JPH0120060B2 - - Google Patents

Info

Publication number
JPH0120060B2
JPH0120060B2 JP16105182A JP16105182A JPH0120060B2 JP H0120060 B2 JPH0120060 B2 JP H0120060B2 JP 16105182 A JP16105182 A JP 16105182A JP 16105182 A JP16105182 A JP 16105182A JP H0120060 B2 JPH0120060 B2 JP H0120060B2
Authority
JP
Japan
Prior art keywords
zinc
powder
magnesium alloy
coating film
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16105182A
Other languages
Japanese (ja)
Other versions
JPS5952645A (en
Inventor
Hisao Takamura
Takenori Deguchi
Hironori Ozawa
Yasuharu Maeda
Masatoshi Yokoyama
Koji Wakabayashi
Koichi Saneto
Hironori Maruyama
Hiroshi Narabe
Juntaro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Nisshin Steel Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP16105182A priority Critical patent/JPS5952645A/en
Publication of JPS5952645A publication Critical patent/JPS5952645A/en
Publication of JPH0120060B2 publication Critical patent/JPH0120060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はプレス加工などの加工時にパウダリン
グの発生が少いジンクリツチ系の溶接性塗装鋼板
に関する。 近年自動車車体の場合、下廻りやドアなど防食
を必要とする部分には冷延鋼板にクロメート系皮
膜を介してジンクリツチ塗料を塗装した溶接性塗
装鋼板が使用されている。従来この種の塗装鋼板
のジンクリツチ塗膜は亜鉛粉末を含有させただけ
のものであつたが、その防食性は溶融亜鉛めつき
鋼板や電気亜鉛めつき鋼板より優れている。しか
しジンクリツチ塗膜には通電性をもたせるため多
量(通常80重量%以上)の亜鉛粉末を含有させて
あるため、プレス加工時にパウダリングを起すと
いう欠点があつた。 本発明はこのジンクリツチ塗膜のパウダリング
の問題を改善したジンクリツチ系の溶接性塗装鋼
板を提供するものである。 本発明は亜鉛粉末高含有ジンクリツチ塗膜の耐
パウダリング性を向上させるべく種々検討を行つ
た結果、亜鉛粉末に亜鉛−マグネシウム合金粉末
を添加すると耐パウダリング性が改善され、かつ
防食性も向上するとの知見に基いてなされたもの
で、その要旨とするところは表面を粗化した鋼板
上にクロメート系皮膜を介して亜鉛粉末と亜鉛−
マグネシウム合金粉末とを60重量%以上含有する
ジンクリツチ塗膜を形成した点にある。 以下本発明を詳細に説明する。 本発明の塗装鋼板は模式的に示せば、添付図面
に示すように、鋼板1の表面にクロメート系皮膜
2が形成され、さらにその上に亜鉛粉末3と亜鉛
−マグネシウム合金粉末4とを含有するジンクリ
ツチ塗膜5が形成されたものである。 鋼板1としては通常冷延鋼板を用いるが、表面
を粗化したものを用いる。これはクロメート系皮
膜2の付着量を増大させて防食性を向上させた
り、あるいは溶接機のチツプと鋼板1の距離を短
くして通電しやすくしたり、さらにはジンクリツ
チ塗膜5にアンカー効果を付与させたりするため
のものである。この表面粗化としては平均表面組
度Rzで4〜20μが適当である。4μ未満であると前
記のような効果が得られず、20μを超えると塗膜
表面が肌荒れを起し防食性が低下したり、加工の
際塗膜歪が凸部に集中して塗膜剥離を起しやすく
なる。 クロメート系皮膜2は反応型クロメート処理
(例えばクロム酸単味のものやそれにエツチング
剤を添加したもの)、ノーリンスの塗布型クロメ
ート処理、あるいは電解クロメートなど公知のク
ロメート処理法で形成したものでよい。しかし
種々検討してみると下記の組成のような塗布型ク
ロメート処理液によるのが防食、塗膜密着性上好
ましい。 処理液 1 (a) 40〜50%が3価状態に還元されている三酸化
クロム10重量部 (b) 燐酸(100%H3PO4)3〜4重量部 (c) ポリアクリル酸4〜5重量部 (d) アクリルエマルジヨン重合体固形分17〜20重
量部 (e) 水溶液にするための水200〜4000重量部 処理液 2 前記処理液1の組成において、(a)の三酸化クロ
ムが6価クロムのすべてまたは一部が3価の状態
に還元され、6価クロム量/3価クロム量の比が
0〜2.3になつた処理液。 本発明の場合クロメート系皮膜2の付着量管理
は皮膜に含有される全クロム量で行い、その全ク
ロム量が10〜50mg/m2になるようにする。これは
10mg/m2未満であると防食性が乏しくなり、また
塗膜密着性も安定せず、常に良好な密着性が得ら
れないからである。一方50mg/m2を超えると防食
性は向上するが、塗膜密着性が低下してプレス加
工などで剥離しやすくなる。 ジンクリツチ塗膜5は従来の亜鉛粉末のみを含
有するジンクリツチ塗膜に亜鉛−マグネシウム合
金粉末を添加することにより加工時の耐パウダリ
ング性および防食性を向上させたもので、両粉末
の混合比はZn粉末/Zn−Mg合金粉末=50/50〜
98/2になるようにする。亜鉛粉末に対する亜鉛
−マグネシウム合金粉末の添加量上限を50%にし
たのは50%を超えてもパウダリング性や防食性の
向上効果はそれ以上期待できないためである。一
方下限を2%にしたのは2%より少いと添加効果
がなく、耐パウダリング性、防食性とも亜鉛粉末
単独の場合とほとんど変らなくなるからである。 またジンクリツチ塗膜5の亜鉛粉末と亜鉛−マ
グネシウム合金粉末の合計含有量は60%未満であ
ると通電性が低下し、電気溶接性が悪くなるので
60%以上含有させる。しかし91%を超えると耐加
工剥離性が低下するので、91%以下になるように
する。 上記両粉末を含有する塗膜の樹脂としては分子
量1〜10万の直鎖状エポキシ系樹脂が品質的、作
業的に好ましい。 塗膜(乾燥塗膜)厚は5μ未満であると防食性
が乏しくなるので5μ以上にする。しかし50μを超
えると表面組度を大きくしても通電性が改善され
ないので、50μ以下になるようにする。 なお防食性に関し亜鉛粉末と亜鉛−マグネシウ
ム合金粉末だけでは耐食性が不十分で、さらに高
度の防食性を必要とする場合には防錆顔料を添加
することも可能である。防錆顔料としてはストロ
ンチウムクロメート、ジンククロメート、鉛酸カ
ルシウムなどが適当で、これらのものを0.2〜5
%添加する。5%を超えて添加すると、塗膜表面
より6価クロムなどの溶出が著しくなり、防食効
果も飽和して添加増量効果が小さい。 本発明の場合上述のようにジンクリツチ塗膜に
亜鉛粉末とともに亜鉛−マグネシウム合金粉末を
含有させると加工時の耐パウダリング性や防食性
が向上するのであるが、その理由は次のように考
えられる。 まず耐パウダリング性であるが、これは亜鉛−
マグネシウム合金粉末の硬度が亜鉛より著しく高
いことによるものと考えられる。すなわち一般に
プレス加工時粉末の硬度が高い場合金型への粉末
の付着は少くなるので、亜鉛粉末より硬度の高い
亜鉛−マグネシウム合金粉末の場合金型への付着
は少くなり、その結果耐パウダリング性が向上す
るものと考えられる。 一方防食性は亜鉛に対する亜鉛−マグネシウム
合金のガルバニツク作用抑制作用によるものと考
えられる。マグネシウムは電気化学的に亜鉛より
