Table] Evaluation of perforation corrosion After the above evaluation test, the state of perforation corrosion in the scored portion was investigated using a cross-sectional microscope to investigate its corrosion resistance. The evaluation criteria were based on the following method.

【表】【table】

【表】 成形加工性の評価 板厚0.28mmの評価材を用い、150mmφのブラ
ンクサイズから深さ60mmの円筒絞りを行ない、
その割れ発生状況及び外面の被覆層のカジリ発
生状況を検討し、各評価材の相対比較を行なつ
て、その成形加工性を評価した。尚、評価基準
は以下の方法によつた。 ◎…非常に良好 〇…良好 △…劣る ×…非常に劣る
[Table] Evaluation of formability Using the evaluation material with a plate thickness of 0.28 mm, a cylindrical drawing to a depth of 60 mm was performed from a blank size of 150 mmφ.
The occurrence of cracks and the occurrence of galling in the outer coating layer were examined, and relative comparisons were made between the evaluation materials to evaluate their moldability. The evaluation criteria were based on the following method. ◎…Very good 〇…Good △…Poor ×…Very poor

【表】【table】

【表】【table】

【表】 実施例 2 第2表にCr含有量を中心に変化させた場合の
Cr添加鋼を用いて、脱脂、酸洗の通常電気メツ
キにおいて行なわれる前処理を行なつてから、
Ni系の下地メツキを行ない、次いでSnメツキ層
或いはSnメツキ後の加熱溶融処理を行なつた本
発明について、アルコールを含有する燃料を対象
とした耐食性試験を行なつた結果を第3表に示
す。比較材として、Cr等を添加していないアル
ミキルド鋼及びTiキルド鋼を用いたSn系メツキ
鋼板の耐食性を示した。 Γ評価試験 外面を対象とした耐食性 (A) 塩水噴霧試験による耐食性 塩水噴霧試験480時間後の燃料容器外面を対
象とした耐食性を評価した。評価材は100×300
mmの試験片に地鉄に達するまでのスクラツチ疵
をクロスカツト状に入れたものを用いた。 評価基準は100×300mmの試験片サイズに対し
て、10×10mmサイズのゴバン目300個中に発生
する赤錆の発生数を100分率で表示した。 ◎…赤錆発生率 5%未満 〇… 〃 5%以上〜25%未満 △… 〃 25%以上〜50%未満 ×… 〃 50%超 (B) C.C.T試験による耐食性 サイクルコロージヨン試験(C.C.T試験)
塩水噴霧(5%NaCl 35℃×4時間)→乾燥
(70℃ 湿度60% 2時間)→湿潤(49℃
湿度98% 2時間)→冷却(−20℃×2時
間)→塩水噴霧 〜が1サイクルのC.C.T試験60サイクル
を行ない、0.8mmの板厚の試験片を用いて赤錆
発生・腐食部の板厚減少量の測定により耐食性
評価を行なつた。 ◎…板厚減少量 0.25mm未満 〇… 〃 0.25以上〜0.45mm未満 △… 〃 0.45mm以上〜0.75mm未満 ×… 〃 0.75mm以上 (C) 0.8×100×150mmの試験片を用い、直径1〜
2mmのアランダムを圧力1Kg/cm2で10秒間、試
験片の被覆層面に1cm2当り1.5gを衝突、チツ
ピングさせてから、上記C.C.T試験を45サイク
ル実施し、赤錆発生部の板厚減少量を測定し
て、上記(B)の評価基準により評価を行なつた。 燃料容器内面対象試験 ブランクサイズ0.8×150mmφの試験片より、
ポンチ直径75mmφ、しわ押え力1Tで75mmφ×
高さ40mmの円筒容器を作成、100c.c.の以下のア
ルコール燃料を対象とした腐食促進溶液を充
填、密封して評価試験を行なつた。 (D) ガソホール対象試験 (20%エタノール+0.03%さく酸+0.15%の
1%NaCl水+残ガソリン)溶液を用いて、3
ケ月間評価試験実施。 (E) ガソホール対象試験 (70%メタノール+10%イソプロピルアルコ
ール+0.03%ギ酸+0.3%の1.2%NaCl水+残ガ
ソリン)溶液を用いて、3ケ月間評価試験。 (F) 100%アルコール対象試験 (99%メタノール+0.01%ギ酸+0.99%の0.5
%NaCl水溶液)からなる溶液を用いて3ケ月
間評価試験を各々実施し、以下の評価基準によ
りその評価を行なつた。
[Table] Example 2 Table 2 shows the results when mainly changing the Cr content.
Using Cr-added steel, we perform pre-treatments such as degreasing and pickling that are normally carried out in electroplating, and then
