JPH0120058B2 - - Google Patents

Info

Publication number
JPH0120058B2
JPH0120058B2 JP14563282A JP14563282A JPH0120058B2 JP H0120058 B2 JPH0120058 B2 JP H0120058B2 JP 14563282 A JP14563282 A JP 14563282A JP 14563282 A JP14563282 A JP 14563282A JP H0120058 B2 JPH0120058 B2 JP H0120058B2
Authority
JP
Japan
Prior art keywords
zinc
manganese
powder
coating
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14563282A
Other languages
Japanese (ja)
Other versions
JPS5935934A (en
Inventor
Takenori Deguchi
Yasuharu Maeda
Masatoshi Yokoyama
Hidetoshi Yamabe
Masaru Suzuki
Koji Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP14563282A priority Critical patent/JPS5935934A/en
Publication of JPS5935934A publication Critical patent/JPS5935934A/en
Publication of JPH0120058B2 publication Critical patent/JPH0120058B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はマンガン粉末またはこれとともに防錆
顔料を添加することにより防食性、耐パウダリン
グ性および溶接作業性を改善したジンクリツチ系
の溶接性塗装鋼板に関する。 近年自動車車体の下廻りやドアあるいはこれら
の部材のように著しい腐食環境にさらされる部材
の素材として高防食性表面処理鋼板が要求されて
いる。しかし自動車部材の場合一般に組立に電気
溶接を伴うので、表面処理鋼板としては電気溶接
が可能であること、および防食処理面は部材の裏
面のみに必要とし、表面は冷延鋼板系の外観塗装
をするので、片面は冷延鋼板であることなどが要
求されている。 従来このような表面処理鋼板としては亜鉛系電
気めつき鋼板または溶融亜鉛めつき鋼板などのめ
つき鋼板、あるいはジンクリツチ系塗装鋼板など
の塗装鋼板が使用されていたが、いずれも一長一
短があり、自動車メーカーの要求を満足させるに
は至つていない。 例えば亜鉛系電気めつき鋼板の場合、従来Zn
−Ni系やZn−Fe系合金をめつきしたものやZn層
とNi層とを複層めつきしたものが使用さていた
が、これらの鋼板はプレス加工時めつき層の剥離
やパウダリングの発生が非常に少く、かつスポツ
ト溶接における連続打点可能数がチツプのドレツ
シングなしで5000点にも及ぶなど加工性、溶接性
においては優れている。しかし電気めつき鋼板の
場合一般にピンホールの発生がさけられないの
で、ピンホールを起点とする錆の発生の問題があ
り、かつ電着塗装しても塩水噴霧試験においてふ
くれが発生しやすく、その防食性はジンクリツチ
系塗装鋼板に比べると劣つている。また電着塗膜
の密着性もジンクリツチ系塗装鋼板には及ばな
い。 塗融亜鉛めつき鋼板の場合も同様で、従来Zn
−Fe系やZn−Al系のものが使用されていたが、
この長短は前記亜鉛系電気めつき鋼板と類似して
いた。しかし本鋼板の最大の難点は確実な片面め
つき法がまだ開発されていないことである。この
ため従来片面めつき品の製造はめつき後片面のめ
つき層を機械的に削除することにより行つていた
ため、その製造コストは著しく高価なものとなつ
ていた。 一方ジンクロメタル(商品名)やクロム含有高
耐食性下塗層の上にエポキシ系ジンクリツチ塗料
を塗布した塗装鋼板に代表されるジンクリツチ系
塗装鋼板の場合既存のストリツプ塗装ラインで容
易に片面塗装品が生産でき、亜鉛系電気めつき鋼
板や溶融亜鉛めつき鋼板より優れた防食性を発揮
する。しかし防食性に関してはまだ不十分で鋼素
地に対する著しいガルバニツク作用により鋼素地
との界面で塗膜下腐食を起し、これがブリスター
となつて現れたり、あるいはプレス加工時にパウ
ダリング現象を呈して、そのパウダーがピツクア
ツプされ製品に傷やへこみを生じさせたり、さら
にはスポツト溶接の際チツプ(銅製)と亜鉛粉末
とが合金化して亜鉛粉末がチツプにピツクアツプ
され、連続打点数が劣つたりしていた。 本発明は近年表面処理鋼板として防食性能が穴
あきまで10年以上のものが要求されている点に鑑
み、前記表面処理鋼板のうちでとくに防食性に優
れたジンクリツチ系塗装鋼板の防食性、耐パウダ
リング性および溶接作業性を改善した溶接性塗装
鋼板を提供するものである。 本発明者らは従来のジンクリツチ系塗装鋼板の
上記欠点を改善すべく種々検討を行つた結果、ジ
ンクリツチ塗膜中にマンガン粉末、またはこれと
ともに防錆顔料を添加して亜鉛−マンガンリツチ
塗膜にすれば改善できることを知見した。 本発明はかかる知見に基いてなされたもので、
その要旨とするところは表面を粗化した鋼板上に
クロメート系皮膜を介して亜鉛粉末とマンガン粉
末とを60重量%以上含有する亜鉛−マンガンリツ
チ塗膜が形成されていることを特徴とする溶接性
塗装鋼板にある。 以下本発明を詳細に説明する。 第1図、第2図は本発明の塗装鋼板断面を模式
的に示したもので、1は鋼板、2はこの鋼板1上
に形成されたクロメート系皮膜である。また3は
この皮膜2上に形成された亜鉛−マンガンリツチ
塗膜で、樹脂塗膜中に亜鉛粉末4とマンガン粉末
5とが分散されている。これらの鋼板1、クロメ
ート系皮膜2、および亜鉛−マンガンリツチ塗膜
3は以下のように構成されている。 まず鋼板1であるが、この鋼板1としては通常
表面を粗化した普通鋼冷延鋼板が用いられる。こ
こで鋼板1の表面を粗化させるのは亜鉛−マンガ
ンリツチ塗膜3の密着性を向上させるという一般
的な目的のほか、クロメート系皮膜の形成に塗布
方式の処理液を用いた場合に表面粗度の凹部にお
いてクロメート系皮膜の付着量が多くなるように
して全体の皮膜付着量を増大させ、防食性の向上
をはかるとともに、電気溶接の際溶接機チツプと
凸部との距離が短くなるようにして通電性を向上
させるためである。 この鋼板1の表面粗化は平均表面粗度Rzで4
〜20μが適当である。これは4μ未満であると亜鉛
−マンガンリツチ塗膜3の密着性が低下し、加工
時にパウダリングや剥離が生じやすくなり、逆に
20μを超えると塗膜面に肌荒れが生じ、防食性や
外観を低下させるからである。このような表面の
粗化は従来一般的に行われている方法、例えばダ
ルスキンバスやシヨツトブラストなどで形成した
ものでよい。 クロメート系皮膜2は反応型クロメート処理
(例えばクロム酸単味のものやそれにエツチング
剤を添加したもの)、ノーリンスの塗布型クロメ