卑であるが腐食環境下におかれた場合安定な腐食
生成物を生じるとともに、亜鉛に対してガルバニ
ツク作用を緩和させる。従つて詳細は不明である
が、亜鉛−マグネシウム合金もマグネシウムと同
様の作用効果を発揮するものと推定される。この
ため亜鉛−マグネシウム合金を含有させると亜鉛
の自己消費的な積極的ガルバニツク作用は緩和さ
れ、必要以上の亜鉛の溶出は抑制されて防食性が
向上するものと考えられる。 本発明の場合このようにジンクリツチ塗膜5に
亜鉛粉末とともに亜鉛−マグネシウム合金粉末を
含有させると亜鉛粉末のみの場合より耐パウダリ
ング性、防食性は向上するが、さらに防食性を高
めたい場合には前述の如く防錆顔料を添加する。
この防錆顔料の添加作用は亜鉛−マグネシウム合
金粉末に類似し、防錆顔料自体の防食作用のほ
か、亜鉛の過剰な溶出を抑制する作用を有する。 本発明の場合亜鉛−マグネシウム合金のマグネ
シウム含有量についてはとくに限定はしないが1
〜5%の工業的規模で製造できるものが作業上、
品質上好ましい。これは亜鉛の場合マグネシウム
を添加すると第2図に示すように急激に硬度が上
昇し、防食性との関係で任意の成分の合金を使用
できるからである。 次に実施例により本発明の作用効果を説明す
る。 第1表はダルスキンパスにより表面を粗化
(Rz=12μ)した冷延鋼板(板厚0.8mm)を脱脂し
てその表面に皮膜量30mg/m2(全クロム量)を形
成し、さらにその上に塗膜15μのジンクリツチ塗
膜を形成したものの塗膜組成とその性能をまとめ
たものである。なおクロメート系皮膜とジンクリ
ツチ塗膜の形成は次の条件によつた。 (1) クロメート系皮膜形成条件 三酸化クロム10重量部、リン酸3重量部、ポ
リアクリル酸5重量部、アクリルエマルジヨン
重合体固形分18重量部、水2000重量部、Cr+6
Cr+3=1.4からなる塗布型クロメート処理液を
ロールコート法で塗布。 (2) ジンクリツチ塗膜形成条件 ロールコート法により塗装後250℃(板温)
で60秒間焼付。
The present invention relates to a zinc-rich weldable coated steel sheet that causes less powdering during processing such as press working. In recent years, in the case of automobile bodies, weldable coated steel sheets, which are cold-rolled steel sheets coated with zinc-rich paint through a chromate-based coating, have been used for parts such as undercarriages and doors that require corrosion protection. Conventionally, the zinc-rich coating film of this type of painted steel sheet contained only zinc powder, but its anticorrosion properties are superior to those of hot-dip galvanized steel sheet and electrogalvanized steel sheet. However, since the zinc-rich coating film contains a large amount (usually 80% by weight or more) of zinc powder to provide electrical conductivity, it has the disadvantage of causing powdering during press processing. The present invention provides a zinc-rich weldable coated steel sheet that has improved the powdering problem of the zinc-rich coating film. The present invention was developed as a result of various studies aimed at improving the powdering resistance of zinc-rich coatings containing high amounts of zinc powder.The results show that adding zinc-magnesium alloy powder to zinc powder improves the powdering resistance and also improves corrosion resistance. This was done based on the knowledge that zinc powder and zinc-
A zinc-rich coating film containing 60% by weight or more of magnesium alloy powder is formed. The present invention will be explained in detail below. The coated steel sheet of the present invention, as shown in the attached drawing, has a chromate-based film 2 formed on the surface of a steel sheet 1, and further contains zinc powder 3 and zinc-magnesium alloy powder 4 thereon. A zinc-rich coating film 5 is formed. As the steel plate 1, a cold-rolled steel plate is usually used, but one with a roughened surface is used. This increases the amount of chromate film 2 deposited to improve corrosion resistance, shortens the distance between the welding machine tip and steel plate 1 to make it easier to conduct electricity, and even provides an anchor effect to the zinc-rich coating 5. It is intended for purposes such as granting. For this surface roughening, an average surface texture Rz of 4 to 20 microns is appropriate. If it is less than 4μ, the above-mentioned effects cannot be obtained, and if it exceeds 20μ, the coating surface may become rough and the anti-corrosion properties may decrease, or the coating may become distorted during processing, concentrating on convex portions and causing the coating to peel off. It becomes easier to wake up. The chromate-based film 2 may be formed by a known chromate treatment method such as a reactive chromate treatment (for example, chromate alone or an etching agent added thereto), a no-rinse coating type chromate treatment, or an electrolytic chromate treatment. However, after various studies, it is preferable to use a coating type chromate treatment liquid having the composition shown below in terms of corrosion protection and coating adhesion. Treatment liquid 1 (a) 10 parts by weight of chromium trioxide, 40-50% reduced to trivalent state (b) 3-4 parts by weight of phosphoric acid (100% H 3 PO 4 ) (c) 4-4 parts by weight of polyacrylic acid 5 parts by weight (d) Acrylic emulsion polymer solid content 17-20 parts by weight (e) 200-4000 parts by weight of water for making an aqueous solution Treatment liquid 2 In the composition of the treatment liquid 1, (a) chromium trioxide A treatment liquid in which all or part of the hexavalent chromium is reduced to a trivalent state, and the ratio of the amount of hexavalent chromium to the amount of trivalent chromium is 0 to 2.3. In the case of the present invention, the amount of deposited chromate film 2 is controlled by the total amount of chromium contained in the film, and the total amount of chromium is controlled to be 10 to 50 mg/m 2 . this is
If it is less than 10 mg/m 2 , corrosion resistance will be poor and coating film adhesion will not be stable, making it impossible to always obtain good adhesion. On the other hand, if it exceeds 50 mg/m 2 , corrosion resistance improves, but the adhesion of the coating decreases and it becomes easy to peel off during press working. Zinc-rich coating film 5 has improved powdering resistance and corrosion resistance during processing by adding zinc-magnesium alloy powder to the conventional zinc-rich coating film containing only zinc powder, and the mixing ratio of both powders is Zn powder/Zn-Mg alloy powder = 50/50~
Make it 98/2. The reason why the upper limit of the amount of zinc-magnesium alloy powder added to the zinc powder is set at 50% is that even if the amount exceeds 50%, no further improvement in powdering properties or corrosion resistance can be expected. On the other hand, the lower limit was set at 2% because if it is less than 2%, there is no effect of addition, and the powdering resistance and corrosion resistance are almost the same as when using zinc powder alone. In addition, if the total content of zinc powder and zinc-magnesium alloy powder in the zinc-rich coating 5 is less than 60%, the electrical conductivity will decrease and the electric weldability will deteriorate.
Contain 60% or more. However, if it exceeds 91%, the resistance to peeling due to processing decreases, so it should be kept below 91%. As the resin for the coating film containing both of the above powders, a linear epoxy resin having a molecular weight of 10,000 to 100,000 is preferable in terms of quality and workability. If the thickness of the paint film (dry paint film) is less than 5μ, corrosion resistance will be poor, so the thickness should be 5μ or more. However, if it exceeds 50μ, the conductivity will not be improved even if the surface assemblage is increased, so it should be kept below 50μ. Regarding corrosion resistance, if the zinc powder and zinc-magnesium alloy powder alone do not provide sufficient corrosion resistance and a higher level of corrosion resistance is required, it is also possible to add a rust preventive pigment. Suitable anti-rust pigments include strontium chromate, zinc chromate, and calcium leadate.
%Added. If it is added in an amount exceeding 5%, the elution of hexavalent chromium etc. from the coating film surface becomes significant, the anticorrosive effect is saturated, and the effect of increasing the amount added is small. In the case of the present invention, as mentioned above, when the zinc-rich coating film contains zinc powder and zinc-magnesium alloy powder, powdering resistance and corrosion resistance during processing are improved, and the reason is thought to be as follows. . First, powdering resistance is due to zinc-
This is thought to be due to the fact that the hardness of magnesium alloy powder is significantly higher than that of zinc. In other words, in general, if the powder is hard during press working, less powder will stick to the mold, so if the zinc-magnesium alloy powder is harder than zinc powder, it will stick less to the mold, resulting in powder resistance. This is thought to improve performance. On the other hand, the anti-corrosion property is thought to be due to the galvanic effect suppressing effect of the zinc-magnesium alloy on zinc. Magnesium is electrochemically less base than zinc, but when placed in a corrosive environment it produces stable corrosion products and also alleviates the galvanic effect on zinc. Therefore, although the details are unknown, it is presumed that the zinc-magnesium alloy also exhibits the same effects as magnesium. Therefore, it is thought that when a zinc-magnesium alloy is contained, the self-consuming positive galvanic action of zinc is alleviated, and the elution of zinc more than necessary is suppressed, thereby improving corrosion protection. In the case of the present invention, when the zinc-rich coating film 5 contains zinc powder and zinc-magnesium alloy powder as described above, the powdering resistance and corrosion resistance are improved compared to the case where only zinc powder is used, but when it is desired to further improve the corrosion resistance, Add anti-rust pigments as described above.
The action of adding this anti-rust pigment is similar to that of zinc-magnesium alloy powder, and in addition to the anti-corrosion action of the anti-rust pigment itself, it also has the action of suppressing excessive elution of zinc. In the case of the present invention, the magnesium content of the zinc-magnesium alloy is not particularly limited;
~5% of the products that can be manufactured on an industrial scale are
Favorable quality. This is because, in the case of zinc, when magnesium is added, the hardness increases rapidly as shown in FIG. 2, and alloys with arbitrary components can be used in relation to corrosion resistance. Next, the effects of the present invention will be explained with reference to Examples. Table 1 shows a cold-rolled steel plate (thickness 0.8 mm) whose surface has been roughened (Rz = 12 μ) by Dull skin pass, which is degreased to form a film amount of 30 mg/m 2 (total chromium amount) on the surface. This is a summary of the coating composition and performance of a 15μ thick zinc-rich coating formed on top. The formation of the chromate-based film and the zinc-rich coating was conducted under the following conditions. (1) Chromate film formation conditions: 10 parts by weight of chromium trioxide, 3 parts by weight of phosphoric acid, 5 parts by weight of polyacrylic acid, 18 parts by weight of acrylic emulsion polymer solids, 2000 parts by weight of water, Cr +6 /
Apply a paint-type chromate treatment solution consisting of Cr +3 = 1.4 using the roll coating method. (2) Conditions for forming zinc-rich coating film: 250℃ (board temperature) after coating by roll coating method
Bake for 60 seconds.

【表】【table】

【表】 また塗膜性能は次の要領で調査した。 (1) 塗膜密着性 JIS・G・3312の着色亜鉛鉄板の試験法に準
じて折曲げ試験を行つた。折曲げ試験は曲げ内
側の間隔枚数0枚(0t)、1枚(1t)、2枚
(2t)で180度密着折曲げ加工を行つた後加工部
塗膜にセロテープを貼付け、それを急激にひき
はがすセロテープ剥離を行い、次の基準により
評価した
[Table] The coating film performance was also investigated in the following manner. (1) Paint film adhesion A bending test was conducted in accordance with the JIS G 3312 test method for colored galvanized iron plates. In the bending test, 180 degrees of close bending was performed using 0 sheets (0 t), 1 sheet (1 t), and 2 sheets (2 t) at intervals on the inside of the bend. After that, cellophane tape was pasted on the coating film of the processed part, and it was suddenly bent. Peel off cellophane tape and evaluate according to the following criteria:

【表】 (2) 耐パウダリング性 試験片をブランク径360mmに切断後防錆潤滑
油(オイルコートZ2、出光興産製)を塗布し
て300トン油圧プレス機によりポンチ径200mm、
ポンチR13mm、ダイスR4mm、絞り高さ65mm、
全しわ押え22トンの条件で塗面が外側になるよ
うにして円筒探絞り試験を行い、試験後ダイス
金型に付着したパウダーを研摩紙でこすりと
り、その量を目視で評価して次の基準で評価し
た。
[Table] (2) Powdering resistance After cutting the test specimen into blanks with a diameter of 360 mm, they were coated with anti-corrosion lubricant (Oil Coat Z2, manufactured by Idemitsu Kosan) and punched with a punch diameter of 200 mm using a 300-ton hydraulic press.
Punch R13mm, die R4mm, drawing height 65mm,
A cylindrical diaphragm test was performed with the painted surface facing outward under the conditions of a 22-ton presser. After the test, the powder adhering to the die mold was scraped off with abrasive paper, the amount was visually evaluated, and the next step was performed. It was evaluated based on the criteria.

【表】 (3) 防食性 試験片にあらかじめナイフによるクロスカツ
トと、4tの180度密着折曲げとを行つたものと、
前記耐パウダリング性において探絞り試験した
ものをJIS・Z・2371に基いてそれぞれ500時間
および240時間試験し、次の基準により評価し
た。
[Table] (3) Corrosion resistance Test specimens were cross-cut with a knife and bent 180 degrees at 4t.
The powdering resistance was tested for 500 hours and 240 hours based on JIS Z 2371, respectively, and evaluated according to the following criteria.

【表】【table】

【表】 (4) 溶接性 下記の溶接条件でスポツト溶接を行つた後引
張試験を行い、引張せん断強度350Kgf未満の
ものの発生率を調査した。
[Table] (4) Weldability After performing spot welding under the following welding conditions, a tensile test was conducted to investigate the incidence of tensile shear strength of less than 350 Kgf.

【表】【table】

【表】 第1表より明らかな如く、粉末含有量が同じで
あつても、亜鉛−マグネシウム合金粉末を含有す
るものの方が電気溶接性もよく、防食性も優れて
いる。また防食性は防錆顔料を加えることにより
向上する。 以上の如く、本発明によればジンクリツチ系塗
装鋼板の耐パウダリング性は改善され、またそれ
に伴つて防食性も向上する。
[Table] As is clear from Table 1, even if the powder content is the same, those containing zinc-magnesium alloy powder have better electric weldability and corrosion resistance. Corrosion resistance can also be improved by adding antirust pigments. As described above, according to the present invention, the powdering resistance of zinc-rich coated steel sheets is improved, and the corrosion resistance is also improved accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の塗装鋼板の模式断面図、第2
図はZn−Mg合金のMg量と硬度との関係を示す
グラフである。 1……鋼板、2……クロメート系皮膜、3……
亜鉛粉末、4……亜鉛−マグネシウム合金粉末、
5……ジンクリツチ塗膜。
Figure 1 is a schematic sectional view of the painted steel plate of the present invention, Figure 2
The figure is a graph showing the relationship between Mg content and hardness of Zn-Mg alloy. 1... Steel plate, 2... Chromate film, 3...
Zinc powder, 4...Zinc-magnesium alloy powder,
5... Zinc-rich coating film.

Claims (1)

【特許請求の範囲】 1 表面を粗化した鋼板上にクロメート系皮膜を
介して亜鉛粉末と亜鉛−マグネシウム合金粉末と
を60重量%以上含有するジンクリツチ塗膜が形成
されていることを特徴とする耐パウダリング性に
優れた溶接性塗装鋼板。 2 亜鉛粉末/亜鉛−マグネシウム合金粉末の比
が50/50〜98/2で、塗膜中の両者の合計含有量
が60〜91重量%であることを特徴とする特許請求
の範囲第1項に記載の耐パウダリング性に優れた
溶接性塗装鋼板。 3 ジンクリツチ塗膜中に防錆顔料を添加されて
いることを特徴とする特許請求の範囲第1項に記
載の耐パウダリング性に優れた溶接性塗装鋼板。
[Claims] 1. A zinc-rich coating film containing 60% by weight or more of zinc powder and zinc-magnesium alloy powder is formed on a steel plate with a roughened surface via a chromate-based film. Weldable painted steel sheet with excellent powdering resistance. 2. Claim 1, characterized in that the ratio of zinc powder/zinc-magnesium alloy powder is 50/50 to 98/2, and the total content of both in the coating film is 60 to 91% by weight. A weldable coated steel sheet with excellent powdering resistance described in . 3. The weldable coated steel sheet with excellent powdering resistance according to claim 1, characterized in that a rust preventive pigment is added to the zinc-rich coating film.
JP16105182A 1982-09-17 1982-09-17 Welding painted steel plate having excellent powdering-resisting property Granted JPS5952645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16105182A JPS5952645A (en) 1982-09-17 1982-09-17 Welding painted steel plate having excellent powdering-resisting property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16105182A JPS5952645A (en) 1982-09-17 1982-09-17 Welding painted steel plate having excellent powdering-resisting property

Publications (2)

Publication Number Publication Date
JPS5952645A JPS5952645A (en) 1984-03-27
JPH0120060B2 true JPH0120060B2 (en) 1989-04-14

Family

ID=15727668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16105182A Granted JPS5952645A (en) 1982-09-17 1982-09-17 Welding painted steel plate having excellent powdering-resisting property

Country Status (1)

Country Link
JP (1) JPS5952645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386055A (en) * 1989-08-28 1991-04-11 Tokyo Electric Co Ltd Stepping motor of pm type

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001173A (en) * 1987-05-11 1991-03-19 Morton Coatings, Inc. Aqueous epoxy resin compositions and metal substrates coated therewith
US5082698A (en) * 1987-05-11 1992-01-21 Morton Coatings, Inc. Aqueous epoxy resin compositions and metal substrates coated therewith
JP2524155B2 (en) * 1987-05-22 1996-08-14 日本メクトロン株式会社 Fluorine-containing elastomer
JP5190235B2 (en) 2006-09-08 2013-04-24 新日鐵住金株式会社 Zn alloy particles for high corrosion resistance rust preventive paint having crushing surface, manufacturing method thereof, high corrosion resistance rust preventive paint, high corrosion resistance steel material and steel structure
JP5190238B2 (en) * 2006-09-28 2013-04-24 新日鐵住金株式会社 High corrosion resistance rust-proof paint, high corrosion resistance steel material and steel structure
JP5130018B2 (en) * 2006-10-31 2013-01-30 新日鐵住金株式会社 High corrosion resistance rust preventive paint paste with excellent long-term storage, high corrosion resistance rust preventive paint prepared with this paste, and steel and steel structures coated with this high corrosion resistance rust preventive paint
JP5130062B2 (en) * 2007-01-26 2013-01-30 新日鐵住金株式会社 Steel coating method and coated steel
JP5130071B2 (en) * 2007-02-08 2013-01-30 新日鐵住金株式会社 Rust prevention method for marine steel
JP5130058B2 (en) * 2008-01-11 2013-01-30 新日鐵住金株式会社 High corrosion resistance rust preventive paint paste with excellent processability, high corrosion resistance rust preventive paint, high corrosion resistant steel and steel structure coated with the paint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386055A (en) * 1989-08-28 1991-04-11 Tokyo Electric Co Ltd Stepping motor of pm type

Also Published As

Publication number Publication date
JPS5952645A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
JPH0515791B2 (en)
JPH0120060B2 (en)
JPH04107274A (en) Chromate treatment of galvanized steel sheet
JPH0148870B2 (en)
JPH0212179B2 (en)
JPH022422B2 (en)
JPH0120061B2 (en)
JPS5918765A (en) Coating material composition for coated steel plate
JPH0212176B2 (en)
JPH0525679A (en) High corrosion resistance surface treated steel sheet excellent in impact adhesion resistance
JPH0459350B2 (en)
JPH01301332A (en) Lubricating resin treated steel plate excellent in moldability
JP3276565B2 (en) Weldable organic composite plated steel sheet with excellent corrosion resistance and press formability
JPH0148869B2 (en)
JPH0120058B2 (en)
JPH0212178B2 (en)
JPS58221286A (en) Weldable painted steel plate
JPH0212177B2 (en)
JPH0120057B2 (en)
JP3600759B2 (en) Phosphate-treated galvanized steel sheet excellent in workability and method for producing the same
JPH0120059B2 (en)
JP3305565B2 (en) Weldable organic composite plated steel sheet with excellent corrosion resistance and press workability
JPS6340666B2 (en)
JPH10176280A (en) Chromate treating solution and surface treated metallic sheet
JPH0741962A (en) Lubricating resin-treated steel sheet excellent in press forming property and corrosion resistance