Table 3 shows the results of a corrosion resistance test on alcohol-containing fuel for the present invention, in which a Ni-based base plating was performed, followed by a Sn plating layer or a heat melting treatment after the Sn plating. . As comparison materials, we showed the corrosion resistance of Sn-based plated steel sheets using aluminum killed steel and Ti killed steel without the addition of Cr or the like. Corrosion resistance of the outer surface of the Γ evaluation test (A) Corrosion resistance of the salt spray test Corrosion resistance of the outer surface of the fuel container after 480 hours of the salt spray test was evaluated. Evaluation material is 100×300
mm test specimens with cross-cut scratches reaching the base metal were used. The evaluation standard was the number of red rust occurrences in 300 gobans of 10 x 10 mm size for a test piece size of 100 x 300 mm, expressed as a percentage of 100. ◎... Red rust occurrence rate less than 5% 〃... 〃 5% or more and less than 25% △... 〃 25% or more and less than 50% ×... 〃 More than 50% (B) Corrosion resistance by CCT test Cycle corrosion test (CCT test)
Salt water spray (5% NaCl 35℃ x 4 hours) → Dry (70℃, humidity 60% 2 hours) → Wet (49℃)
Humidity 98% 2 hours) → Cooling (-20℃ x 2 hours) → Salt spray Corrosion resistance was evaluated by measuring the amount of decrease. ◎…Plate thickness reduction less than 0.25mm 〃… 〃 0.25 or more to less than 0.45mm △… 〃 0.45mm or more to less than 0.75mm ×… 〃 0.75mm or more (C) Using a 0.8 x 100 x 150 mm test piece, diameter 1 ~
After colliding and chipping a 2 mm Alundum against the surface of the coating layer of the test piece at a pressure of 1 Kg/cm 2 for 10 seconds at a rate of 1.5 g per 1 cm 2 , the above CCT test was conducted for 45 cycles to determine the amount of thickness reduction in the area where red rust occurred. was measured and evaluated according to the evaluation criteria in (B) above. Test on fuel container inner surface From a test piece with a blank size of 0.8 x 150 mmφ,
Punch diameter 75mmφ, wrinkle holding force 1T 75mmφ×
A cylindrical container with a height of 40 mm was created, filled with 100 c.c. of a corrosion accelerating solution for the following alcohol fuels, sealed and evaluated. (D) Gasohol target test (20% ethanol + 0.03% succinic acid + 0.15% 1% NaCl water + residual gasoline) solution, 3
Monthly evaluation test conducted. (E) Test on gasohol (70% methanol + 10% isopropyl alcohol + 0.03% formic acid + 0.3% 1.2% NaCl water + residual gasoline) A 3-month evaluation test using a solution. (F) 100% alcohol test (99% methanol + 0.01% formic acid + 0.5% of 0.99%
% NaCl aqueous solution) was used to carry out evaluation tests for three months, and the evaluations were made according to the following evaluation criteria.

