JPS627890A - Zinc or zinc alloy plated steel sheet having superior corrosion resistance, paintability and workability - Google Patents

Zinc or zinc alloy plated steel sheet having superior corrosion resistance, paintability and workability

Info

Publication number
JPS627890A
JPS627890A JP14640485A JP14640485A JPS627890A JP S627890 A JPS627890 A JP S627890A JP 14640485 A JP14640485 A JP 14640485A JP 14640485 A JP14640485 A JP 14640485A JP S627890 A JPS627890 A JP S627890A
Authority
JP
Japan
Prior art keywords
corrosion resistance
zinc
layer
corrosion
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14640485A
Other languages
Japanese (ja)
Other versions
JPH0768634B2 (en
Inventor
Yukinobu Higuchi
樋口 征順
Makoto Yoshida
誠 吉田
Masami Osawa
大沢 正己
Teruaki Isaki
輝明 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60146404A priority Critical patent/JPH0768634B2/en
Publication of JPS627890A publication Critical patent/JPS627890A/en
Publication of JPH0768634B2 publication Critical patent/JPH0768634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To improve the workability and pitting corrosion resistance of the resulting titled steel sheet, the corrosion resistance at the worked part and the paintability, especially the corrosion resistance after painting by forming a Zn or Zn alloy layer on a steel sheet having a specified composition by plating. CONSTITUTION:One side or both sides of a steel sheet having a composition contg., by weight, <0.01% C, 0.005-0.10% acid-sol. Al, 0.02-0.15% P, 0.1-0.8% Cu and 0.03-0.5% one or more among Ti, Nb, Zr and V are plated with Zn or a Zn alloy. The steel composition may further contain <=1% Ni. An Ni or Ni alloy undercoat layer may be formed as an intermediate layer between the steel sheet and the resulting Zn or Zn alloy layer. The plated steel sheet has superior corrosion resistance in a corrosive environment contg. Cl<->, superior paintability and workability, so it is suitable for use as a steel sheet for an automobile, a building material or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、NaC文、’(:aCC20の水溶液が存在
する苛酷な腐食g境に曝された場合の耐食性、塗膜性能
、加工性にすぐれ、建材用、自動車用等に使用される亜
鉛又は亜鉛系合金メッキ鋼板に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides improvements in corrosion resistance, coating performance, and workability when exposed to a severe corrosive environment in the presence of an aqueous solution of NaC, '(:aCC20). This product relates to zinc or zinc-based alloy plated steel sheets used for building materials, automobiles, etc.

(従来技術とその問題点) 従来から自動車用鋼板には防錆被覆層が施されていない
、いわゆる冷延鋼板が使われて来た。この冷延鋼板は自
動車会社で自動車の各種部材に加工され、組立てられた
後、燐酸塩処理を施し、次いで塗装される。即ち自動車
に使用されている冷延鋼板は、塗膜によって腐食から保
護されている。しかし近年になって自動車の耐久性向上
、特に腐食に基因する耐久性向上の要求が高くなり、従
来の塗装のみではこの要求に必ずしも対処出来なくなっ
た。例えば、冬期、道路の凍結を防止するため塩を散布
するカナダにおいては、1985年の自動車の車体腐食
に関するガイドラインとして°゛10年間孔あきなし”
及び“5年間錆発生なし″を目標にしそいる。このガイ
ドラインは“力ナタコード′°として知られ、このため
車体防錆に対する目標として各種対策が採られつつある
(Prior art and its problems) Conventionally, so-called cold-rolled steel sheets without a rust-preventing coating layer have been used as steel sheets for automobiles. This cold-rolled steel sheet is processed and assembled into various parts of automobiles at automobile companies, then subjected to phosphate treatment, and then painted. That is, cold-rolled steel sheets used in automobiles are protected from corrosion by a coating film. However, in recent years, there has been a growing demand for improved durability of automobiles, particularly for improved durability due to corrosion, and conventional painting alone cannot necessarily meet this demand. For example, in Canada, where salt is sprayed to prevent roads from freezing in the winter, the 1985 guidelines for car body corrosion are ``No drilling for 10 years''.
And we are aiming for "no rust for 5 years". This guideline is known as the ``Strengthening Code'', and for this reason, various measures are being taken as a goal for car body rust prevention.

現在、冷延鋼板の耐食性、塗装後の耐食性を向上し、か
つ加工性を損なわずに量産可能なものとして、電気亜、
鉛メッキ鋼板が広く使われている。
At present, Denki-A, which improves the corrosion resistance of cold-rolled steel sheets and the corrosion resistance after painting, and which can be mass-produced without compromising workability, is being developed.
Lead-plated steel sheets are widely used.

しかし、亜鉛メッキ鋼板の亜鉛が地鉄よりアノ−ディッ
ク(Anod ic)であるため、一般的な腐食環境で
は良好な耐食性を示すが、前述の様に塩類(NaC見、
Ca0文2等)を散布する苛酷な腐食環境では亜鉛の地
鉄に対する犠牲防食作用による腐食速度が大きく、短期
間で亜鉛の犠牲防食作用が失なわれる長期間の防食効果
が得られない。
However, since the zinc in galvanized steel sheets is more anodic than base steel, it exhibits good corrosion resistance in general corrosive environments;
In a severe corrosive environment where zinc is sprayed (e.g. CaO2), the corrosion rate due to the sacrificial anti-corrosion effect of zinc on the base iron is high, and the sacrificial anti-corrosion effect of zinc is lost in a short period of time, making it impossible to obtain a long-term anti-corrosion effect.

耐食性の向上にはメッキ量を増す事が最も簡単な方法で
ある。しかし、メッキ量の増加は電気メッキでは著るし
い生産性の低下とコスト上昇をもたらし、経済的に望ま
しくないばかりでなく、加工性、溶接性等の面でも次の
様な問題がある。
The easiest way to improve corrosion resistance is to increase the amount of plating. However, an increase in the amount of plating causes a significant decrease in productivity and an increase in cost in electroplating, which is not only economically undesirable, but also poses the following problems in terms of workability, weldability, etc.

即ち、メッキ鋼板を自動車部品に加工する際、特に絞り
加工において、メッキ層が!!離したり、又その一部が
削り取られて(所謂パウダリング)ブレス金型に堆積し
、成品に疵を生じる現象がある。この様なパウダリング
を起すと、金型の手入れで生産性が著るしく落ちるばか
りでなく、成品の性能にも悪影響がある所から、メッキ
量を少なくする必要がある。一方加工された各種部材の
組立ては、殆んど抵抗溶接(スポット溶接)が使われ、
溶接性の良悪が重視されている。溶接性には、メッキ量
が大きく影響し、メッキ量がある程度以上に増えると、
溶接部の強度不足、外観不良等の欠陥を生じ易くなり、
更には溶接電極寿命の著るしい低下が生じる。従って、
加工性、溶接性の見地から、出来るだけ低メッキ量であ
る事が望ましい。更に、自動車用亜鉛メッキ鋼板は最終
的には塗装されるが、塗膜欠陥部や塗膜を浸透した腐食
性水溶液に亜鉛が腐食され易いために、塗膜面“ふくれ
” (所謂ブリスター)を発生し、塗膜が素地から浮き
上り剥離するという欠点がある。
In other words, when processing plated steel sheets into automobile parts, especially during drawing, the plating layer! ! There is a phenomenon in which the powder is separated or a part of it is scraped off (so-called powdering) and deposited on the press mold, causing defects in the finished product. If such powdering occurs, not only will productivity be significantly reduced due to maintenance of the mold, but it will also have an adverse effect on the performance of the finished product, so it is necessary to reduce the amount of plating. On the other hand, resistance welding (spot welding) is mostly used to assemble various processed parts.
Emphasis is placed on the quality of weldability. Weldability is greatly affected by the amount of plating, and when the amount of plating increases beyond a certain level,
Defects such as insufficient strength of welded parts and poor appearance are likely to occur.
Furthermore, the life of the welding electrode is significantly reduced. Therefore,
From the viewpoint of workability and weldability, it is desirable that the amount of plating be as low as possible. Furthermore, although galvanized steel sheets for automobiles are eventually painted, the zinc is easily corroded by the corrosive aqueous solution that has penetrated the paint film and the defective parts of the paint film, resulting in "blistering" on the paint film surface. This has the disadvantage that the paint film lifts up and peels off from the substrate.