ート処理、あるいは電解クロメートなど公知のク
ロメート処理法で形成したものでよい。しかし
種々検討してみると下記の組成のような塗布型ク
ロメート処理液によるのが防食、塗膜密着性上好
ましい。 処理液1 (a) 40〜50%が3価状態に還元されている三酸化
クロム10重量部 (b) リン酸(100%H3PO4)3〜4重量部 (c) ポリアクリル酸4〜5重量部 (d) アクリルエマルジヨン重合体固形分17〜20重
量部 (e) 水溶液にするための水200〜4000重量部 処理液2 前記処理液1の組成において、(a)の三酸化クロ
ムが6価クロムのすべてまたは一部が3価の状態
に還元され、6価クロム量/3価クロム量の比が
0〜2.3になつた処理液。 本発明の場合クロメート系皮膜2の付着量管理
は皮膜に含有される全クロム量で行い、その全ク
ロム量が10〜50mg/m2になるようにする。これは
10mg/m2未満であると防食性が乏しくなり、また
塗膜密着性も安定せず、常に良好な密着性が得ら
れないからである。一方50mg/m2を超えると防食
性は向上するが、塗膜密着性が低下してプレス加
工などで剥離しやすくなる。 亜鉛−マンガンリツチ塗膜3は亜鉛粉末4とと
もにマンガン粉末5を含有させることにより防食
性、加工時の耐パウダリング性および電気溶接時
のピツクアツプを改善させたものである。 マンガンは電気化学的に亜鉛より卑であるの
で、亜鉛に対してはガルバニツク作用を有し、亜
鉛の溶出を保護する。またマンガンは腐食環境下
におかれた場合防食性のあるマンガン酸化物や水
酸化物を生成し、この腐食生成物がマンガン自体
の溶解を抑制する。従つて亜鉛−マンガンリツチ
塗膜3は犠性的防食作用と不働態的防食作用を有
し、これらの両面から防食性を向上させる。さら
にマンガンにはこれらの防食作用のほか、亜鉛の
鉄に対する過剰な自己消費的ガルバニツク作用を
自己のガルバニツク作用で緩和し、亜鉛が必要以
上溶出するのを抑制する作用もある。 またマンガン粉末5は亜鉛より高硬度であるの
で、亜鉛粉末単独の場合より加工時のパウダリン
グ性が改善される。 さらにマンガンは亜鉛より高融点であるので、
溶接時にチツプと合金化しにくく、ピツクアツプ
は抑制される。 本発明の場合この亜鉛−マンガンリツチ塗膜3
中の亜鉛粉末4とマンガン粉末5との含有割合は
亜鉛粉末/マンガン粉末=2/98〜98/2になる
ようにする。これは亜鉛粉末4が両粉末合計の2
重量%未満であると亜鉛のガルバニツク作用が発
揮されず、防食性が低下してしまい、逆にマンガ
ン粉末5が2重量%未満であるとマンガン粉末5
による前記のような効果が小さくなるからであ
る。 塗膜のこれらの合計含有量は60重量%未満であ
ると通電性が悪くなり、防食性も低下するので、
60重量%以上にする。しかし91重量%を超えると
塗膜密着性も低下していき、またパウダリングも
生じやすくなるので、上限は91重量%以下にする
のが好ましい。 塗膜を形成する樹脂として最良のものはエポキ
シ系樹脂であつて、その中でもとくに分子量1〜
10万の直鎖構造のものがよい。膜厚はあまり薄い
と防食用の金属粉末含有量が少くなつて防食性が
低下し、逆に厚くなりすぎると加工性が低下する
ので、5〜50μが適当である。 本発明の場合このように塗膜中に亜鉛粉末4と
マンガン粉末5とを含有させることにより従来の
ジンクリツチ系塗装鋼板の欠点は改善されるが、
さらに防食性を改善するのに防錆顔料6を添加す
ることも可能である(第2図)。一般塗料の塗膜
の場合も防錆顔料添加により塗膜の防食性を改善
することが行われるが、その防食作用は防錆顔料
自体の防食作用によるものである。しかし本発明
の場合はこのような防食作用とともに亜鉛の過剰
溶出を抑制し、鋼素地防食に必要な分だけ亜鉛を
溶出させるという作用が期待できる。 ここの防錆顔料の添加量は0.2〜5重量%が適
当で、0.2重量%未満であると添加効果が少い。
逆に5重量%を超えると防錆顔料がクロム酸塩で
ある場合クロムが溶出することがある。 本発明の塗装鋼板の製造は鋼板を素材として着
色亜鉛鉄板の製造の要領で可能である。この場合
亜鉛−マガンンリツチ塗膜の樹脂としてエポキシ
系樹脂を用いた場合、その焼付けは板温200〜260
℃で10〜80秒間行えばよい。 実施例 板厚0.8mmの冷延鋼板にダルスキンパスを施し
てRz20μの表面粗度を形成した後脱脂して表面を
清浄にしてその表面にロールコートにより塗布型
クロメート処理を塗布して全クロム量40mg/m2
クロメート系皮膜を形成した。その後この皮膜の
上に亜鉛粉末とマンガン粉末またはこれらに防錆
顔料を添加した亜鉛−マンガンリツチ塗膜(いず
れも乾燥塗膜厚20μ)を形成した。第1表、第2
表にこれらの塗膜の組成と性能との関係を示す。
なおクロメート系皮膜と亜鉛−マンガンリツチ塗
膜の形成は次の条件によつた。 (1) クロメート系皮膜形成条件 三酸化クロム酸10重量部、リン酸3重量部、
ポリアクリル酸5重量部、アクリルエマルジヨ
ン重合体固形分18重量部、水2000重量部、
Cr+6/Cr+3=1.4からなる塗布型クロメート処
理液をロールコート法で塗布。 (2) 亜鉛−マンガンリツチ塗膜形成条件 ロールコート法により塗装後250℃(板温)
で60秒間焼付。
The present invention relates to a zinc-rich weldable coated steel sheet that has improved corrosion resistance, powdering resistance, and welding workability by adding manganese powder or an anticorrosion pigment together with the manganese powder. In recent years, highly anticorrosion-resistant surface-treated steel sheets have been required as materials for parts exposed to extremely corrosive environments, such as the underside of automobile bodies, doors, and these parts. However, in the case of automobile parts, assembly generally involves electric welding, so electric welding is possible for surface-treated steel sheets, and anti-corrosion treatment is required only on the back side of the parts, and the surface should be painted with cold-rolled steel sheet exterior paint. Therefore, one side is required to be a cold-rolled steel plate. Conventionally, galvanized steel sheets such as zinc-based electroplated steel sheets or hot-dip galvanized steel sheets, or painted steel sheets such as zinc-rich coated steel sheets have been used as such surface-treated steel sheets, but each has advantages and disadvantages, and is suitable for automobiles. It has not yet reached the point where it satisfies the manufacturer's requirements. For example, in the case of zinc-based electroplated steel sheets, conventional Zn