【表】 多数発生
(G) 燃料容器対象・シーム溶接部対象試験 燃料容器内面に相当する内面対象被覆層同志
を重ね合わせて、0.8mmの試験材を用い、4mm
巾の台形電極で加圧力400Kg・、溶接速度2.5
m/min、溶接時間2−2でシーム溶接を行な
い、第3図の様な試験片を作成し、次記に示す
溶液を充填して、上部にプラスチツク製の蓋を
して、3ケ月後の外観観察により評価を行なつ
た。 第3図中、11は溶接部、2は試験液を示す。 Γガソホール対象試験液 (80%メタノール+5%イソプロピルアルコー
ル+0.01%ギ酸+0.1%のNaCl水0.3%+残ガソリ
ン)溶液を用いて3ケ月間評価試験 Γ評価基準 ◎…下面及び側面の赤錆発生率 5%未満 〇… 〃 5〜10%未満 △… 〃 10〜20%未満 ×… 〃 20%以上 (H) ガソリン対象試験 (70%ガソリン+30%の1%NaCl水)系ガ
ソリン対象促進溶液を用いて、3ケ月間評価試
験・実施。尚、評価試験は前頁(D)〜(F)の試験に
対する評価基準を用いた。 (I) 半田性 燃料容器の配管に使用されるSn−Zn合金
(Sn≒80〜90%)メツキ鋼板と本評価材の外面
の半田接合性を評価するため、ZnCl2−HCl系
フラツクス及び60%Sn−40%Pb半田を用いて、
Sn−Zn合金メツキ面と被覆層面間の半田昇り
性と半田接合部の強度を測定して、総合的に評
価材、比較材の相対評価を行なつた。 ◎…極めて良好 〇…比較的良好 △…やや劣る ×…非常に劣る (J) 成形加工性 ブランクサイズ0.8×500×500mm、潤滑油塗
布後、シワ押え圧力30Tの条件で150×150mm角
のポンチで角筒絞りを行ない、絞り深さの限界
と角筒絞り材外面のカジリの発生状況より評価
した。 ◎…被覆層のカジリによる損傷なく、成形加工
性極めて良好 〇…被覆層のカジリによる損傷なく、また成形
加工性可成り良好 △…加工度によつては被覆層のカジリによる損
傷若干発生 ×…成形加工性極めて劣る
[Table] Many occurrences
(G) Test for fuel containers and seam welds The inner surface coating layers corresponding to the inner surface of the fuel container are overlapped, and a 0.8 mm test material is used, and a 4 mm
Pressure force 400Kg with wide trapezoidal electrode, welding speed 2.5
Seam welding was performed at a welding time of 2-2∞ m/min to create a test piece as shown in Figure 3.The test piece was filled with the solution shown below, and a plastic lid was placed on top for 3 months. Evaluation was made by observing the appearance afterwards. In FIG. 3, 11 indicates a welded portion, and 2 indicates a test liquid. Γ Gasohol target test solution (80% methanol + 5% isopropyl alcohol + 0.01% formic acid + 0.1% NaCl water 0.3% + residual gasoline) 3-month evaluation test Γ Evaluation criteria ◎...Red rust on the bottom and sides Occurrence rate Less than 5%〇…〃 5~less than 10%△…〃 10~less than 20%×… 〃20% or more (H) Test for gasoline (70% gasoline + 30% of 1% NaCl water) Accelerator solution for gasoline Evaluation test and implementation for 3 months using. The evaluation test used the evaluation criteria for the tests (D) to (F) on the previous page. (I) Solderability In order to evaluate the solderability of the Sn-Zn alloy (Sn≒80-90%) plated steel plate used for fuel container piping and the outer surface of this evaluation material, ZnCl 2 -HCl flux and 60 Using %Sn−40%Pb solder,
The solder climbing property between the Sn-Zn alloy plating surface and the coating layer surface and the strength of the solder joint were measured, and a relative evaluation of the evaluation materials and comparative materials was performed comprehensively. ◎...Very good 〇...Comparatively good △...Slightly inferior ×...Very poor (J) Formability Blank size 0.8 x 500 x 500 mm, after applying lubricating oil, 150 x 150 mm square punch under the conditions of wrinkle pressing pressure 30T Square tube drawing was carried out using the method, and evaluation was made based on the limit of the drawing depth and the occurrence of galling on the outer surface of the square tube drawing material. ◎...No damage due to galling of the coating layer, very good moldability 〇...No damage due to galling of the coating layer, and fairly good moldability △...Depending on the degree of processing, some damage may occur due to galling of the coating layer ×... Extremely poor moldability