又、自動車が走行中、飛石等により塗膜欠陥が生じると
、その部分から塗膜下の腐食が広がり、塗膜君離を生じ
易い。
Furthermore, if a paint film defect occurs due to a flying stone or the like while the car is running, corrosion under the paint film spreads from that area, which tends to cause paint film peeling.

かかる亜鉛メッキ鋼板の欠点の解消を目的に、亜鉛より
も電位が貴(eathod ic)、かっ地鉄よりは卑
(Anodic)で、地鉄に対して陽極防食効果があり
、塩類による腐食速度が小さく、更に、塗装性能(特に
塗装後耐食性、二次塗料密着性・・・・・・塗装部が腐
食環境に曝された時の塗膜の密着性の劣化)′、加工性
、溶接性に優れるという考え方に基づいて、例えば、Z
n−Fe系(特公昭80−11117号公報)、Zn−
Ni系(特公昭58−11’795号公報) 、Zn−
Fe−Ni系、Zn−Ni−Co系、Zn−Fe−Cr
系等、更には、それ等を組合せた複層メッキ等多くの亜
鉛系合金メッキ鋼板が開発されている。これ等の亜鉛系
合金メッキ鋼板は、全般的に亜鉛メッキ鋼板に比して優
れた性能を有しているものの、耐食性、特に、前述の塩
類が散布される苛酷な腐食環境での孔食(Pittin
4 Corrosion)については、更に一段の向上
が望まれている。
In order to eliminate the drawbacks of galvanized steel sheets, we developed galvanized steel sheets, which have a more noble potential (ethodic) than zinc but are more base than steel (anodic), have an anodic corrosion protection effect on bare steel, and reduce the corrosion rate due to salts. It is small, and also has excellent coating performance (especially corrosion resistance after coating, secondary paint adhesion... deterioration of coating film adhesion when the painted part is exposed to a corrosive environment)', workability, and weldability. Based on the idea of superiority, for example, Z
n-Fe series (Japanese Patent Publication No. 80-11117), Zn-
Ni-based (Special Publication No. 58-11'795), Zn-
Fe-Ni series, Zn-Ni-Co series, Zn-Fe-Cr
Many zinc-based alloy-plated steel sheets have been developed, such as zinc-based alloy-plated steel sheets, etc., and multilayer plating that combines them. Although these zinc-based alloy plated steel sheets generally have superior performance compared to galvanized steel sheets, they have poor corrosion resistance, especially pitting corrosion in the harsh corrosive environment where salts are sprayed. Pittin
4 Corrosion), further improvement is desired.

耐食性の向上は、メッキ量の増加により最も簡単に達成
されるが、しかし既に亜鉛メッキ鋼板について述べたよ
うに、Zn系合金メッキ鋼板の場合においても、メンキ
コストの上昇、加工時のパウダリング、溶接性の劣化等
の問題を生ずるため、出来るだけ低メンキ敬である事が
望ましい。
Improving corrosion resistance is most easily achieved by increasing the amount of plating, but as already mentioned for galvanized steel sheets, even in the case of Zn-based alloy plated steel sheets, there are problems such as increased coating costs, powdering during processing, and welding. It is desirable to have as little fear of men as possible, as this may lead to problems such as sexual deterioration.

更に、亜鉛系合金メッキ鋼板の加工部やメッキ密着性を
改善せしめた鋼板を開示するものとして特開昭57−2
3054号公報、特開昭57−85983号公報などが
ある。
Furthermore, Japanese Patent Laid-Open No. 57-2 discloses a zinc-based alloy plated steel plate with improved processed parts and plating adhesion.
3054, Japanese Unexamined Patent Publication No. 57-85983, etc.

しかしながら、従来の亜鉛系合金メッキ鋼板を詳細に検
討してみるに2加工性やメッキ密着性にすぐれているも
のの、更に一層の耐食性向上、特にメンキ原板自体のよ
り一層の耐食性向上と苛酷な成形加工が施される場合の
成形加工性の向上、ひいては成形加工部の耐食性向上が
必要である事が分った。
However, a detailed study of conventional zinc-based alloy plated steel sheets reveals that, although they have excellent workability and plating adhesion, they require further improvement in corrosion resistance, especially the corrosion resistance of the coating material itself and severe forming. It was found that it is necessary to improve the moldability when processing is performed, and also to improve the corrosion resistance of the molded part.

(問題点を解決するための手段) 本発明はこれらの状況に対してなされたもので、鋼成分
の更に適正な調整により、メッキ原板自体のより一層の
耐食性向上及び加工性の向」二とメッキ層の相互作用或
いは相乗効果による耐孔食性の向−し、加工部の耐食性
向ヒ、塗膜性能、特に塗膜欠陥部等における塗装後耐食
性の向ヒ効果が得られる事を見出したものである。
(Means for Solving the Problems) The present invention was made in response to these circumstances, and aims to further improve the corrosion resistance and workability of the plated original plate itself by further appropriate adjustment of steel components. It has been discovered that the interaction or synergistic effect of plating layers can improve pitting corrosion resistance, improve corrosion resistance in processed areas, and improve paint film performance, especially post-painting corrosion resistance in defective areas. It is.

更に本発明は、上記のメツ+原板と亜鉛又は亜鉛系合金
メッキ層の中間層に、Ni系下地被覆層を設ける事によ
って、wJ酸成分メンキ層の粗刻効果による性能向りが
更に一層得られる事を見出したものである。
Furthermore, in the present invention, by providing a Ni-based undercoating layer in the intermediate layer between the above-mentioned metal + original plate and the zinc or zinc-based alloy plating layer, the performance can be further improved due to the rough cutting effect of the wJ acid component coating layer. This is what I discovered.

而して、その要旨は (1)重量%で。Therefore, the gist is (1) In % by weight.

C; 0.01%未満、酸可溶A文; 0.005〜0
.10%、 P 、 0.02〜0.15%、 Cu 
; 0.01%、さらにTi、Nb、Zr、Vの1種又
は2種以、上で0.03〜0.5%を含有する鋼板の片
面又は両面に、亜鉛或いは亜鉛系合金メッキ層を施して
なる#食性、塗装性能及び加工性に憬れた亜鉛系メッキ
鋼板。
C: Less than 0.01%, acid soluble A: 0.005-0
.. 10%, P, 0.02-0.15%, Cu
; A zinc or zinc-based alloy plating layer is applied to one or both sides of a steel plate containing 0.01% and one or more of Ti, Nb, Zr, and V, and 0.03 to 0.5% of the above. A zinc-plated steel sheet with excellent corrosion resistance, coating performance, and workability.