- Steel plates plated with Ni-based or Zn-Fe-based alloys or multi-layer plated with Zn and Ni layers have been used, but these steel plates suffer from peeling of the plated layer and powdering during press working. It has excellent workability and weldability, with very little occurrence of spot welding, and the number of consecutive spots possible during spot welding is up to 5,000 without dressing the chip. However, in the case of electroplated steel sheets, the formation of pinholes is generally unavoidable, so there is the problem of rust starting from the pinholes, and even with electroplating, blistering occurs easily in salt spray tests. Corrosion resistance is inferior to zinc-rich coated steel sheets. Furthermore, the adhesion of the electrodeposited coating film is not as good as that of zinc-rich coated steel sheets. The same applies to coated galvanized steel sheets;
−Fe-based and Zn-Al-based materials were used, but
These advantages and disadvantages were similar to those of the zinc-based electroplated steel sheet. However, the biggest drawback of this steel plate is that a reliable single-sided plating method has not yet been developed. For this reason, in the past, single-sided plated products were manufactured by mechanically removing the plated layer on one side after plating, resulting in extremely high manufacturing costs. On the other hand, in the case of zinc-rich coated steel sheets, such as zinc-rich coated steel sheets such as Zinchrome Metal (trade name) and coated steel sheets in which an epoxy-based zinc-rich paint is applied on top of a chromium-containing highly corrosion-resistant undercoat layer, single-sided coated products can be easily produced using existing strip coating lines. It exhibits superior corrosion resistance than zinc-based electroplated steel sheets and hot-dip galvanized steel sheets. However, its anti-corrosion properties are still insufficient, and the significant galvanic action on the steel substrate causes sub-film corrosion at the interface with the steel substrate, which appears as blisters, or causes powdering during press forming. The powder was picked up, causing scratches and dents on the product, and furthermore, during spot welding, the tip (made of copper) and zinc powder became alloyed, and the zinc powder was picked up on the tip, resulting in a poor number of continuous points. . In view of the recent demand for surface-treated steel sheets with corrosion resistance of 10 years or more until perforation, the present invention aims to improve the corrosion resistance and resistance of zinc-rich coated steel sheets, which have particularly excellent corrosion resistance among the surface-treated steel sheets. The present invention provides a weldable coated steel sheet with improved powdering properties and welding workability. The inventors of the present invention have conducted various studies to improve the above-mentioned drawbacks of conventional zinc-rich coated steel sheets. As a result, they have added manganese powder to the zinc-rich coat, or a rust-preventive pigment together with it, to create a zinc-manganese-rich coat. I found out that I can improve it by doing this. The present invention was made based on this knowledge,
The gist is that a zinc-manganese rich coating film containing 60% by weight or more of zinc powder and manganese powder is formed on a steel plate with a roughened surface via a chromate-based film. It is made of painted steel plate. The present invention will be explained in detail below. FIGS. 1 and 2 schematically show a cross section of a coated steel plate according to the present invention, where 1 is a steel plate and 2 is a chromate film formed on this steel plate 1. FIG. Reference numeral 3 denotes a zinc-manganese rich coating film formed on this coating 2, in which zinc powder 4 and manganese powder 5 are dispersed in the resin coating film. These steel plate 1, chromate-based coating 2, and zinc-manganese rich coating 3 are constructed as follows. First, regarding the steel plate 1, a normal cold-rolled steel plate with a roughened surface is usually used as the steel plate 1. Here, the surface of the steel sheet 1 is roughened not only for the general purpose of improving the adhesion of the zinc-manganese rich coating 3, but also for the purpose of roughening the surface when a coating-type treatment liquid is used to form a chromate-based film. By increasing the amount of chromate-based film deposited on rough concave areas, the overall amount of film deposited is increased, improving corrosion resistance, and shortening the distance between the welding machine tip and convex parts during electric welding. This is to improve conductivity in this way. The surface roughness of this steel plate 1 is the average surface roughness Rz of 4
~20μ is appropriate. If it is less than 4μ, the adhesion of the zinc-manganese rich coating 3 will decrease, and powdering and peeling will easily occur during processing.
This is because if it exceeds 20μ, roughness will occur on the coating surface, reducing corrosion resistance and appearance. Such surface roughening may be formed by conventional methods such as dull skin bathing and shot blasting. The chromate-based film 2 may be formed by a known chromate treatment method such as a reactive chromate treatment (for example, chromate alone or an etching agent added thereto), a no-rinse coating type chromate treatment, or an electrolytic chromate treatment. However, after various studies, it is preferable to use a coating type chromate treatment liquid having the composition shown below in terms of corrosion protection and coating adhesion. Treatment liquid 1 (a) 10 parts by weight of chromium trioxide, 40-50% reduced to trivalent state (b) 3-4 parts by weight of phosphoric acid (100% H 3 PO 4 ) (c) Polyacrylic acid 4 -5 parts by weight (d) Acrylic emulsion polymer solid content 17-20 parts by weight (e) 200-4000 parts by weight of water for making an aqueous solution Treatment liquid 2 In the composition of the treatment liquid 1, (a) trioxide A treatment liquid in which all or part of the hexavalent chromium is reduced to a trivalent state, and the ratio of the amount of hexavalent chromium to the amount of trivalent chromium is 0 to 2.3. In the case of the present invention, the amount of deposited chromate film 2 is controlled by the total amount of chromium contained in the film, and the total amount of chromium is controlled to be 10 to 50 mg/m 2 . this is
If it is less than 10 mg/m 2 , corrosion resistance will be poor and coating film adhesion will not be stable, making it impossible to always obtain good adhesion. On the other hand, if it exceeds 50 mg/m 2 , corrosion resistance improves, but the adhesion of the coating decreases and it becomes easy to peel off during press working. The zinc-manganese rich coating film 3 contains manganese powder 5 together with zinc powder 4 to improve corrosion resistance, powdering resistance during processing, and pick-up during electric welding. Since manganese is electrochemically less base than zinc, it has a galvanic effect on zinc and protects it from leaching out. Furthermore, when manganese is placed in a corrosive environment, it produces manganese oxides and hydroxides that have anti-corrosion properties, and these corrosion products suppress the dissolution of manganese itself. Therefore, the zinc-manganese rich coating film 3 has a sacrificial anti-corrosion effect and a passive anti-corrosion effect, and improves the anti-corrosion property from both of these aspects. Furthermore, in addition to these anticorrosion effects, manganese also has the effect of alleviating the excessive self-consuming galvanic effect of zinc on iron through its own galvanic effect, and suppressing the elution of zinc more than necessary. Furthermore, since the manganese powder 5 has a higher hardness than zinc, the powdering property during processing is improved compared to the case of using zinc powder alone. Furthermore, manganese has a higher melting point than zinc, so
It is difficult to alloy with chips during welding, and pick-up is suppressed. In the case of the present invention, this zinc-manganese rich coating film 3
The content ratio of zinc powder 4 and manganese powder 5 is set to be zinc powder/manganese powder = 2/98 to 98/2. This means that 4 zinc powder is 2 of the total of both powders.
If the amount of manganese powder 5 is less than 2% by weight, the galvanic effect of zinc will not be exhibited and the anticorrosion property will decrease.On the other hand, if the amount of manganese powder 5 is less than 2% by weight,
This is because the above-mentioned effects due to this will be reduced. If the total content of these in the coating film is less than 60% by weight, the electrical conductivity will be poor and the corrosion resistance will also be reduced.
Make it 60% by weight or more. However, if the content exceeds 91% by weight, the adhesion of the coating film will decrease and powdering will occur more easily, so the upper limit is preferably 91% by weight or less. The best resin for forming a coating film is an epoxy resin, especially one with a molecular weight of 1 to 1.
One with a linear structure of 100,000 is preferable. If the film thickness is too thin, the content of anti-corrosive metal powder will be reduced and the anti-corrosion properties will be lowered, and if the film is too thick, workability will be reduced, so a thickness of 5 to 50 μm is appropriate. In the case of the present invention, the drawbacks of conventional zinc-rich coated steel sheets are improved by including zinc powder 4 and manganese powder 5 in the coating film.
It is also possible to add anti-corrosion pigment 6 to further improve the anti-corrosion properties (Fig. 2). In the case of coating films of general paints, the anticorrosive properties of the coating film are also improved by adding anticorrosive pigments, but the anticorrosive effect is due to the anticorrosive effect of the anticorrosive pigment itself. However, in the case of the present invention, in addition to such a corrosion-preventing effect, it can be expected to suppress excessive elution of zinc and elute only the amount of zinc necessary for corrosion protection of the steel substrate. The amount of the rust-preventing pigment added here is suitably 0.2 to 5% by weight, and if it is less than 0.2% by weight, the effect of the addition will be small.
On the other hand, if the amount exceeds 5% by weight, chromium may be eluted if the anticorrosive pigment is a chromate. The painted steel sheet of the present invention can be manufactured using a steel sheet as a raw material in the same manner as a colored galvanized iron sheet. In this case, if an epoxy resin is used as the resin for the zinc-magnetic coating, the baking temperature is 200 to 260.
It may be carried out at ℃ for 10 to 80 seconds. Example: A cold-rolled steel plate with a thickness of 0.8 mm is subjected to a dull skin pass to form a surface roughness of Rz 20μ, then degreased to clean the surface, and then a coating-type chromate treatment is applied to the surface by roll coating to reduce the total chromium content. A chromate film of 40 mg/m 2 was formed. Thereafter, a zinc-manganese rich coating film (dry coating thickness of 20 μm in each case) was formed on this film by adding zinc powder and manganese powder or an anticorrosion pigment to these powders. Table 1, 2
The table shows the relationship between the composition and performance of these coatings.
The chromate film and the zinc-manganese rich film were formed under the following conditions. (1) Chromate film formation conditions: 10 parts by weight of chromic acid trioxide, 3 parts by weight of phosphoric acid,
5 parts by weight of polyacrylic acid, 18 parts by weight of acrylic emulsion polymer solids, 2000 parts by weight of water,
A coating type chromate treatment solution consisting of Cr +6 /Cr +3 = 1.4 is applied using the roll coating method. (2) Zinc-manganese rich coating film formation conditions 250℃ (plate temperature) after coating by roll coating method
Bake for 60 seconds.

【表】【table】

【表】 また塗膜性能は次の要領で調査した。 (1) 塗膜密着性 JIS・G・3312の着色亜鉛鉄板の試験法に準
じて折曲げ試験を行つた。折曲げ試験は曲げ内
側の間隔数0枚(0t)、1枚(1t)、2枚(2t)
で180度密着折曲げ加工を行つた後加工部塗膜
にセロテープを貼付け、それを急激にひきはが
すセロテープ剥離を行い、次の基準により評価
した。
[Table] The coating film performance was also investigated in the following manner. (1) Paint film adhesion A bending test was conducted in accordance with the JIS G 3312 test method for colored galvanized iron plates. The bending test was performed using 0 sheets (0t), 1 sheet (1t), and 2 sheets (2t) at the bending inner interval.
After performing a 180 degree close bending process, cellophane tape was applied to the processed part coating film, and cellotape peeling was performed by rapidly peeling it off, and evaluation was made according to the following criteria.

【表】 (2) 耐パウダリング性 試験片をブランク径360mmに切断後防錆潤滑
油(オイルコートZ2、出光興産製)を塗布し
て300トン油圧プレス機によりポンチ径200mm、
ポンチR13mm、ダイスR4mm、絞り高さ65mm、
全しわ押え22トンの条件で塗面が外側になるよ
うにして円筒深絞り試験を行い、試験後ダイス
金型に付着したパウダーを研摩紙でこすりと
り、その量を目視で評価して次の基準で評価し
た。
[Table] (2) Powdering resistance After cutting the test specimen into blanks with a diameter of 360 mm, they were coated with anti-corrosion lubricant (Oil Coat Z2, manufactured by Idemitsu Kosan) and punched with a punch diameter of 200 mm using a 300-ton hydraulic press.
Punch R13mm, die R4mm, drawing height 65mm,
A cylindrical deep drawing test was performed with the coated surface facing outward under the conditions of a 22-ton presser. After the test, the powder adhering to the die mold was scraped off with abrasive paper, the amount was visually evaluated, and the next step was performed. It was evaluated based on the criteria.

【表】 (3) 防食性 試験片にあらかじめナイフによるクロスカツ
トと、4tの180度密着折曲げとを行つたものと、
前記耐パウダリング性において深絞り試験した
ものをJIS・Z・2371に基いてそれぞれ1000時
間および240時間試験し、次の基準により評価
した。
[Table] (3) Corrosion resistance Test specimens were cross-cut with a knife and bent 180 degrees at 4t.
The products subjected to the deep drawing test for powdering resistance were tested for 1000 hours and 240 hours, respectively, based on JIS Z 2371, and evaluated according to the following criteria.

【表】【table】

【表】 (4) 溶接性 下記の溶接条件でスポツト溶接を行つた後引
張試験を行い、引張せん断強度350Kgf未満の
ものの発生率と一定溶接条件での連続打点数を
調査した。 引張せん断強度の溶接条件は下記の3条件で行
い、連続打点数の溶接条件は4.5φ−CFの電極を
用いて加圧力250Kg、通電時間(サイクル)12、
電流7500Aで行つた。そして後者の場合は100打
点毎に引張せん断強度を求め、その強度が
RWMAに示す許容下限値より低くなつた時点を
電極の寿命とした。
[Table] (4) Weldability After performing spot welding under the following welding conditions, a tensile test was conducted to investigate the incidence of tensile shear strength of less than 350 Kgf and the number of consecutive welding points under constant welding conditions. The welding conditions for tensile shear strength were the following three conditions, and the welding conditions for the number of continuous welding points were a 4.5φ-CF electrode, a pressure of 250 kg, a current application time (cycle) of 12,
The current was 7500A. In the latter case, the tensile shear strength is determined every 100 points, and the strength is
The life of the electrode was defined as the point in time when the value became lower than the allowable lower limit shown in RWMA.

【表】【table】

【表】 第1表より亜鉛粉末とともにマンガン粉末を含
有させると亜鉛粉末単味より防食性は向上し、か
つ少い含有量でもつて同等以上の溶接性を得るこ
とができ、パウダリングも減少することがわか
る。また第1表と第2表を比較すると防錆顔料の
添加により防食性がさらに向上することがわか
る。
[Table] From Table 1, when manganese powder is included together with zinc powder, corrosion resistance is improved compared to zinc powder alone, and even with a small content, the same or better weldability can be obtained, and powdering is also reduced. I understand that. Furthermore, when comparing Tables 1 and 2, it can be seen that the addition of anticorrosion pigments further improves the anticorrosion properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の塗装鋼板の模式断面
図である。 1……鋼板、2……クロメート系皮膜、3……
亜鉛−マンガンリツチ塗膜、4……亜鉛粉末、5
……マンガン粉末、6……防錆顔料。
FIGS. 1 and 2 are schematic cross-sectional views of the coated steel plate of the present invention. 1... Steel plate, 2... Chromate film, 3...
Zinc-manganese rich coating film, 4...Zinc powder, 5
...Manganese powder, 6...Anti-rust pigment.