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Sn被覆層とCr含有鋼板のCr量との
(1.5%クエン酸+1.5%NaCl)系水溶液(容器内
面を対象とした促進溶液)に対するカツプル腐食
電流の測定結果を示す図、第2図はSn被覆層と
Cr含有鋼板にNi−Fe系拡散被覆層(Cr含有鋼板
に0.11μのNi下地メツキ後780℃で60秒加熱処理)
を設けた鋼板のCr含有量の1%NaCl+0.3%
Na2SO4水溶液(外面腐食を対象とした促進溶
液)に対するカツプル腐食電流の測定結果を示す
図、第3図は、燃料容器対象・シーム溶接部対象
試験における試験片の説明図である。 1:溶接部、2:試験液。
Figure 1 shows the measurement results of the coupling corrosion current between the Sn coating layer and the Cr content of the Cr-containing steel sheet in a (1.5% citric acid + 1.5% NaCl) aqueous solution (promoting solution targeted at the inner surface of the container). , Figure 2 shows the Sn coating layer and
Ni-Fe diffusion coating layer on Cr-containing steel sheet (heat treated at 780℃ for 60 seconds after 0.11μ Ni underplating on Cr-containing steel sheet)
1% NaCl + 0.3% of the Cr content of the steel plate with
Figure 3 is a diagram showing the measurement results of couple corrosion current for Na 2 SO 4 aqueous solution (promoting solution for external corrosion), and is an explanatory diagram of the test piece in the test for fuel containers and seam welds. 1: Welded part, 2: Test liquid.

Claims (1)

【特許請求の範囲】 1 C;0.10%以下、 SolAl;0.005〜0.08%、 Cr;5%超〜20%、 を含有し残部が鉄および不可避的不純物からなる
鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、そ
の上に厚さ0.05μ以上のSn系被覆層を施した事を
特徴とする高耐食性Sn系メツキ鋼板。 2 C;0.10%以下、 SolAl;0.005〜0.08%、 Cr;5%超〜20%を含有し、 さらにTi、Nb、Zr、Vの1種又は2種以上で
0.03〜0.5%、 を含有して残部が鉄および不可避的不純物からな
る鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、
その上に厚さ0.05μ以上のSn系被覆層を施した事
を特徴とする高耐食性Sn系メツキ鋼板。 3 C;0.10%以下、 SolAl;0.005〜0.08%、 Cr;5%超〜20%、 を含有し、残部が鉄および不可避的不純物からな
る鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、
その上に厚さ0.05μ以上のSn系被覆層を施した後、
加熱溶融処理する事を特徴とする高耐食性Sn系
メツキ鋼板の製造法。 4 C;0.10%以下、 SolAl;0.05〜0.08%、 Cr;5%超〜20%を含有し、 さらにTi、Nb、Zr、Vの1種又は2種以上で
0.03〜0.5%、 を含有し、残部が鉄および不可避的不純物からな
る鋼板に、厚さ0.001〜1.5μのNi系下地被覆層、
その上に厚さ0.05μ以上のSn系被覆層を施した後、
加熱溶融処理する事を特徴とする高耐食性Sn系
メツキ鋼板の製造法。
[Claims] 1 A steel plate containing C: 0.10% or less, SolAl: 0.005 to 0.08%, Cr: more than 5% to 20%, with the balance being iron and unavoidable impurities, and having a thickness of 0.001 to 1.5μ. A highly corrosion-resistant Sn-based plated steel sheet characterized by having a Ni-based base coating layer and a Sn-based coating layer with a thickness of 0.05μ or more applied thereon. 2 Contains C: 0.10% or less, SolAl: 0.005 to 0.08%, Cr: more than 5% to 20%, and further contains one or more of Ti, Nb, Zr, and V.
0.03 to 0.5%, with the remainder being iron and unavoidable impurities, a Ni-based base coating layer with a thickness of 0.001 to 1.5μ,
A highly corrosion-resistant Sn-based plated steel sheet, which is characterized by having a Sn-based coating layer with a thickness of 0.05μ or more applied thereon. 3 A steel plate containing C: 0.10% or less, SolAl: 0.005 to 0.08%, Cr: more than 5% to 20%, with the balance consisting of iron and unavoidable impurities, and a Ni-based base coating with a thickness of 0.001 to 1.5μ. layer,
After applying a Sn-based coating layer with a thickness of 0.05μ or more on top of it,
A method for manufacturing highly corrosion-resistant Sn-based plated steel sheets, which is characterized by heating and melting treatment. 4 Contains C: 0.10% or less, SolAl: 0.05 to 0.08%, Cr: more than 5% to 20%, and further contains one or more of Ti, Nb, Zr, and V.
0.03 to 0.5%, with the remainder being iron and unavoidable impurities, a Ni-based base coating layer with a thickness of 0.001 to 1.5μ,
After applying a Sn-based coating layer with a thickness of 0.05μ or more on top of it,
A method for manufacturing highly corrosion-resistant Sn-based plated steel sheets, which is characterized by heating and melting treatment.
JP16259285A 1985-07-23 1985-07-23 Highly corrosion-resistant sn-plated steel sheet and its production Granted JPS6223997A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16259285A JPS6223997A (en) 1985-07-23 1985-07-23 Highly corrosion-resistant sn-plated steel sheet and its production
AU51449/85A AU565129B2 (en) 1985-07-23 1985-12-18 Steel sheet with ni and sn coatings for improved corrosion protection
EP85116264A EP0210302B1 (en) 1985-07-23 1985-12-19 Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same
DE8585116264T DE3584634D1 (en) 1985-07-23 1985-12-19 TINNED STEEL SHEET WITH HIGH CORROSION RESISTANCE AND METHOD FOR THE PRODUCTION THEREOF.
CA000498277A CA1288646C (en) 1985-07-23 1985-12-20 Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same
US06/811,761 US4731301A (en) 1985-07-23 1985-12-20 Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16259285A JPS6223997A (en) 1985-07-23 1985-07-23 Highly corrosion-resistant sn-plated steel sheet and its production