(2)重量%で、 C、0,01%未満、酸可溶A立; 0.005〜0.
10%、 P ; 0.02〜0.15%、 Cu ;
 0.01%。
(2) In weight percent, C, less than 0.01%, acid soluble A; 0.005 to 0.
10%, P; 0.02-0.15%, Cu;
0.01%.

Ni;1%以下を含有しざらにTi 、 Nb 。Ni: Contains 1% or less, and also contains Ti and Nb.

Zr、Vの1種又は2種以上テ0.03〜0.5%を含
有する鋼板の片面又は両面に、亜鉛或いは亜鉛系合金メ
ッキ層を施してなる耐食性、塗装性能及び加工性に優れ
た亜鉛系メッキ鋼板。
Excellent corrosion resistance, coating performance, and workability, made by applying a zinc or zinc-based alloy plating layer to one or both sides of a steel plate containing 0.03 to 0.5% of one or more of Zr and V. Galvanized steel sheet.

(3)重量%で。(3) In weight percent.

C、0,01%未満、酸可溶A fL: 0.005〜
0.10%、 P 、 0.02〜0.15%、 Cu
 : 0.01%を含有し、Ti、Nb、Zr、Vの1
種又は2種以上、 0.03〜0.5%を含有する鋼板
の片面又は両面に、Ni系下地被覆層とその上層に亜鉛
或いは亜鉛系合金メッキ層を施してなる耐食性、塗装性
能及び加工性に憬れた亜鉛系メッキ鋼板。
C, less than 0.01%, acid soluble A fL: 0.005~
0.10%, P, 0.02-0.15%, Cu
: Contains 0.01%, 1 of Ti, Nb, Zr, V
Corrosion resistance, coating performance, and processing obtained by applying a Ni-based base coating layer and a zinc or zinc-based alloy plating layer on one or both sides of a steel plate containing 0.03 to 0.5% of one or more of the following types: Zinc-plated steel sheet that is highly durable.

(4)重用%で。(4) In heavy use%.

C; 0.01%未満、酸可溶A2.0.005〜0.
10%、 P ; 0.02〜0.15%、 Cu ;
 0.01%。
C; less than 0.01%, acid soluble A2.0.005-0.
10%, P; 0.02-0.15%, Cu;
0.01%.

Ni;1%以下を含有し、さらにT i 、 N b 
Contains Ni; 1% or less, and further contains T i , N b
.

Zr、Vの1種又は2種以上で、0.03〜0.5%を
含有する鋼板の片面又は両面に、Ni系下地被覆層とそ
の上層に亜鉛或いは亜鉛系合金メッキ層を施してなる耐
食性、塗装性能及び加工性に優れた亜鉛系メッキ鋼板。
Made by applying a Ni-based base coating layer and a zinc or zinc-based alloy plating layer on one or both sides of a steel plate containing 0.03 to 0.5% of one or more of Zr and V. A galvanized steel sheet with excellent corrosion resistance, painting performance, and workability.

である。It is.

以下に本発明について詳細に説明する。The present invention will be explained in detail below.

通常の鋼板製造工程を経て製造された前記鋼成分の鋼板
をメッキ原板として使用する。
A steel plate having the above-mentioned steel components manufactured through a normal steel plate manufacturing process is used as a plating base plate.

Cは耐食性及び成形加工性に悪影響を及ぼす元素として
0.01%未満、好ましくはo、ooe%以下である。
C is an element that adversely affects corrosion resistance and moldability, and is less than 0.01%, preferably less than o, ooe%.

すなわち、C含有量が0.α1%以上では、セメンタイ
ト或いはチタンカーバイト等のカーバイトの結晶粒界等
への析出が多くなり、腐食環境での粒界腐食或いは鋼板
の組織の不均一化によるメッキ原板自体の耐食性が劣化
する。
That is, if the C content is 0. When α1% or more, precipitation of cementite or carbide such as titanium carbide at grain boundaries increases, and the corrosion resistance of the plated original plate itself deteriorates due to intergranular corrosion in a corrosive environment or non-uniformity of the steel plate structure. .

また、これらセメンタイト或いは、カーバイトの析出は
、亜鉛及び亜鉛系合金メッキ層の均一析出を阻害し、メ
ッキ層のピンホール、不メッキを増加せしめ、メッキ鋼
板の耐食性が劣化する。
Furthermore, the precipitation of cementite or carbide inhibits the uniform precipitation of the zinc and zinc-based alloy plating layer, increases pinholes and non-plating in the plating layer, and deteriorates the corrosion resistance of the plated steel sheet.

さらに、本発明におけるNi系下地被覆層の均一被覆層
の生成に対しても、ピンホール、不メツ、午の生成原因
になり、特にNi系下地被覆層を拡散被覆層として設け
る場合には均一拡散を防げる原因となる。
Furthermore, in the formation of a uniform coating layer of the Ni-based base coating layer in the present invention, pinholes, blemishes, and spots may be generated, especially when the Ni-based base coating layer is provided as a diffusion coating layer. This will help prevent the spread.

又、Cの増加は機械的性質劣化の原因となり、成形加工
性を劣化させる原因となり、苛酷な成形加工が行なわれ
る場合には、これらのCの析出物が起点となる原板の割
れ、クラックの発生等が起因となってメッキ層表面或い
は塗膜表面にまで達するクラックの生成原因となり、メ
ッキ鋼板或いは塗装後の耐食性を劣化せしめる。
In addition, an increase in C causes deterioration of mechanical properties and deterioration of forming processability, and when severe forming processes are performed, these C precipitates can cause cracks and cracks in the original plate. Such occurrence causes cracks to reach the surface of the plating layer or the coating film, deteriorating the corrosion resistance of the plated steel sheet or after painting.

次に1本発明における耐食性向上元素としてP、Cuを
複合添加せしめ、場合によってはNiが゛添加され、さ
らにこれらの成分と複合してTt 、Nb 、Zr 、
V(7)1種又は2種以上が添加ネれる。
Next, as corrosion resistance improving elements in the present invention, P and Cu are added in combination, Ni is added in some cases, and Tt, Nb, Zr,
One or more types of V(7) may be added.

すなわち、上記の如く極低C含有量に鋼成分を規制する
事によって、その耐食性は向上し、その腐食速度が低下
する利点を有する。
That is, by controlling the steel composition to an extremely low C content as described above, the corrosion resistance is improved and the corrosion rate is reduced.

反面、加工性を向上せしめるTi等が添加された鋼板で
は、鋼中に不可避的に含まれるS成分が原因となり穿孔
腐食を生じ易い。したがって腐食速度を小さくかつ穿孔
腐食を抑制して耐食性を改善するために、P及びCuを
心願成分としして添加する。
On the other hand, in steel sheets to which Ti or the like is added to improve workability, drilling corrosion is likely to occur due to the S component inevitably included in the steel. Therefore, in order to reduce the corrosion rate, suppress pitting corrosion, and improve corrosion resistance, P and Cu are added as desired components.

Pは、CI−イオンが含有される腐食雰囲気での耐食性
向上元素、特に極低C含有鋼における穿孔腐食を防止す
る元素として有効であり、Cuと共存される時に特にそ
の耐食性向上効果が大きい。
P is an element that improves corrosion resistance in a corrosive atmosphere containing CI- ions, and is particularly effective as an element that prevents pitting corrosion in extremely low C-containing steel, and has a particularly large effect on improving corrosion resistance when coexisting with Cu.