Claims (1)

【特許請求の範囲】 1 表面を粗化した鋼板上にクロメート系皮膜を
介して亜鉛粉末とマンガン粉末とを合計60重量%
以上含有する亜鉛−マンガンリツチ塗膜が形成さ
れていることを特徴とする溶接性塗装鋼板。 2 亜鉛粉末/マンガン粉末の比が2/98〜98/
2で、塗膜中の両粉末合計含有量が60〜91重量%
であることを特徴とする特許請求の範囲第1項に
記載の溶接性塗装鋼板。 3 亜鉛−マンガンリツチ塗膜中に防錆顔料が添
加されていることを特徴とする特許請求の範囲第
1項に記載の溶接性塗装鋼板。
[Claims] 1. A total of 60% by weight of zinc powder and manganese powder on a steel plate with a roughened surface via a chromate-based film.
A weldable coated steel sheet, characterized in that a zinc-manganese rich coating film containing the above is formed. 2 The ratio of zinc powder/manganese powder is 2/98 to 98/
2, the total content of both powders in the coating film is 60 to 91% by weight.
The weldable coated steel sheet according to claim 1, characterized in that: 3. The weldable coated steel sheet according to claim 1, characterized in that a rust preventive pigment is added to the zinc-manganese rich coating film.
JP14563282A 1982-08-23 1982-08-23 Weldable painted steel plate Granted JPS5935934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14563282A JPS5935934A (en) 1982-08-23 1982-08-23 Weldable painted steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14563282A JPS5935934A (en) 1982-08-23 1982-08-23 Weldable painted steel plate

Publications (2)

Publication Number Publication Date
JPS5935934A JPS5935934A (en) 1984-02-27
JPH0120058B2 true JPH0120058B2 (en) 1989-04-14

Family

ID=15389491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14563282A Granted JPS5935934A (en) 1982-08-23 1982-08-23 Weldable painted steel plate

Country Status (1)

Country Link
JP (1) JPS5935934A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001173A (en) * 1987-05-11 1991-03-19 Morton Coatings, Inc. Aqueous epoxy resin compositions and metal substrates coated therewith
US5082698A (en) * 1987-05-11 1992-01-21 Morton Coatings, Inc. Aqueous epoxy resin compositions and metal substrates coated therewith

Also Published As

Publication number Publication date
JPS5935934A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
US5399209A (en) Composition and method for chromating treatment of metal
JPS60149788A (en) Weldable painted steel sheet having excellent resistance to powdering
JPH0513828B2 (en)
JPH0212179B2 (en)
JPH0120060B2 (en)
JPH0120058B2 (en)
JPH0525679A (en) High corrosion resistance surface treated steel sheet excellent in impact adhesion resistance
JPH022422B2 (en)
JPH0120057B2 (en)
JPH01301332A (en) Lubricating resin treated steel plate excellent in moldability
JPH0120059B2 (en)
JPH0212176B2 (en)
JPH0120056B2 (en)
JPH0212178B2 (en)
JPH0536516B2 (en)
JPH0120061B2 (en)
JP3305565B2 (en) Weldable organic composite plated steel sheet with excellent corrosion resistance and press workability
JPH0148869B2 (en)
JPH0760897A (en) Lubricating black steel panel
JPH0212177B2 (en)
JPS6340666B2 (en)
JPS591694A (en) Rust preventive steel sheet
JPS61252148A (en) Coated steel plate having excellent corrosion resistance
JPS63270131A (en) High-corrosion resistance organic composite plated steel sheet
JPH0653957B2 (en) Method for manufacturing surface-treated steel sheet