Publications (2)

Publication Number Publication Date
JPS6223997A JPS6223997A (en) 1987-01-31
JPH0241593B2 true JPH0241593B2 (en) 1990-09-18

Family

ID=15757517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16259285A Granted JPS6223997A (en) 1985-07-23 1985-07-23 Highly corrosion-resistant sn-plated steel sheet and its production

Country Status (1)

Country Link
JP (1) JPS6223997A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857666B2 (en) * 2005-08-31 2012-01-18 日本精工株式会社 Rolling bearing unit for wheel support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605884A (en) * 1983-03-14 1985-01-12 インダクトアロイ・コ−ポレ−シヨン Method and device for forming metal layer inside pipe material
JPS616293A (en) * 1984-06-21 1986-01-11 Nippon Steel Corp Production of sn-plated steel sheet having high corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605884A (en) * 1983-03-14 1985-01-12 インダクトアロイ・コ−ポレ−シヨン Method and device for forming metal layer inside pipe material
JPS616293A (en) * 1984-06-21 1986-01-11 Nippon Steel Corp Production of sn-plated steel sheet having high corrosion resistance

Also Published As

Publication number Publication date
JPS6223997A (en) 1987-01-31

Similar Documents

Publication Publication Date Title
EP0210302B1 (en) Tinned steel sheet having a high degree of corrosion resistance and a method of producing the same
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JPS58117866A (en) Producing of steel plate coated with dissimilar metals on double sides
JP2001355051A (en) HOT DIP Zn-Sn PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE
JPH0140118B2 (en)
JPS6160896A (en) Steel plate for vessel for alcohol or alcohol-containing fuel
JP3126622B2 (en) Rustproof steel plate for fuel tank
JPH0241594B2 (en)
JPH0241593B2 (en)
JP2002038250A (en) HOT-DIP PLATED STEEL-SHEET WITH Sn-Zn SUPERIOR IN CORROSION RESISTANCE
JPS63186860A (en) Manufacture of surface-treated steel sheet excellent in rust resistance and weldability
JPS6217199A (en) Sn coated steel sheet for vessel having superior paintability and corrosion resistance and its manufacture
JPS6123786A (en) Manufacture of steel sheet for vessel having superior corrosion resistance
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPS61270389A (en) Steel sheet for fuel vessel
JPS642195B2 (en)
JPS61270391A (en) Steel sheet for fuel vessel
JPS61270390A (en) Steel sheet for fuel vessel
JPH0520514B2 (en)
JPH0536516B2 (en)
JPH0567710B2 (en)
JPS61243192A (en) Surface-treated steel sheet for fuel vessel
JPS6213594A (en) Steel sheet for sn-coated vessel having excellent property to be coated and corrosion resistance and its production
JPS61270388A (en) Steel sheet for fuel vessel
JPS61270392A (en) Steel plate for fuel container

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees