JPH0513828B2 - - Google Patents

Info

Publication number
JPH0513828B2
JPH0513828B2 JP62120531A JP12053187A JPH0513828B2 JP H0513828 B2 JPH0513828 B2 JP H0513828B2 JP 62120531 A JP62120531 A JP 62120531A JP 12053187 A JP12053187 A JP 12053187A JP H0513828 B2 JPH0513828 B2 JP H0513828B2
Authority
JP
Japan
Prior art keywords
steel sheet
layer
organic composite
plating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62120531A
Other languages
Japanese (ja)
Other versions
JPS63283935A (en
Inventor
Toshio Odajima
Yoshihiko Hirano
Teruyoshi Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62120531A priority Critical patent/JPS63283935A/en
Priority to US07/193,375 priority patent/US4891273A/en
Priority to EP88107874A priority patent/EP0291927B1/en
Priority to CA000567040A priority patent/CA1324975C/en
Priority to DE8888107874T priority patent/DE3861626D1/en
Publication of JPS63283935A publication Critical patent/JPS63283935A/en
Publication of JPH0513828B2 publication Critical patent/JPH0513828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は耐食性、溶接性及び加工性に優れた有
機複合鋼板に関するものである。すなわち、本発
明は各種のめつき鋼板に特殊なクロメート処理を
施し、更にその上に特定の微細な粒度のコロイダ
ルシリカを特定の割合になるように調整した特殊
な有機樹脂を塗布した有機複合鋼板である。 [従来の技術] 周知の如く電気亜鉛めつき鋼板や溶融めつき鋼
板あるいは各種合金めつき鋼板が、自動車、家
電、建材などに広く使用されている。 こうした中で、近年、特に耐食性に優れた表面
処理材料に対する要求がますます強くなり、この
ような鋼板の需要は今後ますます増加する傾向に
ある。 例えば、家電業界では省工程、省コストの観点
から塗装を省略できる裸使用の可能な優れた耐食
性を有する鋼板に対する要求がある。また、自動
車業界でも最近の環境の変化、例えば北米、北欧
での冬の道路の凍結防止のために散布する岩塩に
よる腐食、また、工業地帯でのSO2ガスの発生に
よる酸性雨による腐食など、車体は激しい腐食環
境にさらされ安全上の観点から優れた耐食性を有
する表面処理鋼板が強く要求されている。 これら問題点を解決するため種々の検討がなさ
れ、多くの製品が開発されてきた。 これまで鋼板の耐食性を向上するために亜鉛め
つきが行なわれてきた。 亜鉛めつき鋼板は、亜鉛の犠牲防食作用によつ
て鋼板の腐食を防止するものであり、耐食性を得
ようとすれば亜鉛付着量を増加しなければならな
い。このため必要亜鉛量のコストアツプ、あるい
は加工性、溶接性、生産性の低下等いくつかの問
題点がある。また、一般的に亜鉛めつき鋼板の塗
料密着性は悪い。 このような亜鉛めつき鋼板の特に耐食性を改善
する方法として、各種合金めつき鋼板が開発され
てきた。これら合金めつき鋼板として、例えば
Zn−Ni系、Zn−Ni−Co系、Zn−Ni−Cr系、Zn
−Fe系、Zn−Co系、Zn−Mn系等をあげること
ができる。これら合金めつきにより、通常の亜鉛
めつき鋼板に比べ裸の耐食性は約3〜5倍向上す
ることが認められる。しかし、それでも長期間屋
外に放置したり、水や塩水を噴霧すると白錆や赤
錆が発生しやすいことが問題である。 耐食性を改善するためにめつきした後にクロメ
ート処理を施す方法もあり、かなり有効ではある
が、高温多湿化や塩分含有雰囲気下では約100〜
150時間で白錆が発生する。 更に耐食性を改善するために、亜鉛系めつき鋼
板のクロメート処理材に各種の樹脂を塗布した、
いわゆる簡易プレコート鋼板(以下有機複合鋼板
と呼ぶ)が開発され一部市販されている。 その一例を以下に列挙する。 特開昭58−210190号公報、 特開昭58−210192号公報 亜鉛系合金単層めつき又は2層めつき上にクロ
メート処理を施しその上に導電性物質(Zn,Al,
Sn,Fe,Ni,Co,Cr,Mn)を含有する樹脂塗
料を塗布した溶接可能な塗装鋼板で、溶接性、塗
膜密着性及び耐食性の向上を目的としたもの。 特開昭58−224174号公報 亜鉛合金めつき鋼板の表面の塗布型クロメート
処理を施し、続いて水洗することなく複合有機シ
リケート樹脂溶液で処理する高耐食性防錆被覆鋼
板の製造法で、耐食性の向上を目的としたもの。 特開昭59−116397号公報 鋼板の両面に第1層としてNi−Zn,Fe−Znの
如き高耐食性電気めつき層を有し、第2層として
片面にFe−Zn、の如き薄電気めつき層を、他面
に導電性顔料を含む樹脂又は膜厚0.5〜3.0μの樹
脂膜を有する高耐食性防錆鋼板で、外面側は耐食
性、塗料密着性を付与し、内面側はスポツト溶接
性、加工性を付与することを目的としたもの。 特公昭61−36587号公報 電気亜鉛めつき鋼板の表面にクロメート皮膜を
形成し、その上にコロイダルシリカを含有する特
殊樹脂水溶液を塗布乾燥する電気亜鉛めつき鋼板
の表面処理法で、耐指紋性、塗料密着性、硬度、
耐食性の向上を目的としたもの。 特開昭60−149786号公報 上記特公昭61−36587号と軌を−にした処理法
で、ベースめつきを亜鉛系合金に限定し、且つ特
公昭61−36587号とは異なる樹脂を用いた表面処
理法であり、上記に対してより一層の耐食性と耐
溶剤性を付加したもの。 特開昭61−167545号公報 亜鉛系合金めつき層の上にクロメート処理を施
し、その上に硬質金属粉、硬質炭化粉の1種又は
2種と、亜鉛粉末を含む塗料を塗布した、高耐食
性溶接可能塗装鋼板で、耐食性及び溶接性の向上
を目的としたもの。 上記に例示のものは、いずれも有機複合鋼板と
呼ばれるもので、諸特性の向上が得られるもので
ある。 [発明が解決しようとする問題点] しかし、これらにおいても過酷な腐食環境下で
は耐食性はかならずしも十分とは言えず、また、
耐食性を確保するため最外層の樹脂膜厚を厚くす
ると、溶接が困難となる。さらに、一般に有機皮
膜は連続プレスやビード加工時皮膜に疵がつきや
すいためビルドアツプをおこしやすく、かつ、耐
食性を安定して確保しにくい。したがつて、実質
的に自動車の車体防錆鋼板等に使用できない。 以上述べたように従来の有機複合鋼板は優れた
耐食性、溶接性及び加工性(連続プレス性及びビ
ード加工性)を同時に兼ね備えたものとしては不
十分であつた。 これに対し、本発明は超高耐食性を有すると共
に溶接にも優れ、かつ、きわめて加工性の優れた
有機複合鋼板を提供するものである。 [問題点を解決するための手段] 本発明は、鋼板表面に第1層としてめつき層を
有し、第2層として電解クロメート層を有し、こ
のクロメート層はクロメート層中のCr2O3の割合
が60%以上でトータルクロム量が40〜120mg/m2
のものである。そして第3層として粒径が1〜
10mμのコロイダルシリカを15〜40(wt)%含有
するオレフイン共重合比が70〜95%のオレフイ
ン/アクリル酸共重合体よりなる0.5〜3μ厚の水
系樹脂層を有する有機複合鋼板である。 本発明の有機複合鋼板の基本的構成は第18図
aに示す如く上記第1層〜第3層を鋼板の両面に
有するものである。 ここでめつき層とは、Zn,Sn,Cu,Cr,Ni,
Coの単独か、これらから選ばれた2種以上の合
金めつきを施し又単独或いは重層めつきも含む
が、最も好ましいのはZn−Ni系合金めつきであ
る。 以下に詳細を説明する。 [電解クロメート層] 本発明者等は詳細に検討した結果、めつき鋼板
の表面に形成するクロメート層は次の条件を満足
しなければならないことをみいだした。 すなわち、Cr2O3を主体とした電解型クロメー
ト層でなければならない。 一般に塗型、あるいは反応型クロメートは、め
つき層から溶出するイオンとの置換反応を主体に
皮膜が形成されるため、過酷な加工にたえうる強
固な皮膜は形成されにくく、例えば、クロメート
皮膜の上に有機皮膜を形成させてプレス加工した
場合、軽度の加工の場合にはクロメート皮膜は維
持されるが、過酷な加工になるとクロメート皮膜
は皮膜自身が破壊され有機皮膜は剥離する。 これに対し、電解型クロメートはクロメート浴
からのイオンの析出が主体で皮膜が形成されるた
め、強固で、かつ、緻密な皮膜が形成されやす
い。 したがつて、加工にたえうるクロメート皮膜と
しては電解型クロメートの方が有利である。しか
し、本発明者等は詳細に検討した結果、有機複合
鋼板の下地用クロメートとしては電解型クロメー
トの中で形成された皮膜の中のCr2O3の比率が次
の条件を満足しなければならないことをみいだし
た。 クロメート皮膜中のCr2O3量/全クロメート皮膜量×100
=60% 以上 すなわち本発明における電解クロメート層は
Cr2O3が主体で、クロメート層を形成する残余の
金属クロム及びクロム水酸化物等の生成を抑えた
ものである。 上記条件を満足する電解型クロメート皮膜をめ
つき鋼板上に形成させ、その上に特殊な有機皮膜
を形成することにより、諸特性の優れた有機複合
鋼板が得られるものである。 尚、上記電解クロメート層中のCr2O3の分析方
法は、X線又は電子線等をクロメート層を順次除
去しながら当て、各成分の結合(Binding)エネ
ルギを測定して積分し、波形分離してCr2O3の量
を求める方法によつた。 第1図はZn−Ni系合
金めつき鋼板の上にクロメート皮膜中のCr2O3
割合が種々異なる、トータルクロム付着量70mg/
m2(一定)の電解クロメート層を施し、その上に
さらにオレフインの共重合比が80%からなるオレ
フイン/アクリル酸共重合体樹脂の水系樹脂分散
体に5〜7mμの粒径のコロイダルシリカを20%
(重量%)となるように調整した水性液を乾燥後
1.5μとなるように塗布し、クロメート層中のCr2
O3の量とプレス加工後の有機皮膜の剥離性との
関係を示したものである。 ここで試験条件はブランク径90mmφ、ダイス面
粗さ#120で第2図に示す条件でプレス加工し、
皮膜の剥離性を調査した。図中1は鋼板、Aはポ
ンチ、Bはダイスを示す。皮膜の剥離状況は加工
後、加工部をテープ剥離しテープの黒化率を求め
て評価した(皮膜が剥離するほど黒化率は高い)。 第1図から明らかなように電解クロメート層中
のCr2O3の割合によつて加工時の有機皮膜の密着
性は大きく異なり、Cr2O3が60%以上で優れた密
着力が確保される。 また、第3図に同じく処理した平板の耐食性を
示す。 ここで耐食性がJIS−Z−2371規格に準拠した
塩水噴霧試験により(食塩水濃度5%、槽内温度
35℃、噴霧圧力20psi)4000時間後の発錆状況を
調査し◎,○,△,×,××の5段階で評価したも
のであり、◎が最良である。 ◎:赤錆発生 0% ○:〃 0〜1% △:〃 1〜10% ×:〃 10〜50% ××:〃 50%以上 第3図から明らかなように電解クロメート層中
のCr2O3の割合によつて加工部の有機複合鋼板の
耐食性は大きく異なり、Cr2O3が60%以上で優れ
た耐食性が確保される。 また、第4図はZn−Ni系合金めつき鋼板に電
解クロメート層中のCr2O3の割合を90%と一定に
し、トータルクロム付着量をかえ、かつ、その上
に第1図と同じ有機樹脂を1.5μ塗布した場合のト
ータルクロム付着量とプレス加工後の皮膜の剥離
性との関係を示したものである。第4図から明ら
かなようにトータルクロム付着量が40mg/m2
120mg/m2で皮膜の剥離性は良好である。 また、同じ処理材の平板耐食性を第5図に示す
(試験方法は第3図の場合と同じ)。トータルクロ
ム付着量が40mg/m2〜120mg/m2で良好な平板耐
食性を示している。 以上の結果から電解クロメート層中の最適トー
タルクロム付着量は40〜120mg/m2である。 本発明でのCr2O3の割合が60%以上含有する電
解型クロメート層を得る方法は例えばCr2O3−重
金属イオン−ハロゲン系浴を用い電解処理するこ
とにより得られるものであり、その具体的な方法
は濃度範囲等は、例えば特公昭49−14457号公報
で金属の表面処理方法として提案されている。 有機複合鋼板の製造においてクロメート処理と
して電解クロメート処理法を採用することは、前
掲の特開昭58−210190号公報及び特開昭58−
210912号公報に記載されている。しかし従来の電
解クロメート処理おいては、本発明の如くクロメ
ート皮膜中のCr2O3の割合と有機皮膜の密着性、
耐食性との関係について何等開示するものではな
い。 [めつき層] 一方、本発明者等は種々のめつきに対し本発明
における電解クロメート層を形成した結果、めつ
きとしてNiを含有すると、Niの存在によつて電
解クロメート層は化学的に安定でかつ緻密な被膜
が形成されることを見出した。 第6図はEG(電気亜鉛めつき鋼板)、Zn−Fe系
合金めつき鋼板及びZn−Ni系合金めつき鋼板に
公知のCrO3−SO4 --系クロメート処理をした場
合のクロムの溶出性を示したものである。形成さ
れたクロメート層中のCr2O3は40%前後であつ
た。 また、第7図にEG,Zn−Fe系合金めつき鋼
板、Zn−Ni系合金めつき鋼板及びNi薄めつき鋼
板に前述したCrO3−重金属イオン−ハロゲン系
で電解クロメート処理をした場合のクロメート層
のクロムの溶出性を示したものである。形成され
たクロメート層のCr2O3は80%前後であつた。 第6図及び第7図に示す様にめつき中のNiの
存在により溶解しにくい安定なクロメート層が形
成されるが、特に第7図から明らかなようにCr2
O3の比率の多いクロメート層は素地のNiの存在
によつてCr2O3の比率の少ないクロメート層(第
6図)より、より安定化し、より溶解しにくいク
ロメート層が形成されるものである。 第8図はEG,Zn−Fe系合金めつき鋼板及びZn
−Ni系合金めつき鋼板に従来のCrO3SO4 --系浴
(Cr2O340%)及び本発明におけるCrO3−重金属
イオン−ハロゲン系浴(Cr2O380%)でクロメー
ト処理した場合の耐食性を示したものである。評
価方法は第3図と同様であるが、塩水噴霧時間は
600時間後の発錆状況を調査し、同様に5段階で
評価した。 第8図から明らかなように、Cr2O3の比率の高
い(約80%)電解クロメート層は素材のNiの存
在によつて緻密な被覆率の高い皮膜を形成し、き
わめて優れた耐食性を示すものである。 これらNiの効果は、いずれのめつき系でもめ
つき層にNiが存在すればよく、また、Niを含有
しないめつき層あるいは冷延綱板の上にNiをフ
ラツシユめつきしても同様な効果が得られる。 [コロイダルシリカ含有オレフイン/アクリル酸
共重合水系樹脂層] 次に第9図はZn−Ni系合金めつき鋼板に電解
クロメート層(Cr2O3の割合が90%でトータルCr
付着量が70mg/m2)を形成し、その上にオレフイ
ンとアクリル酸の共重合比を種々かえたオレフイ
ン/アクリル酸共重合体樹脂の水系樹脂分散体に
5〜7mμの粒径のコロイダルシリカを20%となる
ように含有した水性液を乾燥後1.5μとなるように
塗布した試験片の上に塗料を3コートした場合の
オレフインとアクリル酸の共重合比と塗料密着性
の関係を示す。 塗料の密着性試験は上記試験片にカチオンED
塗装を20μとし、その上に中塗及び上塗塗装をそ
れぞれ30μとし、その後50℃の蒸留水に10日間浸
漬し、その後2mmゴバン目に塗膜をカツトしテー
プ剥離し、剥離面積で評価した。 ◎:剥離面積 0% ○:〃 0〜1% △:剥離面積 1〜10% ×:〃 10〜50% ××:〃 50%以上 第9図から明らかなようにオレフイン/アクリ
ル酸共重合体樹脂においてオレフインの共重合比
が70%以上になるときわめて優れた塗料密着性を
示す。 また、第10図に同じくオレフイン/アクリル
酸の共重合比をかえた場合の塗装のない裸平板の
耐食性の結果を示す。耐食性は第3図と同じく
JIS−Z−2371規格にしたがい実施した。 第10図から明らかなようにオレフイン/アク
リル酸共重合体樹脂においてオレフインの共重合
比が70%以上になるときわめて優れた耐食性を示
し、また、95%以上になると耐食性はやや低下す
る。 以上の結果からオレフイン/アクリル酸共重合
体樹脂において塗料密着性及び耐食性を同時に満
足する領域はオレフインの共重合比が70〜95%で
ある。 次にオレフイン/アクリル酸共重合体樹脂の水
系樹脂分散体へのコロイダルシリカの添加につい
てのべる。 有機樹脂皮膜にコロイダルシリカを含有せしめ
ることはすでに公知の事実であり、例えば前述し
た特公昭61−36587号公報、特開昭60−149786号
公報などにも示されていて有機樹脂皮膜の硬度上
昇にコロイダルシリカが添加されている。 しかし、本発明者等は詳細に検討した結果、他
の系統の樹脂に添加するよりオレフイン/アクリ
ル酸共重合体樹脂の水系樹脂分散体に微粒のコロ
イダルシリカを特定量添加すると皮膜の潤滑性が
著しく向上し、かつ、オレフイン/アクリル酸共
重合体樹脂においてオレフインの共重合比が特定
の領域になると皮膜の潤滑性はさらに向上するこ
とをみいだした。 第11図はZn−Ni系合金めつき鋼板に電解ク
ロメート層(Cr2O3の割合が90%でトータルCr付
着量が70mg/m2)を形成し、その上にオレフイン
とアクリル酸の共重合比をかえたオレフイン/ア
クリル酸共重合体樹脂の水系樹脂分散体に粒度の
異なるコロイダルシリカを20%となるように添加
し、乾燥後1.5μとなるように塗布し、オレフイン
とアクリルの共重合比及びコロイダルシリカの粒
径と摺動抵抗の関係を示したものである。 第11図から明らかなようにコロイダルシリカ
の粒度によつて摺動抵抗は著しく影響を受けコロ
イダルシリカの粒度が1〜10mμになると摺動抵
抗は著しく低下する。すなわち、皮膜の潤滑性は
大巾に向上する。 一方、超微粒コロイダルシリカの効果はオレフ
インの共重合比によつても左右され、共重合比が
70〜95%の領域で最も効果が強くあらわれる。 また、第12図は第11図における同じ試験片
のプレス加工後の加工部の耐食性を示す。評価は
第3図と同様である。 第12図から明らかなようにコロイダルシリカ
の粒度によつて加工部の耐食性は著しく影響を受
けコロイダルシリカの粒度が1〜10mμの領域で
耐食性は大巾に向上する。また、超微粒コロイダ
ルシリカの効果はオレフインの共重合比によつて
影響を受け、共重合比が70〜95%の領域で最も効
果が強くあらわれる。 また、第13図は第11図における同じ試験片
(但し、オレフイン/アクリル酸共重合比80%一
定)を用い溶接性(連続打点溶接性)がどのよう
に変化するかを示したものである。 連続溶接試験はナゲツト径が4mmφになるまで
の連続打点で評価した。 ◎: 5000点以上 ○: 4500〜5000点 △: 4000〜4500点 ×: 3500〜4000点 ××: 3500点以下 第13図から明らかなように溶接性はコロイダ
ルシリカの粒度によつて著しく影響を受けコロイ
ダルシリカの粒度が1〜12mμの領域で溶接性は
大巾に向上する。 以上の結果から最高の摺動抵抗、加工部の耐食
性、溶接性を同時に満足するのはオレフイン/ア
クリル酸共重合体樹脂においてオレフインの共重
合比が70〜95%で、かつ、コロイダルシリカの粒
度は1〜10mμが最適である。 次に第14図はZn−Ni系合金めつき鋼板に電
解クロメート層(Cr2O3の割合が90%でトータル
クロム付着量が70mg/m2)を形成し、その上にオ
レフインの共重合比が80%のオレフイン/アクリ
ル酸共重合体樹脂に5〜7mμのコロイダルシリカ
を種々の割合で混合して1.5、μ塗布し、コロイ
ダルシリカの混合割合と摺動抵抗との関係を求め
たものである。 第14図から明らかなようにコロイダルシリカ
の添加量によつて摺動抵抗は影響を受け、コロイ
ダルシリカが15%以上で摺動抵抗は著しく低下す
る。しかし、40%以上になると摺動抵抗の効果は
維持されるが連続プレス時コロイダルシリカがビ
ルドアツプするため望ましくない。 第15図は第14図と同じ試験片のプレス加工
後の加工部の耐食性を示す。評価は第3図と同様
である。 第15図から明らかなようにコロイダルシリカ
の添加量によつて加工部の耐食性は著しく影響を
受けコロイダルシリカの添加量が15〜40%で優れ
た耐食性を示す。 以上の結果からコロイダルシリカのオレフイ
ン/アクリル酸共重合体樹脂への添加量は15〜40
%である。 有機皮膜の硬度向上を目的として有機皮膜中に
コロイダルシリカを含有させることは上述の如く
前出の特公昭61−36587号公報及び特開昭60−
149786号公報によつて公知であり一方有機皮膜の
溶接性改善のために有機皮膜中に金属粉等を含有
させることも前出の特開昭58−210192号公報及び
特開昭61−167545号公報によつて公知である。 これに対して本発明では粒径が1〜10mμのコ
ロイダルシリカを選定し、これを特定の有機皮膜
中に含有させることの組合せにより、潤滑性、加
工部の耐食性及び溶接性を同時に兼ね備えさせた
もので、従来技術とは著しく異なつたものであ
る。 一方、第16図に有機複合鋼板において、通常
の有機皮膜(ウレタン)及び本発明による5〜
7mμの超微粒コロイダルシリカを20%含有したオ
レフイン/アクリル酸共重合体樹脂の有機皮膜の
膜厚をかえた場合の連続スポツト溶接性を示す。 第16図から明らかなように通常の有機皮膜で
は膜厚が0.5μ以上になると溶接性は低下するのに
対し、本発明による皮膜では3.0μまで容易に溶接
は可能であり、溶接性が著しく改善されているの
が判る。 次に第17図に本発明における有機皮膜の膜厚
と耐食性の関係を示す。 第17図から明らかなように膜厚は0.5μ以上で
優れた耐食性を示す。 以上の溶接性、耐食性の試験結果から本発明で
は有機皮膜の膜厚は0.5〜3.0μとするものである。 本発明の有機複合鋼板の基本構成は第18図a
に示した如く第1層(めつき2)第2層(電解ク
ロメート層3)、第3層(コロイダルシリカを含
む有機皮膜4)の3者を鋼板1の両面に有するも
のであり、これにより鋼板全体に高い耐食性を有
すると共に、これを自動車用車体防錆鋼板として
使用した場合には外面塗膜下に有機皮膜が存在す
るので、耐低温チツピング性が改善されるもので
ある。しかしながら本発明では用途に応じて第1
8図b,cのものも包含する。即ち、第18図b
は第1層〜第3層の3者を片面のみに有し、他面
は鋼板面5としたもの、第18図cは第1層〜第
3層の3者を片面のみに有し、他面はめつき層2
を有してめつき面6としたものである。更に場合
によつてはb,cに示す如く鋼板面5、又はめつ
き面6に第2層の電解クロメート層3と同一組成
の電解クロメート層7を形成してもよい。この場
合の電解クロメート層7中のトータルクロム量
は、第19図に示す化成処理性より3mg/m2以下
とすることが望ましい。 [実施例] 以下実施例についてのべる。 実施例 1 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(NI=11.0%)にクロメート皮膜中のCr2
O3が90%でトータルクロム付着量が60mg/m2
なるように電解クロメート処理し(処理条件は後
述、以下同じ)、その上にオレフインの共重合比
が80%からなるオレフイン/アクリル酸共重合体
樹脂の水系樹脂分散体に粒径が5〜7mμのコロイ
ダルシリカを20%(重量%)となるように調整し
た水性液をその上に塗布し、乾燥して1.5g/m2
となるように皮膜を形成した。 実施例 2 めつき付着量が20g/m2のZn−Ni−Co系合金
めつき鋼板(Ni=11.5%,Co=0.3%)にクロメ
ート皮膜中のCr2O3が95%でトータルクロム付着
量が70mg/m2となるように電解クロメート処理
し、その上にオレフインの共重合比が85%からな
るオレフイン/アクリル酸共重合体樹脂の水系樹
脂分散体に粒径が1〜3mμのコロイダルシリカを
30%(重量%)となるように調整した水性液をそ
の上に塗布し、乾燥して1.3g/m2となるように
皮膜を形成した。 実施例 3 めつき付着量が20g/m2のZn−Fe系合金めつ
き鋼板にクロメート皮膜中のCr2O3が75%でトー
タルクロム付着量が90mg/m2となるように電解ク
ロメート処理し、その上にオレフインの共重合比
が95%からなるオレフイン/アクリル酸共重合体
樹脂の水系樹脂分散体に粒径が4〜5mμのコロイ
ダルシリカを35%(重量%)となるように調整し
た水性液をその上に塗布し、乾燥して1.0g/m2
となるように皮膜を形成した。 実施例 4 めつき付着量が20g/m2のZn−Ni−Cr系合金
めつき鋼板(Ni=10.8%,Cr=0.8%)にクロメ
ート皮膜中のCr2O3が90%でトータルクロム付着
量が70mg/m2となるように電解クロメート処理
し、その上にオレフインの共重合比が82%からな
るオレフイン/アクリル酸共重合体樹脂の水系樹
脂分散体に粒径が8〜10mμのコロイダルシリカ
を17%(重量%)となるように調整した水性液を
その上に塗布し、乾燥して1.8g/m2となるよう
に皮膜を形成した。 実施例 5 めつき付着量が20g/m2のZn−Mn系合金めつ
き鋼板(Mn=32%)にクロメート皮膜中のCr2
O3が95%でトータルクロム付着量が105mg/m2
なるように電解クロメート処理し、その上にオレ
フインの共重合比が78%からなるオレフイン/ア
クリル酸共重合体樹脂の水系樹脂分散体に粒径が
4〜6mμのコロイダルシリカを25%(重量%)と
なるように調整した水性液をその上に塗布し、乾
燥して2.0g/m2となるように皮膜を形成した。 実施例 6 めつき付着量が20g/m2のZn−Fe系合金めつ
き鋼板(Mn=32%)にNiを150mg/m2フラツシ
ユめつきし、その上にクロメート皮膜中のCr2O3
90%でトータルクロム付着量が85mg/m2となるよ
うに電解クロメート処理し、その上にオレフイン
の共重合比が85%からなるオレフイン/アクリル
酸共重合体樹脂の水系樹脂分散体に粒径が2〜
4mμのコロイダルシリカを23%(重量%)となる
ように調整した水性液をその上に塗布し、乾燥し
て1.8g/m2となるように皮膜を形成した。 実施例 7 冷延鋼板にNiを150mg/m2フラツシユめつき
し、その上にクロメート皮膜中のCr2O3が98%で
トータルクロム付着量が80mg/m2となるように電
解クロメート処理し、その上にオレフインの共重
合比が93%からなるオレフイン/アクリル酸共重
合体樹脂の水系樹脂分散体に粒径が1〜2mμのコ
ロイダルシリカを30%(重量%)となるように調
整した水性液をその上に塗布し、乾燥して2.0
g/m2となるように皮膜を形成した。 実施例 8 めつき付着量が20g/m2からなる両面めつきの
Zn−Ni系合金めつき鋼板(両面共Ni=11.2%)
の一方の面にクロメート皮膜中のCr2O3が90%で
トータルクロム付着量が80mg/m2となるように電
解クロメート処理し、その上にオレフインの共重
合比が85%からなるオレフイン/アクリル酸共重
合体樹脂の水系樹脂分散体に粒径が4〜6mμのコ
ロイダルシリカを20%(重量%)となるように調
整した水性液をその上に塗布し、乾燥して1.5
g/m2となるように皮膜を形成した。また、他方
の面はめつきままの状態からなる片面有機複合鋼
板を製造した。 実施例 9 めつき付着量が20g/m2からなる両面めつきの
Zn−Ni系合金めつき鋼板(両面共Ni=11.2%)
の一方の面にクロメート皮膜中のCr2O3が90%で
トータルクロム付着量が75mg/m2となるように電
解クロメート処理し、その上にオレフインの共重
合比が81%からなるオレフイン/アクリル酸共重
合体樹脂の水系樹脂分散体に粒径が3〜5mμのコ
ロイダルシリカを23%(重量%)となるように調
整した水溶液をその上に塗布し、乾燥して1.4
g/m2となるように皮膜を形成した。また、他方
の面はめつきの上にクロム付着量(除去後の残存
量)が1.5mg/m2となるクロメート層を有する片
面有機複合鋼板を製造した。 比較例 1 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni=11.0%)。比較例 2 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni=11.5%)にトータルCr付着量が70
mg/m2となるように塗布型クロメート処理した鋼
板。 比較例 3 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni=10.9%)にトータルCr付着量が50
mg/m2となるように反応型クロメート処理し、そ
の上にウレタン系樹脂を塗布し、乾燥して1.3
g/m2となるように皮膜を形成した。 比較例 4 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni=11.2%)にトータルCr付着量が90
mg/m2となるように塗布型クロメート処理し、ア
クリル系樹脂に粒径が17〜20mμのコロイダルシ
リカを20%(重量%)となるように調整した水性
液をその上に塗布し、乾燥して1.2g/m2となる
ように皮膜を形成した。 比較例 5 めつき付着量が20g/m2からなる両面めつきの
Zn−Ni系合金めつき鋼板(両面共Ni=11.3%)
の一方の面にトータルクロム付着量が95mg/m2
なるように塗布型クロメート処理し、ウレタン系
樹脂に粒径が17〜20mμのコロイダルシリカを20
%(重量%)となるように調整した水性液をその
上に塗布し、乾燥して1.3g/m2となるように皮
膜を形成した。また、他方の面はめつきの上にク
ロム付着量(除去後の残存量)が4.5mg/m2とな
るクロメート層を有する片面有機複合鋼板を製造
した。 電解クロメート法: 浴組成: CrO3 50g/ Co++ 1〜4g/ Cl- 0.05〜0.4g/(Cr2O3量に応じて コントロール) 浴温:55℃ DK:5A/dm2 電気量:トータルクロムの付着量に応じて3〜
10C/dm2にコントロール 実施例1〜9ならびに比較例1〜5で得られた
表面処理鋼板について各種試験を行なつた結果を
第1表に示す。
[Industrial Application Field] The present invention relates to an organic composite steel plate having excellent corrosion resistance, weldability, and workability. That is, the present invention provides an organic composite steel sheet in which various galvanized steel sheets are subjected to special chromate treatment, and then a special organic resin containing colloidal silica with a specific fine grain size is coated in a specific proportion. It is. [Prior Art] As is well known, electrogalvanized steel sheets, hot-dip galvanized steel sheets, and various alloy-plated steel sheets are widely used in automobiles, home appliances, building materials, and the like. Under these circumstances, in recent years, there has been an increasingly strong demand for surface-treated materials with particularly excellent corrosion resistance, and the demand for such steel sheets is likely to increase further in the future. For example, in the home appliance industry, there is a demand for a steel plate with excellent corrosion resistance that can be used bare and omit painting from the viewpoint of process and cost savings. In addition, recent environmental changes in the automobile industry include corrosion caused by rock salt, which is sprayed to prevent roads from freezing in winter in North America and Northern Europe, and corrosion caused by acid rain caused by the generation of SO 2 gas in industrial areas. Vehicle bodies are exposed to severe corrosive environments, and from a safety standpoint, there is a strong demand for surface-treated steel sheets with excellent corrosion resistance. In order to solve these problems, various studies have been made and many products have been developed. Until now, galvanizing has been carried out to improve the corrosion resistance of steel sheets. Galvanized steel sheets prevent corrosion of the steel sheet through the sacrificial anticorrosive action of zinc, and in order to obtain corrosion resistance, the amount of zinc deposited must be increased. For this reason, there are several problems such as an increase in the cost of the required amount of zinc and a decrease in workability, weldability, and productivity. Additionally, galvanized steel sheets generally have poor paint adhesion. As a method for improving the corrosion resistance of such galvanized steel sheets, various alloy-plated steel sheets have been developed. For example, these alloy-plated steel sheets include
Zn-Ni series, Zn-Ni-Co series, Zn-Ni-Cr series, Zn
-Fe system, Zn-Co system, Zn-Mn system, etc. can be mentioned. It is recognized that these alloy platings improve the corrosion resistance of bare steel sheets by about 3 to 5 times compared to ordinary galvanized steel sheets. However, the problem is that white rust or red rust is likely to occur if left outdoors for a long period of time or if water or salt water is sprayed on it. There is also a method of applying chromate treatment after plating to improve corrosion resistance, which is quite effective, but in high temperature, high humidity or salt-containing atmospheres,
White rust occurs after 150 hours. In order to further improve corrosion resistance, various resins are applied to the chromate-treated zinc-plated steel sheets.
So-called simple pre-coated steel sheets (hereinafter referred to as organic composite steel sheets) have been developed and some are commercially available. An example is listed below. JP-A-58-210190, JP-A-58-210192 Chromate treatment is applied to a zinc-based alloy single-layer plating or double-layer plating, and conductive substances (Zn, Al,
A weldable coated steel plate coated with a resin paint containing (Sn, Fe, Ni, Co, Cr, Mn) for the purpose of improving weldability, paint film adhesion, and corrosion resistance. JP-A-58-224174 A method for producing highly corrosion-resistant rust-preventive coated steel sheets in which the surface of a zinc alloy-plated steel sheet is subjected to paint-on chromate treatment, and then treated with a composite organic silicate resin solution without washing with water. For the purpose of improvement. JP-A-59-116397 The steel plate has a highly corrosion-resistant electroplated layer such as Ni-Zn or Fe-Zn as the first layer on both sides, and a thin electroplated layer such as Fe-Zn on one side as the second layer. The coating layer is made of a highly corrosion-resistant and rust-preventing steel plate that has a resin containing conductive pigments or a resin film with a thickness of 0.5 to 3.0μ on the other side, and the outer side has corrosion resistance and paint adhesion, and the inner side has spot weldability. , for the purpose of imparting processability. Japanese Patent Publication No. 61-36587 This is a surface treatment method for electrogalvanized steel sheets in which a chromate film is formed on the surface of the electrogalvanized steel sheet, and then a special resin aqueous solution containing colloidal silica is applied and dried to improve fingerprint resistance. , paint adhesion, hardness,
Aimed at improving corrosion resistance. JP-A-60-149786 A processing method that is different from the above-mentioned JP-B No. 61-36587, the base plating is limited to a zinc-based alloy, and a resin different from that of JP-A-61-36587 is used. This is a surface treatment method that adds even more corrosion resistance and solvent resistance to the above. JP-A No. 61-167545 A high-quality zinc-based alloy plated layer in which a chromate treatment is applied to a zinc-based alloy plating layer, and a paint containing one or both of hard metal powder, hard carbonized powder, and zinc powder is applied thereon. Corrosion-resistant weldable painted steel plate designed to improve corrosion resistance and weldability. All of the above-mentioned steel sheets are called organic composite steel sheets, and have improved various properties. [Problems to be solved by the invention] However, even in these cases, the corrosion resistance cannot necessarily be said to be sufficient in a harsh corrosive environment, and
If the thickness of the outermost resin layer is increased to ensure corrosion resistance, welding becomes difficult. Furthermore, organic coatings are generally prone to scratches during continuous pressing or bead processing, so build-up is likely to occur, and it is difficult to stably ensure corrosion resistance. Therefore, it cannot be practically used as a rust-preventing steel plate for automobile bodies. As described above, conventional organic composite steel sheets have been insufficient to simultaneously have excellent corrosion resistance, weldability, and workability (continuous pressability and bead workability). In contrast, the present invention provides an organic composite steel sheet that has ultra-high corrosion resistance, is excellent in welding, and has extremely excellent workability. [Means for Solving the Problems] The present invention has a plating layer as a first layer on the surface of a steel sheet, and an electrolytic chromate layer as a second layer, and this chromate layer has Cr 2 O in the chromate layer. The ratio of 3 is 60% or more and the total chromium amount is 40 to 120 mg/m 2
belongs to. And as the third layer, the particle size is 1~
This is an organic composite steel sheet having a 0.5-3μ thick water-based resin layer made of an olefin/acrylic acid copolymer with an olefin copolymerization ratio of 70-95% and containing 15-40 (wt)% colloidal silica of 10mμ. The basic structure of the organic composite steel sheet of the present invention has the above-mentioned first to third layers on both sides of the steel sheet, as shown in FIG. 18a. Here, the plating layer refers to Zn, Sn, Cu, Cr, Ni,
Co may be plated alone or with two or more alloys selected from these, and plating may be carried out alone or in multiple layers, but Zn--Ni alloy plating is most preferred. Details will be explained below. [Electrolytic Chromate Layer] As a result of detailed study, the present inventors found that the chromate layer formed on the surface of a plated steel sheet must satisfy the following conditions. In other words, it must be an electrolytic chromate layer mainly composed of Cr 2 O 3 . Generally, with coated or reactive chromate, the film is formed mainly through a substitution reaction with ions eluted from the plating layer, so it is difficult to form a strong film that can withstand harsh processing.For example, chromate film When an organic film is formed on the material and pressed, the chromate film is maintained during light processing, but when the processing is severe, the chromate film itself is destroyed and the organic film peels off. On the other hand, with electrolytic chromate, the film is formed mainly by the precipitation of ions from the chromate bath, so a strong and dense film is likely to be formed. Therefore, electrolytic chromate is more advantageous as a chromate film that can be processed. However, as a result of detailed study by the present inventors, we found that chromate for the base of organic composite steel sheets cannot be used unless the ratio of Cr 2 O 3 in the film formed in electrolytic chromate satisfies the following conditions. I found out that this is not the case. Cr 2 O 3 amount in chromate film / total chromate film amount x 100
=60% or more In other words, the electrolytic chromate layer in the present invention is
It is mainly composed of Cr 2 O 3 and suppresses the formation of residual metallic chromium and chromium hydroxide that form the chromate layer. By forming an electrolytic chromate film that satisfies the above conditions on a plated steel sheet and then forming a special organic film thereon, an organic composite steel sheet with excellent properties can be obtained. The method for analyzing Cr 2 O 3 in the electrolytic chromate layer is to apply X-rays or electron beams while sequentially removing the chromate layer, measure and integrate the binding energy of each component, and separate the waveforms. The amount of Cr 2 O 3 was calculated using the following method. Figure 1 shows the total amount of chromium deposited on a Zn-Ni alloy coated steel sheet with various proportions of Cr 2 O 3 in the chromate film, 70 mg/
An electrolytic chromate layer of m 2 (constant) is applied, and on top of that, colloidal silica with a particle size of 5 to 7 mμ is added to an aqueous resin dispersion of olefin/acrylic acid copolymer resin with an olefin copolymerization ratio of 80%. 20%
After drying the aqueous liquid adjusted to (wt%)
Cr2 in the chromate layer
This figure shows the relationship between the amount of O 3 and the removability of the organic film after press working. Here, the test conditions were a blank diameter of 90 mmφ, a die surface roughness of #120, and press processing was performed under the conditions shown in Figure 2.
The peelability of the film was investigated. In the figure, 1 indicates a steel plate, A indicates a punch, and B indicates a die. The state of peeling of the film was evaluated by peeling off the tape from the processed area after processing and determining the blackening rate of the tape (the more the film peels off, the higher the blackening rate). As is clear from Figure 1, the adhesion of the organic film during processing varies greatly depending on the proportion of Cr 2 O 3 in the electrolytic chromate layer, and excellent adhesion is ensured when the Cr 2 O 3 content is 60% or more. Ru. Furthermore, FIG. 3 shows the corrosion resistance of a flat plate treated in the same manner. The corrosion resistance was determined by a salt spray test in accordance with the JIS-Z-2371 standard (salt water concentration 5%, tank temperature
The rusting condition after 4000 hours (35°C, spray pressure 20psi) was investigated and evaluated in five grades: ◎, ○, △, ×, and XX, with ◎ being the best. ◎: Red rust occurrence 0% ○:〃 0~1% △:〃 1~10% ×:〃 10~50% XX:〃 50% or more As is clear from Figure 3, Cr 2 O in the electrolytic chromate layer The corrosion resistance of the organic composite steel plate in the processed part varies greatly depending on the ratio of 3 , and excellent corrosion resistance is ensured when Cr 2 O 3 is 60% or more. Figure 4 shows a Zn-Ni alloy coated steel sheet with the proportion of Cr 2 O 3 in the electrolytic chromate layer kept constant at 90%, the total amount of chromium deposited is changed, and the same as in Figure 1 is applied. This figure shows the relationship between the total amount of chromium deposited and the peelability of the film after press working when 1.5μ of organic resin is applied. As is clear from Figure 4, the total amount of chromium deposited is 40 mg/m 2 ~
The peelability of the film is good at 120 mg/m 2 . Further, the flat plate corrosion resistance of the same treated material is shown in FIG. 5 (the test method is the same as in FIG. 3). The total amount of chromium deposited was 40 mg/m 2 to 120 mg/m 2 , showing good corrosion resistance of the flat plate. From the above results, the optimum total amount of chromium deposited in the electrolytic chromate layer is 40 to 120 mg/ m2 . The method of obtaining an electrolytic chromate layer containing 60% or more of Cr 2 O 3 in the present invention is, for example, by electrolytic treatment using a Cr 2 O 3 -heavy metal ion-halogen bath. Specific methods, such as concentration ranges, are proposed as a method for surface treatment of metals, for example, in Japanese Patent Publication No. 14457/1983. The adoption of the electrolytic chromate treatment method as the chromate treatment in the production of organic composite steel sheets is disclosed in the above-mentioned Japanese Patent Laid-Open No. 58-210190 and Japanese Patent Laid-Open No. 58-1989.
It is described in Publication No. 210912. However, in the conventional electrolytic chromate treatment, as in the present invention, the ratio of Cr 2 O 3 in the chromate film and the adhesion of the organic film,
Nothing is disclosed regarding the relationship with corrosion resistance. [Plating layer] On the other hand, as a result of forming the electrolytic chromate layer of the present invention for various platings, the present inventors found that when Ni is included in the plating, the electrolytic chromate layer is chemically degraded by the presence of Ni. It was found that a stable and dense film was formed. Figure 6 shows the elution of chromium when EG (electrogalvanized steel sheet), Zn-Fe alloy-plated steel sheet, and Zn-Ni alloy-plated steel sheet are subjected to the known CrO 3 −SO 4 --- based chromate treatment. It shows the gender. The Cr 2 O 3 content in the formed chromate layer was around 40%. In addition, Figure 7 shows the results of electrolytic chromate treatment of EG, Zn-Fe alloy-plated steel sheets, Zn-Ni alloy-plated steel sheets, and Ni thin-plated steel sheets using the aforementioned CrO 3 -heavy metal ion-halogen system. This shows the elution of chromium in the layer. The Cr 2 O 3 content of the formed chromate layer was around 80%. As shown in Figures 6 and 7, a stable chromate layer that is difficult to dissolve is formed due to the presence of Ni in the plating, but it is especially clear from Figure 7 that Cr 2
A chromate layer with a high O 3 ratio is more stable and less soluble than a chromate layer with a low Cr 2 O 3 ratio (Figure 6) due to the presence of Ni in the base material. be. Figure 8 shows EG, Zn-Fe alloy coated steel sheets and Zn
- Chromate treatment of Ni-based alloy plated steel sheet with conventional CrO 3 SO 4 -based bath (Cr 2 O 3 40%) and CrO 3 -heavy metal ion-halogen based bath (Cr 2 O 3 80%) according to the present invention This shows the corrosion resistance when The evaluation method is the same as in Figure 3, but the salt spray time is
The rusting status after 600 hours was investigated and similarly evaluated on a five-point scale. As is clear from Figure 8, the electrolytic chromate layer with a high Cr 2 O 3 ratio (approximately 80%) forms a dense film with high coverage due to the presence of Ni in the material, and has extremely excellent corrosion resistance. It shows. These effects of Ni only need to be present in the plating layer in any plating system, and the same effects can be obtained even if Ni is flash plated on a plating layer that does not contain Ni or on a cold-rolled steel sheet. Effects can be obtained. [Colloidal silica-containing olefin/acrylic acid copolymerized water-based resin layer] Next, Figure 9 shows an electrolytic chromate layer (with a Cr 2 O 3 ratio of 90% and a total Cr
Colloidal silica with a particle size of 5 to 7 mμ is applied to an aqueous resin dispersion of olefin/acrylic acid copolymer resin with various copolymerization ratios of olefin and acrylic acid. The relationship between the copolymerization ratio of olefin and acrylic acid and paint adhesion is shown when three coats of paint are applied to a test piece coated with an aqueous solution containing 20% of acrylic acid to a thickness of 1.5μ after drying. . For the paint adhesion test, cationic ED was applied to the above test piece.
The coating was 20 μm, and the intermediate coat and top coat were each 30 μm each. After that, it was immersed in distilled water at 50°C for 10 days, and then the paint film was cut into 2 mm squares and peeled off with tape, and the peeled area was evaluated. ◎: Peeling area 0% ○: 0-1% △: Peeling area 1-10% ×: 10-50% XX: 50% or more As is clear from Figure 9, olefin/acrylic acid copolymer When the copolymerization ratio of olefin in the resin is 70% or more, extremely excellent paint adhesion is exhibited. Furthermore, FIG. 10 shows the results of the corrosion resistance of a bare flat plate without coating when the copolymerization ratio of olefin/acrylic acid was changed. Corrosion resistance is the same as in Figure 3.
It was conducted in accordance with the JIS-Z-2371 standard. As is clear from FIG. 10, when the copolymerization ratio of olefin in the olefin/acrylic acid copolymer resin is 70% or more, it exhibits extremely excellent corrosion resistance, and when it is 95% or more, the corrosion resistance slightly decreases. From the above results, the range in which the olefin/acrylic acid copolymer resin satisfies paint adhesion and corrosion resistance at the same time is an olefin copolymerization ratio of 70 to 95%. Next, the addition of colloidal silica to the aqueous resin dispersion of olefin/acrylic acid copolymer resin will be described. It is already a well-known fact that colloidal silica is included in an organic resin film, and is also disclosed in the aforementioned Japanese Patent Publication No. 61-36587 and Japanese Patent Application Laid-Open No. 60-149786, which increases the hardness of an organic resin film. Colloidal silica is added to. However, as a result of detailed studies, the present inventors found that adding a specific amount of fine colloidal silica to an aqueous resin dispersion of olefin/acrylic acid copolymer resin improves the lubricity of the film, rather than adding it to other types of resin. It has been found that the lubricity of the film is significantly improved, and that the lubricity of the film is further improved when the olefin copolymerization ratio of the olefin/acrylic acid copolymer resin falls within a specific range. Figure 11 shows an electrolytic chromate layer (Cr 2 O 3 ratio of 90%, total Cr coating amount of 70 mg/m 2 ) formed on a Zn-Ni alloy plated steel sheet, and a co-coated layer of olefin and acrylic acid deposited on top of it. Colloidal silica with different particle sizes was added to an aqueous resin dispersion of olefin/acrylic acid copolymer resin with a different polymerization ratio to give a concentration of 20%, and after drying, it was coated to a particle size of 1.5μ. This figure shows the relationship between the polymerization ratio, the particle size of colloidal silica, and sliding resistance. As is clear from FIG. 11, the sliding resistance is significantly affected by the particle size of colloidal silica, and when the particle size of colloidal silica is 1 to 10 mμ, the sliding resistance is significantly reduced. That is, the lubricity of the film is greatly improved. On the other hand, the effectiveness of ultrafine colloidal silica also depends on the copolymerization ratio of olefin;
The strongest effect appears in the 70-95% range. Moreover, FIG. 12 shows the corrosion resistance of the processed portion of the same test piece in FIG. 11 after press working. The evaluation is the same as in Figure 3. As is clear from FIG. 12, the corrosion resistance of the processed part is significantly affected by the particle size of colloidal silica, and the corrosion resistance is greatly improved when the particle size of colloidal silica is in the range of 1 to 10 mμ. Further, the effect of ultrafine colloidal silica is influenced by the copolymerization ratio of olefin, and the effect is most pronounced when the copolymerization ratio is in the range of 70 to 95%. Furthermore, Figure 13 shows how the weldability (continuous spot weldability) changes using the same test piece as in Figure 11 (however, the olefin/acrylic acid copolymerization ratio is constant at 80%). . The continuous welding test was evaluated by continuous welding points until the nugget diameter reached 4 mmφ. ◎: 5000 points or more ○: 4500-5000 points △: 4000-4500 points ×: 3500-4000 points ××: 3500 points or less As is clear from Figure 13, weldability is significantly affected by the particle size of colloidal silica. Weldability is greatly improved when the grain size of the receiving colloidal silica is in the range of 1 to 12 mμ. From the above results, the best sliding resistance, corrosion resistance of processed parts, and weldability can be achieved at the same time when the olefin/acrylic acid copolymer resin has an olefin copolymerization ratio of 70 to 95% and a particle size of colloidal silica. The optimum value is 1 to 10 mμ. Next, Figure 14 shows that an electrolytic chromate layer (Cr 2 O 3 ratio of 90% and total chromium deposition amount of 70 mg/m 2 ) is formed on a Zn-Ni alloy-plated steel sheet, and olefin copolymerization is applied on top of it. Colloidal silica of 5 to 7 mμ was mixed in various ratios to olefin/acrylic acid copolymer resin with a ratio of 80%, and applied to 1.5μ, and the relationship between the mixing ratio of colloidal silica and sliding resistance was determined. It is. As is clear from FIG. 14, the sliding resistance is affected by the amount of colloidal silica added, and when the amount of colloidal silica is 15% or more, the sliding resistance is significantly reduced. However, if it exceeds 40%, although the sliding resistance effect is maintained, colloidal silica builds up during continuous pressing, which is not desirable. FIG. 15 shows the corrosion resistance of the processed portion of the same test piece as in FIG. 14 after press working. The evaluation is the same as in Figure 3. As is clear from FIG. 15, the corrosion resistance of the processed part is significantly affected by the amount of colloidal silica added, and excellent corrosion resistance is exhibited when the amount of colloidal silica added is 15 to 40%. From the above results, the amount of colloidal silica added to the olefin/acrylic acid copolymer resin is 15 to 40.
%. As mentioned above, the inclusion of colloidal silica in an organic film for the purpose of improving the hardness of the organic film is disclosed in the above-mentioned Japanese Patent Publication No. 36587/1983 and Japanese Patent Application Laid-open No. 60/1983.
It is known from Japanese Patent Laid-open No. 149786, and on the other hand, it is also known to incorporate metal powder etc. into an organic film in order to improve the weldability of the organic film. It is known from the official gazette. In contrast, in the present invention, by selecting colloidal silica with a particle size of 1 to 10 mμ and incorporating it into a specific organic film, we have simultaneously achieved lubricity, corrosion resistance of processed parts, and weldability. This is significantly different from the conventional technology. On the other hand, FIG. 16 shows organic composite steel sheets with a conventional organic film (urethane) and a 5-
This figure shows the continuous spot weldability of an olefin/acrylic acid copolymer resin containing 20% ultrafine colloidal silica particles with a diameter of 7 mμ when the thickness of the organic film is varied. As is clear from Figure 16, weldability of ordinary organic films decreases when the film thickness exceeds 0.5 μm, whereas the film according to the present invention can be easily welded to a thickness of 3.0 μm, and has significantly improved weldability. I can see that it has improved. Next, FIG. 17 shows the relationship between the film thickness and corrosion resistance of the organic film in the present invention. As is clear from FIG. 17, excellent corrosion resistance is exhibited when the film thickness is 0.5μ or more. Based on the above weldability and corrosion resistance test results, in the present invention, the thickness of the organic film is set to 0.5 to 3.0 μm. The basic structure of the organic composite steel sheet of the present invention is shown in Figure 18a.
As shown in , the steel plate 1 has three layers on both sides: a first layer (plating 2), a second layer (electrolytic chromate layer 3), and a third layer (organic film 4 containing colloidal silica). The steel sheet as a whole has high corrosion resistance, and when this steel sheet is used as a rust-preventing steel sheet for an automobile body, an organic film is present under the outer coating, so that low-temperature chipping resistance is improved. However, in the present invention, the first
Also includes those shown in Figures 8 b and c. That is, Fig. 18b
has the first to third layers on one side only, and the other side is the steel plate surface 5, Figure 18c has the first to third layers on only one side, Other side plating layer 2
It has a plating surface 6. Further, in some cases, as shown in b and c, an electrolytic chromate layer 7 having the same composition as the second electrolytic chromate layer 3 may be formed on the steel plate surface 5 or the plating surface 6. In this case, the total amount of chromium in the electrolytic chromate layer 7 is desirably 3 mg/m 2 or less in view of the chemical conversion properties shown in FIG. 19. [Example] Examples will be described below. Example 1 Cr 2 in the chromate film was applied to a Zn-Ni alloy coated steel sheet (NI = 11.0%) with a plating weight of 20 g/m 2
Electrolytic chromate treatment is applied so that the O 3 content is 90% and the total chromium adhesion amount is 60 mg/m 2 (treatment conditions are described later, the same applies hereinafter), and then olefin/acrylic acid with an olefin copolymerization ratio of 80% is applied. An aqueous solution containing colloidal silica with a particle size of 5 to 7 mμ adjusted to 20% (wt%) is applied onto the aqueous resin dispersion of the copolymer resin, and dried to yield 1.5 g/m 2 .
A film was formed so that Example 2 Total chromium adhesion with 95% Cr 2 O 3 in the chromate film on a Zn-Ni-Co alloy plated steel sheet (Ni = 11.5%, Co = 0.3%) with a plating weight of 20 g/m 2 Electrolytic chromate treatment is applied to the amount of 70 mg/ m2 , and on top of that, colloidal particles with a particle size of 1 to 3 mμ are added to an aqueous resin dispersion of olefin/acrylic acid copolymer resin with an olefin copolymerization ratio of 85%. silica
An aqueous solution adjusted to 30% (weight %) was applied thereon and dried to form a film having a concentration of 1.3 g/m 2 . Example 3 Electrolytic chromate treatment was applied to a Zn-Fe alloy coated steel sheet with a plating weight of 20 g/m 2 so that the Cr 2 O 3 in the chromate film was 75% and the total chromium adhesion was 90 mg/m 2 Then, colloidal silica with a particle size of 4 to 5 mμ was adjusted to 35% (wt%) in an aqueous resin dispersion of olefin/acrylic acid copolymer resin with an olefin copolymerization ratio of 95%. Apply the aqueous solution on top of it and dry it to give 1.0g/m 2
A film was formed so that Example 4 Total chromium adhesion with 90% Cr 2 O 3 in the chromate film on a Zn-Ni-Cr alloy coated steel sheet (Ni = 10.8%, Cr = 0.8%) with a plating weight of 20 g/m 2 Electrolytic chromate treatment is applied so that the amount is 70 mg/m 2 , and on top of that, colloidal particles with a particle size of 8 to 10 mμ are added to an aqueous resin dispersion of olefin/acrylic acid copolymer resin with an olefin copolymerization ratio of 82%. An aqueous solution containing 17% silica (by weight) was applied thereon and dried to form a film having a concentration of 1.8 g/m 2 . Example 5 Cr 2 in the chromate film was applied to a Zn-Mn alloy plated steel sheet (Mn = 32%) with a plating weight of 20 g/m 2
An aqueous resin dispersion of olefin/acrylic acid copolymer resin, which is electrolytically chromated so that the O 3 content is 95% and the total chromium adhesion is 105 mg/m 2 , and the olefin copolymerization ratio is 78%. An aqueous solution containing 25% (weight %) colloidal silica having a particle size of 4 to 6 mμ was applied thereon and dried to form a film having a concentration of 2.0 g/m 2 . Example 6 A Zn-Fe alloy plated steel plate (Mn=32%) with a plating weight of 20 g/m 2 was flat-plated with 150 mg/m 2 of Ni, and Cr 2 O 3 in the chromate film was then plated on top of it.
Electrolytic chromate treatment is applied so that the total amount of chromium deposited is 85mg/ m2 at 90%, and then the particle size is added to an aqueous resin dispersion of olefin/acrylic acid copolymer resin with an olefin copolymerization ratio of 85%. 2~
An aqueous solution containing 4 mμ of colloidal silica adjusted to 23% (wt%) was applied thereon and dried to form a film having a concentration of 1.8 g/m 2 . Example 7 A cold-rolled steel sheet was plated with 150 mg/m 2 of Ni flash, and electrolytic chromate treatment was applied thereto so that the Cr 2 O 3 in the chromate film was 98% and the total amount of chromium deposited was 80 mg/m 2 . In addition, colloidal silica with a particle size of 1 to 2 mμ was adjusted to 30% (wt%) in an aqueous resin dispersion of olefin/acrylic acid copolymer resin with an olefin copolymerization ratio of 93%. Apply aqueous liquid on it and dry it to 2.0
A film was formed so that the weight was 1.2 g/m 2 . Example 8 Double-sided plated plate with a coating weight of 20g/ m2
Zn-Ni alloy plated steel plate (Ni = 11.2% on both sides)
Electrolytic chromate treatment was applied to one side of the chromate film so that the Cr 2 O 3 in the chromate film was 90% and the total chromium adhesion amount was 80 mg/m 2 , and on top of that an olefin/olefin copolymerization ratio of 85% was applied. An aqueous solution containing colloidal silica with a particle size of 4 to 6 mμ adjusted to 20% (wt%) is applied onto an aqueous resin dispersion of acrylic acid copolymer resin, and dried to give a 1.5 mμ
A film was formed so that the weight was 1.2 g/m 2 . In addition, a single-sided organic composite steel plate was manufactured in which the other side remained plated. Example 9 Double-sided plated plate with a coating weight of 20g/ m2
Zn-Ni alloy plated steel plate (Ni = 11.2% on both sides)
Electrolytic chromate treatment was applied to one side of the chromate film so that the Cr 2 O 3 in the chromate film was 90% and the total chromium adhesion amount was 75 mg/m 2 , and on top of that an olefin/olefin copolymerization ratio of 81% was applied. An aqueous solution of colloidal silica with a particle size of 3 to 5 mμ adjusted to 23% (wt%) is applied onto an aqueous resin dispersion of acrylic acid copolymer resin, and dried to give a 1.4% (wt%) aqueous solution.
A film was formed so that the weight was 1.2 g/m 2 . In addition, a one-sided organic composite steel sheet having a chromate layer with a chromium adhesion amount (remaining amount after removal) of 1.5 mg/m 2 on the other side was manufactured. Comparative Example 1 Zn-Ni alloy coated steel plate with a coating weight of 20 g/m 2 (Ni=11.0%). Comparative Example 2 A Zn-Ni alloy plated steel sheet (Ni = 11.5%) with a plating weight of 20 g/m 2 and a total Cr coating weight of 70
Steel plate coated with chromate treatment to achieve mg/ m2 . Comparative Example 3 A Zn-Ni alloy plated steel sheet (Ni = 10.9%) with a plating weight of 20 g/m 2 and a total Cr coating weight of 50
Reactive chromate treatment is applied to give a concentration of 1.3
A film was formed so that the weight was 1.2 g/m 2 . Comparative Example 4 A Zn-Ni alloy plated steel sheet (Ni = 11.2%) with a plating weight of 20 g/m 2 and a total Cr coating weight of 90
Apply chromate treatment to give 20% (wt%) of colloidal silica with a particle size of 17 to 20 mμ on the acrylic resin , and then dry it. A film was formed at a density of 1.2 g/m 2 . Comparative Example 5 A double-sided plated plate with a coating weight of 20g/ m2 .
Zn-Ni alloy plated steel plate (Ni = 11.3% on both sides)
Coating-type chromate treatment was applied to one side of the urethane resin so that the total amount of chromium deposited was 95 mg/ m2 , and colloidal silica with a particle size of 17 to 20 mμ was applied to the urethane resin.
% (weight %) was applied thereon and dried to form a film having a weight of 1.3 g/m 2 . In addition, a one-sided organic composite steel sheet having a chromate layer with a chromium adhesion amount (remaining amount after removal) of 4.5 mg/m 2 on the other side was manufactured. Electrolytic chromate method: Bath composition: CrO3 50g/Co ++ 1~4g/Cl - 0.05~0.4g/(Controlled according to the amount of Cr2O3 ) Bath temperature: 55℃ D K : 5A/dm 2 Electricity :3~ depending on the total amount of chromium deposited
Table 1 shows the results of various tests conducted on the surface-treated steel sheets obtained in Examples 1 to 9 and Comparative Examples 1 to 5, controlled at 10 C/dm 2 .

【表】【table】

【表】 各種試験条件は次の通りである。 (a) 平板耐食性 JIS−Z−2321に準拠した塩水噴霧試験により
2000h後の白錆発生率(%)及び4000h後の赤錆
発生率(%)を求めた。 (b) 加工耐食性 円筒プレス加工後、加工部(側面部)をJIS−
Z−2321に準拠した塩水噴霧試験により2000h後
の白錆発生率(%)及び4000h後の赤錆発生率
(%)を求めた。 (c) 塗料密着性 評価方法は第9図に準じて実施した。 (d) スポツト溶接性 評価方法は第13図に準じて実施した。 (e) 摺動抵抗 評価方法は第11図に準じて実施した。 (f) 皮膜密着性 評価方法は第2図に準じて実施した。 (g) 化成処理性 市販の化成処理浴(リン酸塩)を用い標準条件
で処理し、外観観察により評価した。評価方法は
次の通りである。 ◎:化成皮膜正常 面積0% ○:発生面積 0〜1% △:〃 1〜10% ×:〃 10〜50% ××:〃 50〜100% [発明の効果] 従来、平板及び加工部耐食性、塗料密着性、溶
接性、加工性を同時に十分満足する有機複合鋼板
を得ることは困難であつた。これに対し本発明
は、めつき鋼板にクロメート皮膜中のCr2O3の割
合が60%以上で、トータルクロム付着量が40〜
120mg/m2となるように電解クロメート層を形成
し、さらにその上にオレフインの共重合比が70〜
95%からなるオレフイン/アクリル酸共重合体樹
脂の水系樹脂分散体に1〜10mμのコロイダルシ
リカを15〜40%となるように調整した水性液を塗
布し、乾燥して皮膜を形成することにより、上記
いずれの性能にもいちじるしく優れた有機複合鋼
板を製造することができるものである。 したがつて本発明による有機複合鋼板は、その
優れた性能から特に自動車用車体防錆鋼板に最適
であり、その経済的効果はきわめて大なるもので
ある。
[Table] Various test conditions are as follows. (a) Corrosion resistance of flat plate By salt spray test in accordance with JIS-Z-2321
The white rust occurrence rate (%) after 2000 hours and the red rust occurrence rate (%) after 4000 hours were determined. (b) Processing corrosion resistance After cylindrical press processing, the processed part (side part) is JIS-
The white rust occurrence rate (%) after 2000 hours and the red rust occurrence rate (%) after 4000 hours were determined by a salt spray test based on Z-2321. (c) Paint adhesion The evaluation method was performed according to Figure 9. (d) Spot weldability The evaluation method was carried out in accordance with Fig. 13. (e) Sliding resistance The evaluation method was carried out according to Fig. 11. (f) Film adhesion The evaluation method was performed according to Figure 2. (g) Chemical conversion treatment property It was treated under standard conditions using a commercially available chemical conversion treatment bath (phosphate) and evaluated by observing the appearance. The evaluation method is as follows. ◎: Normal chemical conversion coating area 0% ○: Occurrence area 0-1% △:〃 1-10% ×:〃 10-50% However, it has been difficult to obtain an organic composite steel sheet that satisfies paint adhesion, weldability, and workability at the same time. In contrast, in the present invention, the proportion of Cr 2 O 3 in the chromate film on the plated steel sheet is 60% or more, and the total amount of chromium deposited is 40~40%.
An electrolytic chromate layer is formed with a copolymerization ratio of 120mg/ m2 , and an olefin copolymerization ratio of 70~70 is formed on top of it.
By applying an aqueous solution containing 15 to 40% colloidal silica of 1 to 10 mμ to an aqueous resin dispersion of 95% olefin/acrylic acid copolymer resin, and drying to form a film. , it is possible to produce an organic composite steel sheet that is extremely excellent in all of the above performances. Therefore, the organic composite steel sheet according to the present invention is particularly suitable for rust-preventing steel sheets for automobile bodies due to its excellent performance, and its economical effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は有機複合鋼板における電解クロメート
層中のCr2O3の割合とプレス加工後の皮膜の剥離
性との関係を示した図、第2図は第1図の試験に
用いた材料の円筒絞り加工法を示す図、第3図は
第1図と同様の有機複合鋼板の平板耐食性を示し
た図であり、電解クロメート層中のCr2O3の割合
と耐食性との関係を示したものである。第4図は
有機複合鋼板における電解クロメート層のトータ
ルクロム付着量とプレス加工後の皮膜の剥離性
(黒化率)との関係を示す図、第5図は第4図と
同様にトータルクロム付着量と平板耐食性の関係
を示す図、第6図はEG(電気亜鉛めつき鋼板)、
Zn−Fe系合金めつき鋼板及びZn−Ni系合金めつ
き鋼板に公知のクロメート処理した場合のクロム
の溶出性を示した図、第7図はEG,Zn−Fe系合
金めつき鋼板、Zn−Ni系合金めつき鋼板及び薄
Niめつき鋼板に本発明における電解クロメート
層を形成した場合のクロムの溶出性を示した図、
第8図はEG,Zn−Fe系合金めつき鋼板及びZn−
Ni系合金めつき鋼板に従来のクロメート層及び
本発明における電解クロメート層を形成した場合
の耐食性を示す図、第9図はオレフイン/アクリ
ル酸共重合体樹脂においてオレフインとアクリル
酸の共重合比をかえた場合の塗料密着性に与える
影響を示した図、第10図はオレフイン/アクリ
ル酸共重合体樹脂においてオレフインとアクリル
酸の共重合比と耐食性の関係を示した図、第11
図はオレフインとアクリル酸の共重合比を種々か
えたオレフイン/アクリル酸共重合体樹脂の水系
樹脂分散体に粒度の異なるコロイダルシリカを20
%となるように調整し、乾燥後1.5μとなるように
塗布し、オレフインとアクリルの共重合比及びコ
ロイダルシリカの粒径と摺動抵抗の関係を示した
図、第12図は第11図と同様の場合における加
工部の耐食性を示した図、第13図はコロイダル
シリカの粒径と溶接性の関係を示した図、第14
図はコロイダルシリカの添加量と摺動抵抗の関係
を示した図、第15図はコロイダルシリカの添加
量と加工部の耐食性の関係を示した図、第16図
は有機皮膜の膜厚と溶接性との関係を示した図、
第17図は有機皮膜の膜厚と耐食性の関係を示し
た図、第18図a,b,cは本発明の有機複合鋼
板の断面図、第19図は第18図b,cにおいて
鋼板面又はめつき面に電解クロメート層を形成す
る場合のトータルクロム付着量と化成処理性との
関係を示す図である。 1……鋼板、2……めつき層、3……電解クロ
メート層、4……含コロイダルシリカ有機皮膜、
5……鋼板面、6……めつき面、7……電解クロ
メート層(トータルクロム量≦3mg/m2)。
Figure 1 shows the relationship between the ratio of Cr 2 O 3 in the electrolytic chromate layer of an organic composite steel sheet and the peelability of the film after press working, and Figure 2 shows the relationship between the ratio of Cr 2 O 3 in the electrolytic chromate layer of an organic composite steel sheet and the peelability of the film after press working. Figure 3, which shows the cylindrical drawing method, is a diagram showing the flat plate corrosion resistance of an organic composite steel sheet similar to Figure 1, and shows the relationship between the proportion of Cr 2 O 3 in the electrolytic chromate layer and corrosion resistance. It is something. Figure 4 is a diagram showing the relationship between the total amount of chromium deposited in the electrolytic chromate layer of an organic composite steel sheet and the peelability (blackening rate) of the film after press working. A diagram showing the relationship between corrosion resistance and flat plate corrosion resistance, Figure 6 is EG (electrogalvanized steel plate),
Figure 7 shows the elution of chromium when Zn-Fe alloy coated steel sheets and Zn-Ni alloy coated steel sheets are subjected to known chromate treatment. −Ni-based alloy plated steel plate and thin
A diagram showing the elution of chromium when an electrolytic chromate layer according to the present invention is formed on a Ni-plated steel sheet,
Figure 8 shows EG, Zn-Fe alloy coated steel sheets and Zn-
Figure 9 shows the corrosion resistance when a conventional chromate layer and an electrolytic chromate layer according to the present invention are formed on a Ni-based alloy plated steel sheet. Figure 10 is a diagram showing the effect on paint adhesion when changing the temperature. Figure 10 is a diagram showing the relationship between the copolymerization ratio of olefin and acrylic acid and corrosion resistance in olefin/acrylic acid copolymer resin.
The figure shows colloidal silica with different particle sizes added to an aqueous resin dispersion of olefin/acrylic acid copolymer resin with various copolymerization ratios of olefin and acrylic acid.
Figure 12 shows the relationship between the copolymerization ratio of olefin and acrylic, the particle size of colloidal silica, and sliding resistance. Figure 13 is a diagram showing the corrosion resistance of the processed part in the same case as Figure 13 is a diagram showing the relationship between colloidal silica particle size and weldability, Figure 14 is a diagram showing the relationship between colloidal silica particle size and weldability.
Figure 15 shows the relationship between the amount of colloidal silica added and sliding resistance, Figure 15 shows the relationship between the amount of colloidal silica added and corrosion resistance of processed parts, and Figure 16 shows the relationship between organic coating thickness and welding. Diagram showing the relationship with gender,
Fig. 17 is a diagram showing the relationship between the thickness of the organic film and corrosion resistance, Fig. 18 a, b, and c are cross-sectional views of the organic composite steel sheet of the present invention, and Fig. 19 is a diagram showing the relationship between the thickness of the organic film and the corrosion resistance. Or it is a figure which shows the relationship between the total chromium adhesion amount and chemical conversion treatment property in the case of forming an electrolytic chromate layer on a plating surface. DESCRIPTION OF SYMBOLS 1... Steel plate, 2... Plated layer, 3... Electrolytic chromate layer, 4... Colloidal silica-containing organic film,
5... Steel plate surface, 6... Plating surface, 7... Electrolytic chromate layer (total chromium amount ≦3 mg/m 2 ).

Claims (1)

【特許請求の範囲】 1 鋼板の表面に、 第1層としてめつき層を有し、 第2層としてクロメート層中のCr2O3の割合が
60%以上でトータルクロム量が40〜120mg/m2
電解クロメート層を有し、更に第3層として1〜
10mμのコロイダルシリカを15〜40%含有するオ
レフイン共重合比が70〜95%のオレフイン/アク
リル酸共重合体よりなる0.5〜3μ厚の水系樹脂層
を有する、有機複合鋼板。 2 第1層のめつき層がNi薄めつき層である特
許請求の範囲第1項記載の有機複合鋼板。 3 第1層のめつき層がNiを含有する合金めつ
き層である特許請求の範囲第1項記載の有機複合
鋼板。 4 第1層のめつき層がZn−Ni系合金めつき層
である特許請求の範囲第3項記載の有機複合鋼
板。 5 第1層のめつき層がNiを含有しないめつき
と、Ni薄めつきの重層めつきである特許請求の
範囲第1項記載の有機複合鋼板。 6 第1層〜第3層を鋼板の両面に有する特許請
求の範囲第1項記載の有機複合鋼板。 7 第1層〜第3層を鋼板の片面に有し他面が鋼
板裸面である特許請求の範囲第1項記載の有機複
合鋼板。 8 鋼板面に電解クロメート層中のCr2O3の割合
が60%以上でトータルクロム量が3mg/m2以下の
電解クロメート層を有する特許請求の範囲第7項
記載の有機複合鋼板。 9 鋼板面にめつき層を有する特許請求の範囲第
7項記載の有機複合鋼板。 10 めつき層がNi薄めつき層である特許請求
の範囲第9項記載の有機複合鋼板。11 めつき
層がNiを含有する合金めつき層である特許請求
の範囲第9項記載の有機複合鋼板。 12 めつき層がZn−Ni系合金めつき層である
特許請求の範囲第9項記載の有機複合鋼板。 13 めつき層がNiを含有しないめつきと、Ni
薄めつきの重層めつきである特許請求の範囲第9
項記載の有機複合鋼板。 14 めつき層上に、電解クロメート皮膜中の
Cr2O3の割合が60%以上でトータルクロム量が3
mg/m2以下のクロメート層を有する特許請求の範
囲第9又は第10項記載の有機複合鋼板。
[Claims] 1. A plating layer is provided as a first layer on the surface of a steel plate, and a chromate layer has a ratio of Cr 2 O 3 as a second layer.
It has an electrolytic chromate layer with a total chromium content of 40 to 120 mg/m 2 at 60% or more, and an electrolytic chromate layer with a total chromium content of 40 to 120 mg/m2.
An organic composite steel sheet having a 0.5-3μ thick water-based resin layer made of an olefin/acrylic acid copolymer with an olefin copolymerization ratio of 70-95% and containing 15-40% colloidal silica of 10 mμ. 2. The organic composite steel sheet according to claim 1, wherein the first plated layer is a Ni thinned layer. 3. The organic composite steel sheet according to claim 1, wherein the first plating layer is an alloy plating layer containing Ni. 4. The organic composite steel sheet according to claim 3, wherein the first plating layer is a Zn-Ni alloy plating layer. 5. The organic composite steel sheet according to claim 1, wherein the first plating layer is a multi-layer plating of Ni-free plating and thin Ni plating. 6. The organic composite steel sheet according to claim 1, having the first to third layers on both sides of the steel sheet. 7. The organic composite steel sheet according to claim 1, wherein the first to third layers are formed on one side of the steel sheet and the other side is a bare surface of the steel sheet. 8. The organic composite steel sheet according to claim 7, which has an electrolytic chromate layer on the surface of the steel sheet in which the proportion of Cr 2 O 3 in the electrolytic chromate layer is 60% or more and the total amount of chromium is 3 mg/m 2 or less. 9. The organic composite steel sheet according to claim 7, which has a plating layer on the surface of the steel sheet. 10. The organic composite steel sheet according to claim 9, wherein the plating layer is a thin Ni plating layer. 11. The organic composite steel sheet according to claim 9, wherein the plating layer is an alloy plating layer containing Ni. 12. The organic composite steel sheet according to claim 9, wherein the plating layer is a Zn-Ni alloy plating layer. 13 Plating in which the plating layer does not contain Ni and Ni
Claim 9, which is multilayer plating with thinning
The organic composite steel sheet described in . 14 On the plating layer, the electrolytic chromate film
The ratio of Cr 2 O 3 is 60% or more and the total amount of chromium is 3
The organic composite steel sheet according to claim 9 or 10, which has a chromate layer of mg/m 2 or less.
JP62120531A 1987-05-18 1987-05-18 Organic composite steel sheet Granted JPS63283935A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62120531A JPS63283935A (en) 1987-05-18 1987-05-18 Organic composite steel sheet
US07/193,375 US4891273A (en) 1987-05-18 1988-05-12 Multiple coated composite steel strip
EP88107874A EP0291927B1 (en) 1987-05-18 1988-05-17 Multiple coated composite steel strip
CA000567040A CA1324975C (en) 1987-05-18 1988-05-17 Multiple coated composite steel strip
DE8888107874T DE3861626D1 (en) 1987-05-18 1988-05-17 MULTIPLE-COATED IRON SHEET.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62120531A JPS63283935A (en) 1987-05-18 1987-05-18 Organic composite steel sheet

Publications (2)

Publication Number Publication Date
JPS63283935A JPS63283935A (en) 1988-11-21
JPH0513828B2 true JPH0513828B2 (en) 1993-02-23

Family

ID=14788581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62120531A Granted JPS63283935A (en) 1987-05-18 1987-05-18 Organic composite steel sheet

Country Status (5)

Country Link
US (1) US4891273A (en)
EP (1) EP0291927B1 (en)
JP (1) JPS63283935A (en)
CA (1) CA1324975C (en)
DE (1) DE3861626D1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968391A (en) * 1988-01-29 1990-11-06 Nippon Steel Corporation Process for the preparation of a black surface-treated steel sheet
CA1328582C (en) * 1988-05-31 1994-04-19 Taizo Mohri Lubricating resin coated steel strips having improved formability and corrosion resistance
JPH02194946A (en) * 1989-01-23 1990-08-01 Nippon Steel Corp Organic composite plate steel panel having high cation electrodeposition properties
DE4424299A1 (en) * 1994-07-09 1996-01-11 Basf Lacke & Farben Multi-layer coated substrates and process for making these substrates
EP0776992A1 (en) * 1995-06-15 1997-06-04 Nippon Steel Corporation Surface-treated steel sheet having chemical conversion resin coating and process for producing the same
US5846660A (en) * 1996-01-10 1998-12-08 Nkk Corporation Organic composite coated steel plate
TW472089B (en) * 1996-09-17 2002-01-11 Toyo Kohan Co Ltd Surface treated steel sheet with low contact resistance and connection terminal material produced thereof
US7041385B2 (en) 1999-04-22 2006-05-09 Corus Aluminium Walzprodukte Gmbh Composite sheet material for brazing
AU751115B2 (en) 1999-04-22 2002-08-08 Corus Aluminium Walzprodukte Gmbh Composite sheet material for brazing
US7097897B1 (en) * 2000-08-07 2006-08-29 Illinois Tool Works Inc. Powder coated strap and method for making same
JP3883832B2 (en) * 2001-10-02 2007-02-21 セメダインヘンケル株式会社 Body panel with damping material and damping material application device
ES2663663T3 (en) * 2013-08-28 2018-04-16 Honda Motor Company Limited Component and / or fixing component that forms a black coating film for vehicle, and method of manufacture thereof
CN104741410B (en) * 2015-03-30 2016-10-05 河北钢铁股份有限公司 A kind of manufacture method of super-thick steel plate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914457A (en) * 1972-06-08 1974-02-07
JPS541335A (en) * 1977-06-07 1979-01-08 Kansai Paint Co Ltd Surface treatment composition of metal
JPS57185987A (en) * 1981-05-06 1982-11-16 Kawasaki Steel Corp Surface treatment of zinc electroplated steel plate
JPS5853069A (en) * 1981-09-22 1983-03-29 Fujitsu Ltd Magnetic disc device
JPS5890952A (en) * 1981-11-26 1983-05-30 住友金属工業株式会社 High corrosion-resistant laminated board
JPS58177476A (en) * 1982-04-12 1983-10-18 Kawasaki Steel Corp Surface treatment of steel plate electroplated with zinc
JPS6050180A (en) * 1983-08-31 1985-03-19 Nippon Kokan Kk <Nkk> Corrosion-preventive steel sheet for cationic electrodeposition painting
JPS6050179A (en) * 1983-08-31 1985-03-19 Nippon Kokan Kk <Nkk> Production of steel plate coated with highly corrosion- resistant film on one side
JPS60149786A (en) * 1984-01-17 1985-08-07 Kawasaki Steel Corp Surface treatment of zinc alloy electroplated steel sheet having superior corrosion resistance
JPS6250480A (en) * 1985-08-29 1987-03-05 Kawasaki Steel Corp Production of zn alloy plated steel sheet having excellent corrosion resistance, paintability, solvent resistance, alkali resistance and fingerprint resistance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287011A (en) * 1979-05-11 1981-09-01 Radiation Dynamics, Inc. Closure method
JPS6033192B2 (en) * 1980-12-24 1985-08-01 日本鋼管株式会社 Composite coated steel sheet with excellent corrosion resistance, paint adhesion, and paint corrosion resistance
DE3151115A1 (en) * 1980-12-24 1982-09-02 Nippon Kokan K.K., Tokyo Surface-coated strip steel of good corrosion resistance, paintability and corrosion resistance after application of paint
US4659394A (en) * 1983-08-31 1987-04-21 Nippon Kokan Kabushiki Kaisha Process for preparation of highly anticorrosive surface-treated steel plate
JPS6136587A (en) * 1984-07-25 1986-02-21 豊田合成株式会社 Hose
US4707415A (en) * 1985-03-30 1987-11-17 Sumitomo Metal Industries, Ltd. Steel strips with corrosion resistant surface layers having good appearance
US4775600A (en) * 1986-03-27 1988-10-04 Nippon Kokan Kabushiki Kaisha Highly corrosion-resistant surface-treated steel plate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914457A (en) * 1972-06-08 1974-02-07
JPS541335A (en) * 1977-06-07 1979-01-08 Kansai Paint Co Ltd Surface treatment composition of metal
JPS57185987A (en) * 1981-05-06 1982-11-16 Kawasaki Steel Corp Surface treatment of zinc electroplated steel plate
JPS5853069A (en) * 1981-09-22 1983-03-29 Fujitsu Ltd Magnetic disc device
JPS5890952A (en) * 1981-11-26 1983-05-30 住友金属工業株式会社 High corrosion-resistant laminated board
JPS58177476A (en) * 1982-04-12 1983-10-18 Kawasaki Steel Corp Surface treatment of steel plate electroplated with zinc
JPS6050180A (en) * 1983-08-31 1985-03-19 Nippon Kokan Kk <Nkk> Corrosion-preventive steel sheet for cationic electrodeposition painting
JPS6050179A (en) * 1983-08-31 1985-03-19 Nippon Kokan Kk <Nkk> Production of steel plate coated with highly corrosion- resistant film on one side
JPS60149786A (en) * 1984-01-17 1985-08-07 Kawasaki Steel Corp Surface treatment of zinc alloy electroplated steel sheet having superior corrosion resistance
JPS6250480A (en) * 1985-08-29 1987-03-05 Kawasaki Steel Corp Production of zn alloy plated steel sheet having excellent corrosion resistance, paintability, solvent resistance, alkali resistance and fingerprint resistance

Also Published As

Publication number Publication date
EP0291927B1 (en) 1991-01-23
CA1324975C (en) 1993-12-07
US4891273A (en) 1990-01-02
DE3861626D1 (en) 1991-02-28
EP0291927A1 (en) 1988-11-23
JPS63283935A (en) 1988-11-21

Similar Documents

Publication Publication Date Title
JP3418177B2 (en) Surface-treated steel sheet for fuel tank and method for producing the same
JPH0513828B2 (en)
JPH0212179B2 (en)
JPH0525679A (en) High corrosion resistance surface treated steel sheet excellent in impact adhesion resistance
JPS6026835B2 (en) Zinc-manganese alloy electroplated steel sheet with excellent corrosion resistance in salt water environments
JP2712924B2 (en) Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion, chemical conversion treatment and coating film adhesion
JPH0120057B2 (en)
JPH022422B2 (en)
JPH0765224B2 (en) Steel sheet with multi-layer plating with excellent processing method, corrosion resistance and water-resistant adhesion
JPH04337099A (en) High corrosion resistant surface treated steel sheet excellent in impact resistance and adhesion
JPS6340666B2 (en)
JPH07258895A (en) Double layer galvanized steel sheet excellent in press workability and corrosion resistance
JPH0120058B2 (en)
JPH0478529A (en) Highly corrosion-resistant surface-treated steel sheet
JPH0967660A (en) Production of galvanized steel sheet excellent in flawing resistance and corrosion resistance
JPH11350198A (en) Composite zinc alloy plated metal sheet and its production
JPH057477B2 (en)
JPH0711454A (en) Method for chromating metal by coating
JPH01162794A (en) Zinc-chromium-iron family metal electroplated steel sheet
JPH04304388A (en) Organic composite plated steel sheet of zn-cr-co system having excellent post-working corrosion resistance, painting corrosion resistance and end face rust preventing property
JPH0551788A (en) Zn-cr-p organic composite plated steel sheet having excellent post-working corrosion resistance, ed coating corrosion resistance and end face rust preventiveness
JPH04314884A (en) Zn-cr-sn-based organic composite plated steel sheet excellent in corrosion resistance after working, corrosion resistance of coating and rust preventing property of end face
JPH08225984A (en) Production of zinc-nickel alloy plated steel sheet excellent in plating appearance and adhesion and corrosion resistance
JPH0551790A (en) Zn-cr-ni-p organic composite plated steel sheet having excellent post-working corrosion resistance, coating corrosion resistance, pitting resistance, and end face rust preventiveness
JPH0551789A (en) Zn-cr-p organic composite plated steel sheet having excellent post-working corrosion resistance, ed coating corrosion resistance and pitting resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 15