また、鋼板の片面のみに亜鉛又は亜鉛系合金メッキ層が
施されて使用される場合、メッキ層が施されていない鉄
面の燐酸塩結晶の均一生成を助長する効果もある。
In addition, when a steel plate is used with a zinc or zinc-based alloy plating layer applied to only one side, it also has the effect of promoting uniform formation of phosphate crystals on the iron side on which the plating layer is not applied.

而して、その添加量は0.02〜0.15%で、0−0
2%未満では、耐食性向上効果が得られず、0.15%
をこえると加工性の劣化をもたらす。好ましいPの添加
量はQ、035〜0.07%の範囲である。
Therefore, the amount added is 0.02-0.15%, 0-0
If it is less than 2%, the effect of improving corrosion resistance cannot be obtained, and 0.15%
Exceeding this results in deterioration of workability. The preferred amount of P added is Q, in the range of 0.35 to 0.07%.

次に、Cuの添加は耐食性向上に対して効果が大きく、
CI−イオンを含有する腐食雰囲気において、その電位
を貴(カソーディック化)にし。
Next, the addition of Cu has a large effect on improving corrosion resistance.
In a corrosive atmosphere containing CI- ions, the potential is made noble (cathodic).

その腐食速度を減少する効果が極めて大きい。そも添加
量は0.01%の添加で大きな効果が得られる。0.1
%未満では耐食性の向上効果が小さく、0.8%をこえ
ると耐食性が更に向上するが、鋼板の製造工程の熱間圧
延工程において、赤熱脆性による割れや鋼板表面にCu
が濃縮し、スケールキズ等を発生し易くなる。本発明に
おいてCuの添加は0.5%以下がよい。
The effect of reducing the corrosion rate is extremely large. A great effect can be obtained by adding 0.01%. 0.1
If it is less than 0.8%, the effect of improving corrosion resistance will be small, and if it exceeds 0.8%, corrosion resistance will be further improved.
becomes concentrated and scale scratches etc. are likely to occur. In the present invention, the addition of Cu is preferably 0.5% or less.

次に選択的に添加されNfは1%以下が添加されるが、
Niの単独添加では耐食性向上効果が小さいが、P、C
uとの共存添加によりその耐食性向−ヒ効果が大きく、
鋼板製造工程におけるCuの問題点を解消する効果が大
きく、Cu添加量を拡大するために1%以下、好ましく
は0.5%以下を添加する。
Next, Nf is selectively added at 1% or less,
Adding Ni alone has a small effect on improving corrosion resistance, but adding P and C
By co-adding with u, the effect of improving corrosion resistance is large.
It is highly effective in resolving the problems of Cu in the steel plate manufacturing process, and in order to increase the amount of Cu added, it is added in an amount of 1% or less, preferably 0.5% or less.

ざらに、上記成分の鋼板にTi、Nb、Zr。Generally, Ti, Nb, and Zr are added to the steel plate with the above components.

Vの1種又は2種以上で0.03〜0.50%含有させ
Contain one or more types of V in an amount of 0.03 to 0.50%.

鋼中のCと結合せしめて、Cの悪影響を防止する。すな
わち、Ti等の微細なカーバイトを析出させる事によっ
て、極低C含有量の効果とあいまって、耐食性と機械的
性質を向上させる。而して、Tiなどの鋼成分の添加量
が0.03%未満では、成形加工性及び耐食性を向上せ
しめる効果が小さく、また0、50%をこえるとその効
果が飽和に達し経済的でなくなるとともに、これらの成
分の析出によって素材の硬質化をおこし、成形加工性を
劣化する傾向にある。好ましい範囲は0.075〜0.
20%である。
It combines with carbon in steel to prevent the negative effects of carbon. That is, by precipitating fine carbide such as Ti, corrosion resistance and mechanical properties are improved in combination with the effect of extremely low C content. Therefore, if the amount of addition of steel components such as Ti is less than 0.03%, the effect of improving formability and corrosion resistance is small, and if it exceeds 0.50%, the effect reaches saturation and becomes uneconomical. At the same time, the precipitation of these components tends to cause the material to become hard and deteriorate moldability. The preferred range is 0.075-0.
It is 20%.

また1本発明においては、製w4過程における欠陥(介
在物の析出、表面欠陥)による耐食性劣化を防止するた
めに、酸可溶Anの量が0.005〜0.10%の範囲
に規制する。すなわち、鋼中に残存する酸可溶A文(S
o文A交)量が0.005%未満の少食有量は、酸化・
蛾ガスによる気泡の発生を防止する事が困難であり、鋼
の表面欠陥発生率を著しく高め、鋼素材の耐食性劣化の
起点となる。また、0.10%を超える過剰な酸可溶A
nは、An系酸化物を鋼表面に点在せしめて、耐食性劣
化の起侭或いは本鋼板に対して施5れるメッキ面におい
ては不メッキ、ピンホール等を発生して、メッキ層の賛
全性を損じる。従って、酸可溶へ見量は上記範囲とし、
好ましくは0,03〜0,08%である。
In addition, in the present invention, in order to prevent deterioration of corrosion resistance due to defects (precipitation of inclusions, surface defects) during the manufacturing process, the amount of acid-soluble An is regulated within the range of 0.005 to 0.10%. . In other words, the acid-soluble A content (S) remaining in the steel
O B/A) A small amount of food with an amount of less than 0.005% is due to oxidation and
It is difficult to prevent the generation of bubbles due to moth gas, which significantly increases the incidence of surface defects in steel and becomes the starting point for deterioration of the corrosion resistance of steel materials. In addition, excess acid-soluble A exceeding 0.10%
n causes An-based oxides to be dotted on the steel surface, leading to deterioration of corrosion resistance or the formation of non-plating, pinholes, etc. on the plated surface applied to the steel plate, and the integrity of the plated layer. spoil one's sexuality. Therefore, the amount of acid soluble should be within the above range,
Preferably it is 0.03 to 0.08%.

その他鋼中に不可避的に含有される成分については特に
規定されるものでないが、好ましくは各々以下の範囲で
使用される。
Other components that are unavoidably contained in steel are not particularly defined, but each is preferably used within the following ranges.

Sは耐食性に対する態形!が大きく、0.025%以下
が好ましい。
S is the form for corrosion resistance! is large, preferably 0.025% or less.

Siは、メッキ層或いはNi系下地被覆処理の均一被覆
性を阻害するので、0.30%以下、好ましくは0,1
0%以下である。
Since Si inhibits the uniform coverage of the plating layer or Ni-based base coating treatment, the content should be 0.30% or less, preferably 0.1%.
It is 0% or less.

また、Mnについては、0.1〜1.5%の範囲で使用
される。Mnは穿孔腐食を防止する効果があり、耐食性
向上の点と片面メッキ鋼板で使用される場合の鉄面の燐
酸塩結晶被膜の均一生成の点で効果があるが、添加量が
増加すると材質を若干硬質化する傾向があるので好まし
くは、0.3〜0.6%である。
Furthermore, Mn is used in a range of 0.1 to 1.5%. Mn has the effect of preventing drilling corrosion, and is effective in improving corrosion resistance and uniformly forming a phosphate crystal coating on the iron surface when used in single-sided plated steel sheets, but when the amount added increases, it deteriorates the material. Preferably, it is 0.3 to 0.6% since it tends to become slightly hard.

以上、述べた鋼成分の鋼板は、従来の鋼板に比して耐食
性及び加工性がすぐれているものの、現在自動車用鋼板
に要求されている耐食性からみれば不充分である。
Although the steel sheets having the above-mentioned steel compositions have superior corrosion resistance and workability compared to conventional steel sheets, they are insufficient in terms of the corrosion resistance currently required for automobile steel sheets.

従って、よりすぐれた耐食性、塗膜性能を付与するため
に、Zn又はZn系合金メッキ層が施される。
Therefore, in order to provide better corrosion resistance and coating performance, a Zn or Zn-based alloy plating layer is applied.

Znは鋼板に対して腐食電位が卑(Anodic)であ
り、鋼板に対して犠牲的防食作用を有する金属であり、
Znメッキ層による防食効果は可成り著しい。
Zn is a metal whose corrosion potential is anodic with respect to steel plates and has a sacrificial anticorrosion effect on steel plates,
The anticorrosion effect of the Zn plating layer is quite remarkable.

しかし、自動車用のメツ+鋼板としては前記した様に“
10年間孔あきなし”かつ″5午間錆発生なし”という
高度の耐食性と共に、塗装性能。
However, as mentioned above, as a metal + steel plate for automobiles,
Highly corrosion resistant with no holes for 10 years and no rust for 5 hours, as well as coating performance.

溶接性に優れている事が必要であり、かかる総合的な性
能という見地からすれば、従来のメッキ原板を用いたZ
nnメッキでは充分な性能のものが得られなかった。
It is necessary to have excellent weldability, and from the standpoint of overall performance, Z
With nn plating, sufficient performance could not be obtained.

この原因について種々検討を加えたところ、亜鉛メッキ
層とメッキ原板・地鉄との間のカップル腐食電流が極め
て大きく、メッキ欠陥部、加工時のキズ付き部、加工に
よるメッキ層クラック発生部、或いは端面等で亜鉛メッ
キ層の犠牲防食作用による亜鉛メッキ層の著しい溶解を
生じ、メッキ楢を厚くしなければ充分な耐食性が得られ
ないこと、同様に、塗装後の性能に対しても、地鉄に達
する塗膜欠陥部において、従来のメッキ原板を用いた亜
鉛メッキ層を有する鋼板は、Znの著しい犠牲防食能に
よるZnの溶解作用により、Znの腐食生成物が多く生
成され塗膜フクレ(所謂、ブリスター)の生成、塗膜剥
離が著しく生じ易くなり、その塗膜密着性、塗装後耐食
性が著しく劣ることが判った。
After conducting various studies on the cause of this problem, we found that the couple corrosion current between the galvanized layer and the plated original plate/substrate was extremely large, and it was found that there were defects in the plating, scratches during processing, cracks in the plating layer caused by processing, or Significant dissolution of the galvanized layer occurs due to the sacrificial anticorrosion effect of the galvanized layer on end faces, etc., and sufficient corrosion resistance cannot be obtained unless the plated layer is made thicker. In the areas where the coating film is defective, steel sheets with a galvanized layer made using conventional plated original plates will produce many corrosion products of Zn due to the dissolving action of Zn due to the remarkable sacrificial anticorrosion ability of Zn, resulting in coating film blistering (so-called It was found that the formation of blisters and peeling of the paint film were significantly more likely to occur, and that the paint film adhesion and post-painting corrosion resistance were significantly inferior.

Znメッキ層及びZn−16%Fe合金メッキ層と本発
明メッキ原板との5%NaC文水溶液中におけるカップ
ル腐食電流の一例を示す第1図から知られるように、本
発明のメッキ原板を用いる事によって、亜鉛メッキ層と
地鉄との間のカップル腐食電流を減少せしめ、亜鉛メッ
キ層の犠牲防食作用の軽減による亜鉛の腐食速度を減少
せしめ、その耐食性及び塗膜性能は著しく向上する6本
発明は、メッキ原板の耐食性及び加工性がすぐれている
ため、亜鉛メッキ層の犠牲防食能が減少しても、メッキ
欠陥部や端面部の耐食性を充分に確保し、加工時のクラ
ックも生じにどくなる。
As can be seen from FIG. 1, which shows an example of the couple corrosion current between the Zn plating layer, the Zn-16% Fe alloy plating layer, and the plating original plate of the present invention in a 5% NaC-containing aqueous solution, it is possible to use the plating original plate of the present invention. According to the present invention, the couple corrosion current between the galvanized layer and the base steel is reduced, the corrosion rate of zinc is reduced by reducing the sacrificial corrosion protection effect of the galvanized layer, and the corrosion resistance and coating performance are significantly improved. Because the plated original plate has excellent corrosion resistance and workability, even if the sacrificial corrosion protection ability of the galvanized layer decreases, it will ensure sufficient corrosion resistance at plating defects and edge areas, and will prevent cracks from occurring during processing. Become.

またメッキ層が消失しても、メッキ原板の耐食性により
、耐食寿命を延長する。
Furthermore, even if the plating layer disappears, the corrosion resistance of the plated original plate extends the corrosion-resistant life.

以上のように本発明は、メッキ原板とメッキ層の粗刻効
果により、その耐食性、塗装性能等にすぐれた性能向上
効果が得られ蚤、しかも、メッキ層を厚くする必要がな
いので、溶接性、加工時のメッキ密着性にすぐれている
ため自動車用防錆鋼板に適応できる。
As described above, the present invention provides excellent performance improvement effects such as corrosion resistance and coating performance due to the rough cutting effect of the plated original plate and the plated layer.Furthermore, since there is no need to thicken the plated layer, weldability is improved. Because it has excellent plating adhesion during processing, it can be applied to rust-proof steel plates for automobiles.

さらに本発明においては、Znメッキ層より更に腐食速
度が小さく、また地鉄に対する犠牲防食作用を有するZ
n系合金メッキ層を設ける事によって、更に一層の耐食
性能、塗膜性能を向上せしめる事が可能である。
Furthermore, in the present invention, Zn has a lower corrosion rate than the Zn plating layer and has a sacrificial corrosion protection effect on the base steel.
By providing an n-based alloy plating layer, it is possible to further improve corrosion resistance and coating performance.

本発明におけるZn系合金メッキには、Znに対してN
i 、Co、Cr、Fe、Moの1種又は2種以上を含
有せしめた合金メッキ層が施される。すなわち、亜鉛メ
ッキ層より電位的に責な合金メッキ層のため3その腐食
速度が小さく、腐食環境に長期間曝された場合のメッキ
層の耐食寿命が延長され、原板の#食性向上効果とあい
まって一段とその耐食寿命が区長される。また、塗膜欠
陥部等におけるメッキ層の溶解速度が小さいため、腐食
生成物の生成も少なく、ブリスターの生成、塗膜剥離が
より生じにくくなる等の利点を有する。
In the Zn-based alloy plating in the present invention, N is added to Zn.
An alloy plating layer containing one or more of Co, Cr, Fe, and Mo is applied. In other words, since the alloy plating layer has a higher potential than the zinc plating layer, its corrosion rate is low, and the corrosion resistance life of the plating layer is extended when exposed to a corrosive environment for a long period of time, which is combined with the effect of improving the corrosion resistance of the original plate. This further extends its corrosion resistance life. Furthermore, since the rate of dissolution of the plating layer in defective parts of the coating film is low, less corrosion products are produced, which has the advantage that blistering and coating peeling are less likely to occur.

而して、これらの効果を得るためには1本発明において
は、Znに対して各々、N1(8〜30%)、Co(8
〜30%)、Fe(8〜30%)、Cr(1〜8%)、
Mo(3〜30%)が単独で添加される。また、これら
の2種以上の複合添加の場合には、Znに対して各単独
添加量の下限値以上が含有されるとともに、上限は各単
独添加量の上限値以下でかつ総和が30%以下がよい。
In order to obtain these effects, in the present invention, N1 (8 to 30%) and Co (8%) are added to Zn, respectively.
~30%), Fe (8~30%), Cr (1~8%),
Mo (3-30%) is added alone. In addition, in the case of combined addition of two or more of these types, the lower limit of each individual addition amount or more is contained with respect to Zn, and the upper limit is less than the upper limit of each individual addition amount, and the total is 30% or less Good.

30%をこえると腐食速度の減少効果が飽和するととも
に、合金メッキ層のピンホールが増加する傾向にあり耐
食性から必ずしも有利でなく、加工により合金メッキ層
にCrackが生成され易くなるなどの問題を生じ好ま
しくない。
If it exceeds 30%, the effect of reducing the corrosion rate is saturated and the number of pinholes in the alloy plating layer tends to increase, which is not necessarily advantageous in terms of corrosion resistance, and may cause problems such as cracks being easily generated in the alloy plating layer during processing. This is undesirable.

尚、本発明におけるメ、ツキ鋼板には、最表面層に耐食
性を劣化せしめない程度の付着量(亜鉛又は亜鉛系合金
メッキ層の付着量の174以下程度)でリン酸塩処理性
を向上せしめ、ひいては塗装性能を向上せしめるFe含
有率の高い(F elp度80%以上) Zn−Fe 
、 Zn−Fe−Ni 。
In addition, the galvanized steel sheet in the present invention has improved phosphate treatment properties with an amount of adhesion (approximately 174 or less of the amount of adhesion of the zinc or zinc-based alloy plating layer) that does not deteriorate the corrosion resistance of the outermost layer. Zn-Fe with a high Fe content (Felp degree of 80% or more) that improves coating performance
, Zn-Fe-Ni.

Zn−Fe−P系被膜層を設けてもよい。A Zn-Fe-P based coating layer may also be provided.

而して、本発明においては、更に耐食性能、塗膜性能を
向上せしめるために、メッキ原板と亜鉛又は亜鉛合金メ
ッキ層との中間層として、Ni系下地被覆層を設ける。
Accordingly, in the present invention, in order to further improve the corrosion resistance performance and coating film performance, a Ni-based base coating layer is provided as an intermediate layer between the plating base plate and the zinc or zinc alloy plating layer.

このNi系下地被覆層は、Zn又はZn系合金メッキ層
との重畳効果によりピンホールを減少させ耐食性を向上
させる。
This Ni-based base coating layer reduces pinholes and improves corrosion resistance due to the superimposed effect with the Zn or Zn-based alloy plating layer.

また、Ni系下地被覆層を構成する金属或いは合金は、
Zn又はZn系合金メッキ層と比較的拡散速度が速く、
塗装焼付は作業等においてZn−Ni系合金層が生成易
く、地鉄に達するピンホールの減少による耐食性向上効
果が得られる。
In addition, the metal or alloy constituting the Ni-based base coating layer is
The diffusion rate is relatively fast compared to the Zn or Zn-based alloy plating layer,
During paint baking, a Zn-Ni alloy layer is easily formed during work, etc., and corrosion resistance can be improved by reducing pinholes that reach the base metal.

而して、このNi系下地被覆層は、Ni。This Ni-based base coating layer is made of Ni.

Ni−Co合金、 N i−P合金、Ni−Fe合金、
Ni拡散処理層で、その厚さは0.01〜1鉢がょい。
Ni-Co alloy, Ni-P alloy, Ni-Fe alloy,
The Ni diffusion treatment layer has a thickness of 0.01 to 1 pot.

これは、その厚さが0.01μ未満では、下地被覆層の
均一被覆効果が不足し、上記のピンホール減少効果が得
られない傾向にある。また、厚さが1ルをこえる場合は
、上記効果が飽和するとともに、下地被覆層が加工によ
り割れを発生する傾向にあるので好ましくないからであ
る。
This is because if the thickness is less than 0.01 μm, the uniform coating effect of the base coating layer is insufficient, and the pinhole reduction effect described above tends not to be obtained. Moreover, if the thickness exceeds 1 mil, the above-mentioned effect will be saturated and the base coating layer will tend to crack due to processing, which is not preferable.

また、これらNi系下地被覆層のうち、Ni拡散被覆層
を設ける方法が特にすぐれている。この拡散層は上記の
如き下地被覆層を設けてから冷延鋼板の加熱焼鈍工程等
を利用して拡散処理層が設けられるが、本発明の鋼成分
との複合効果により、メンキ原板表面がNi濃度の高い
電気的に責なメッキ原板となり、原板に高度の耐食性が
得られる。それと同時に、亜鉛メッキ層とのカップル腐
食電流が減少し、メッキ層のメッキ欠陥部や端面等で犠
牲溶解による腐食速度を減少する。その結!、メッキ鋼
板の耐食寿命の延長或いは塗装後においても地鉄に達す
る塗膜欠陥部や端面等において亜鉛メッキ層等の腐食速
度の減少に基づく、塗膜下腐食が著しく抑制され、塗装
後耐食性、経蒔後の塗料密着性の向上効果は更に期待で
きる。
Furthermore, among these Ni-based base coating layers, the method of providing a Ni diffusion coating layer is particularly excellent. This diffusion layer is formed by providing a base coating layer as described above and then providing a diffusion treatment layer using a heat annealing process of the cold-rolled steel sheet. This creates a highly concentrated and electrically stable plating base plate, giving the base plate a high degree of corrosion resistance. At the same time, the coupled corrosion current with the galvanized layer is reduced, reducing the corrosion rate due to sacrificial melting at plating defects, end faces, etc. of the plating layer. The conclusion! , Corrosion under the coating film is significantly suppressed, resulting in an extension of the corrosion-resistant life of the plated steel sheet, or a reduction in the corrosion rate of the galvanized layer, etc. in defective areas and edges of the coating film that reach the base metal even after painting, resulting in improved corrosion resistance after painting. Further improvement in paint adhesion after sowing can be expected.

次に本発明においてメッキ原板に対して施されるNi系
下地被覆層、亜鉛メッキ層或いは亜鉛合金メッキ層を設
ける方法及びその付着量については、特に規制されるも
のではないが、その被覆層を設ける方法については例え
ば以下の様な方法が用いられ、また付着量については以
下の範囲が好ましい。
Next, in the present invention, there are no particular restrictions on the method and amount of coating of the Ni-based base coating layer, zinc plating layer, or zinc alloy plating layer applied to the plated original plate, but the coating layer may be For example, the following method may be used for providing the coating, and the following range for the amount of adhesion is preferable.

すなわち1 Ni系下地処理法としては、(1)ニッケ
ル下地処理;硫酸°ニンケルー塩化ニッケルーホウ酸系
浴を用いた電気メッキ法(2)ニッケルーコバルト合金
下地処理二目的とする組成のニッケル、コ/<ルトイオ
ンを含有する硫酸ニッケルー硫酸コバルト−塩化ニッケ
ルー塩化コバルト−ホウ酸系浴を用いた電気メッキ法(
3)ニッケルー鉄合金下地処理;目的とする組成のニッ
ケル、鉄イオンを含有す−る硫酸ニッケルー硫酸鉄−ホ
ウ酸系浴を用いた電気メッキ法(4)ニッケルーP合金
下地処理:目的とする組成のニッケル、Pイオンを含有
する硫酸ニー、ケルー塩化ニッケルー次亜リン酸ソーダ
ー−リン酸系浴を用いた電気メッキ法 合は、上記のNi及びNi合金を電気メッキ法でメッキ
原板に施すか或いはNfイオン若しくはNiイオンと他
の合金化元素イオンを含有する水溶液をメッキ原板表面
に塗布して、各々加熱拡散処理が施される。
Namely, 1 Ni-based base treatment methods include: (1) Nickel base treatment; electroplating using a sulfuric acid solution, nickel chloride, and boric acid bath; (2) Nickel-cobalt alloy base treatment. <Electroplating method using a nickel sulfate-cobalt sulfate-nickel chloride-cobalt chloride-boric acid bath containing iron ions (
3) Nickel-iron alloy base treatment: Electroplating method using a nickel sulfate-iron sulfate-boric acid bath containing nickel and iron ions of the desired composition (4) Nickel-P alloy base treatment: Targeted composition The electroplating method using a sulfuric acid, Kelu, nickel chloride-sodium hypophosphorous acid-phosphoric acid bath containing nickel and P ions is performed by applying the above-mentioned Ni and Ni alloy to the plating original plate by electroplating, or An aqueous solution containing Nf ions or Ni ions and other alloying element ions is applied to the surface of the plated original plate, and a heating diffusion treatment is performed on each plated original plate.

例えば、上記のNiメ、キ後或いは 西乍酸ニッケルー
界面活性剤水溶液、若しくは 酢酸ニッケルーリン酸ア
ンチモン−界面活性剤水溶液をロールコータ−で塗布・
乾燥後に各々非酸化性雰囲気で加熱拡散処理(例えば、
650〜900℃の温度で30〜180秒間の加熱処理
)が行なわれる。
For example, the above-mentioned Ni film, after coating, or nickel nishiorate-surfactant aqueous solution, or nickel acetate-antimony phosphate-surfactant aqueous solution can be applied with a roll coater.
After drying, each is heated and diffused in a non-oxidizing atmosphere (for example,
A heat treatment is performed at a temperature of 650 to 900° C. for 30 to 180 seconds.

この拡散被り層は、冷間圧延のままの鋼板(AsCol
d材)及び冷間圧延後焼鈍された鋼板(フルフィニツシ
ユ材)のいずれかを用いて、脱脂、酸洗等の表面清浄化
、活性化処理後に電気メッキ法或いは水溶液塗布法によ
り、Ni系被覆層を設けて加熱拡散処理を行なってもよ
い。しかしながら、冷間圧延のままの鋼板にNi系被覆
層を設け、原板の焼鈍と回持に拡散処理を行なうのが。
This diffusion cover layer is made of cold-rolled steel plate (AsCol).
d material) or a cold-rolled and annealed steel plate (full-finish material), after surface cleaning such as degreasing and pickling, and activation treatment, Ni-based coating is applied by electroplating or aqueous solution coating. A heating diffusion treatment may be performed with a coating layer provided. However, it is preferable to provide a Ni-based coating layer on a cold-rolled steel sheet and perform a diffusion treatment during annealing and recycling of the original sheet.

冷間圧延材の有する加工歪により、Ni系被I層と鋼板
の相互拡散が一層促進されるので短時間の加熱処理で目
的とする拡散層が生成され、経済的工業的にも有利であ
る。
The processing strain of the cold-rolled material further promotes mutual diffusion between the Ni-based I layer and the steel sheet, so the desired diffusion layer is generated in a short heat treatment, which is advantageous from an economical and industrial perspective. .

また、亜鉛或いは亜iに金メ・キ層は、本発明のメッキ
原板を表面清浄化、活性化処理後或いはNi系下地処理
層を設けてから、溶融メッキ法。
Further, the gold plating layer on zinc or aluminum is formed by hot-dip plating after surface cleaning and activation treatment of the plating original plate of the present invention or after providing a Ni-based undercoating layer.

電気メンキ法、真空蒸着法等により、片面又は両面にそ
の用途に対応して設けられる。
It is provided on one side or both sides according to the purpose by an electric coating method, a vacuum evaporation method, or the like.

溶融メッキ法による亜鉛メッキ層を設ける場合には、フ
ラックス法、ガス還元方式法いずれの方法でもよく、メ
ッキ密着性を確保するために少量のA文を含有するメッ
キ浴を用いて被覆5れる。また、電気メッキ法により亜
鉛又は亜鉛系合金メッキ層を設ける場合は、通常の電気
メッキ法において用いられる電解メッキ浴を用いて被覆
層が設けられる。例えば、その−例を挙げれば、(硫酸
亜鉛−硫酸ソーダ )系水溶液の電解による亜鉛メッキ
層の被覆、(硫酸亜鉛−硫酸ニッケルー硫酸アンモン)
系水溶液の電解によるZn−Ni合金メッキ層の被覆、
(硫酸亜鉛−硫酸ニッケルー硫酸コバルト−硫酸アンモ
ン)系水溶液の電解によるZn−Ni−Co合金メッキ
層の被覆、(硫酸亜鉛−硫酸鉄)系水溶液の電解にょる
Zn−Fe合金メッキ層の被覆処理等が、可溶性陽極或
いは不溶性陽極を用いて行なわれる。而して、これら亜
鉛又は亜鉛系合金メッキ層の厚さは、各々均一被覆性の
確保による耐食性の点から、その厚さは1.5 g以上
、好ましく3色以上である。また、被覆層の密着性、成
形加工性、溶接性等の面から、その厚さは亜鉛メッキ層
は25μ、好ましくは15g以下、また亜鉛合金メッキ
層の場合には151L、好ましくは8p以下である6以
上の様に、本発明の鋼成分を有する鋼板と亜鉛系メッキ
層、或いはNN地層と亜鉛系メッキ層とで構成されてい
るメッキ鋼板は1g食環境に曝された場合に、面記した
様にメッキ原板と被覆層の複合効果によって。
When providing a galvanized layer by hot-dip plating, either the flux method or the gas reduction method may be used, and the coating is performed using a plating bath containing a small amount of A to ensure plating adhesion. In addition, when providing a zinc or zinc-based alloy plating layer by electroplating, the coating layer is provided using an electrolytic plating bath used in normal electroplating. For example, coating a galvanized layer by electrolyzing a (zinc sulfate-sodium sulfate) aqueous solution, (zinc sulfate-nickel sulfate-ammony sulfate)
Coating of Zn-Ni alloy plating layer by electrolysis of system aqueous solution,
Coating of Zn-Ni-Co alloy plating layer by electrolysis of (zinc sulfate-nickel sulfate-cobalt sulfate-ammony sulfate) system aqueous solution, coating treatment of Zn-Fe alloy plating layer by electrolysis of (zinc sulfate-iron sulfate) system aqueous solution etc. are carried out using a soluble anode or an insoluble anode. The thickness of each of these zinc or zinc-based alloy plating layers is 1.5 g or more, preferably three colors or more, from the viewpoint of corrosion resistance by ensuring uniform coverage. In addition, in terms of adhesion, formability, weldability, etc. of the coating layer, the thickness of the galvanized layer is 25μ, preferably 15g or less, and 151L, preferably 8p or less in the case of a zinc alloy plating layer. As mentioned above, when a plated steel sheet composed of a steel sheet having the steel composition of the present invention and a zinc-based plating layer, or a NN layer and a zinc-based plating layer is exposed to a 1g eclipse environment, As shown above, due to the combined effect of the plated original plate and the coating layer.

(1)メッキ欠陥、成形加工時の加工疵部或いは端面部
において、メッキ層の犠牲防食作用による溶解速度が軽
減される事によって、メッキ層の腐食寿命が延長されま
た塗装されて使用される場合には塗膜下腐食の軽減によ
る経時後の塗料密着性の向上、塗装後耐食性の向上効果
が得られる。
(1) The corrosion life of the plating layer is extended by reducing the dissolution rate due to the sacrificial anticorrosion effect of the plating layer at plating defects, processing flaws during molding, or end surfaces, and when the plating layer is used after being painted. The effect of improving paint adhesion over time by reducing corrosion under the paint film and improving corrosion resistance after painting can be obtained.

(2)鋼成分において、C含有量を極低含有かに規制し
た鋼板を用いるために、他の耐食性向−ヒ元素の添加効
果と相まって、メッキ原板自体の耐食性向上効果、カー
バイドの析出抑制によるノー2キ層の不メツキ発生の減
少による耐食性向」−効果及び加工性の向上によるメッ
キ層表面或いは塗膜表面に達するクラックの発生防止効
果による耐食性の向上効果が得られる。
(2) In order to use a steel sheet with an extremely low C content in the steel composition, in combination with the addition of other corrosion-resistant elements, the corrosion resistance of the plated original plate itself is improved, and carbide precipitation is suppressed. Corrosion resistance is improved by reducing the occurrence of unplated surfaces in the unplated layer, and by improving processability, it is possible to improve corrosion resistance by preventing the occurrence of cracks that reach the surface of the plating layer or the coating film.

このように、本発明は、メッキ原板と被覆層の複合効果
により、極めて優れた効果が得られる所から、メッキ層
の付着厚さ低減が可能となり、自動車用防錆鋼板に要求
される溶接性、成形加工時のメッキ被覆層の粉末状剥離
(所謂、パウダリング)の減少等の粗刻効果も得られる
As described above, the present invention achieves an extremely excellent effect due to the combined effect of the plated base plate and the coating layer, which makes it possible to reduce the adhesion thickness of the plated layer, thereby improving the weldability required for rust-proof steel sheets for automobiles. Also, roughening effects such as reduction in powdery peeling (so-called powdering) of the plating coating layer during molding can also be obtained.

(実施例) 以下に、本発明の実施例を比較例とともに説明する。(Example) Examples of the present invention will be described below along with comparative examples.

第1表に示す、P、Cu、Ni 、Ti 、Nb等の含
有量を中心に変化させた鋼成分の鋼板を用い、下記に示
す被覆法により亜鉛系メッキ層或いはN1系下地被覆層
と亜鉛系メッキ層を設けた。
Using a steel sheet whose composition is changed mainly around the contents of P, Cu, Ni, Ti, Nb, etc. shown in Table 1, a zinc-based plating layer or an N1-based base coating layer and a zinc-based coating layer are coated using the coating method shown below. A plating layer was provided.

すなわち、電気メー、キ法による亜鉛メッキ層は、冷延
鋼板(フルフィニツシユ材)を(3%N a OH+ 
0.3%界面活性剤)系脱脂浴を用い。
In other words, the galvanized layer by the electric coating method is made by coating a cold-rolled steel plate (full finish material) with (3% Na OH +
A 0.3% surfactant) degreasing bath was used.

脱脂、水洗後に10%H2so4水溶液を用いて50℃
で電流密度2 ’OA / d*2で、陽極酸洗1秒、
陰極酸洗1秒間づつの電解酸洗、水洗を行なって、表面
清浄化、活性化処理を行なった。その後、(350g/
交の硫酸亜鉛−Bog/l硫酸ソーダ )系電解浴を用
いて、60℃、40A/d+i2の電流密度で所定厚さ
の亜鉛メッキ層を設けた。
After degreasing and washing with water, heat at 50℃ using 10% H2SO4 aqueous solution.
anodic pickling for 1 second at a current density of 2'OA/d*2,
Electrolytic pickling and water washing were carried out for 1 second each with cathodic pickling to perform surface cleaning and activation treatment. After that, (350g/
A galvanized layer of a predetermined thickness was provided at 60° C. and a current density of 40 A/d+i2 using an electrolytic bath based on zinc sulfate (Bog/l sodium sulfate).

一方、溶融メッキ法による、亜鉛メッキ層或いは亜鉛を
至成分とする亜鉛との共晶組織を有する亜鉛合金メッキ
層については、冷間圧延のままのAs  Co1d材を
用いて、無酸化炉方式による溶融亜鉛メッキ装置を用い
て、Zn−0,2%A交系メッキ浴及び第1表に示す亜
鉛系合金メッキ浴を用いて、各々所定厚さの亜鉛系メッ
キ層を設けた。さらに、Ni系下地被覆層を設ける場合
においては、電気メンキ法による下地被覆層の場合には
前記の電気メツキ法と同一方法で、Ni系の電解浴組成
を用いて所定厚さのNi系下地被覆層を施して亜鉛系メ
ッキ層を設けた。
On the other hand, for the galvanized layer formed by the hot-dip plating method or the zinc alloy plated layer that has a eutectic structure with zinc and whose main component is zinc, the cold-rolled As Co1d material is used and a non-oxidation furnace method is used. Using a hot-dip galvanizing apparatus, a Zn-0,2%A cross-plating bath and a zinc-based alloy plating bath shown in Table 1 were used to form a zinc-based plating layer of a predetermined thickness. Furthermore, when providing a Ni-based base coating layer, if the base coating layer is formed by the electroplating method, the Ni-based base coating layer is coated with a predetermined thickness using the same method as the electroplating method described above using a Ni-based electrolytic bath composition. A coating layer was applied to provide a zinc-based plating layer.

Ni系拡散被覆層の場合には、ASCo見d材を用い、
その表面を電気メッキの場合と同方法で清浄、活性化後
に溶融メッキにおける無酸化炉を用いて、加熱拡散をA
s  Gaud材の焼鈍と同時に行なって拡散層を設け
た6而して、その後亜鉛系メッキ層を施した。
In the case of Ni-based diffusion coating layer, use ASCod material,
After cleaning and activating the surface using the same method as for electroplating, heat diffusion is performed using a non-oxidizing furnace for hot-dip plating.
A diffusion layer was provided at the same time as the Gaud material was annealed, and then a zinc-based plating layer was applied.

その後、無処理材のまま或いはCrO3−5i02系浴
を用いたクロメート処理及びフルディンプ型式も燐酸塩
処理を行なって、各々所定の被覆量を設けて、下記の評
価試験を行なった。
Thereafter, the untreated material was treated with chromate treatment using a CrO3-5i02 bath, and the full-dip type was also subjected to phosphate treatment, each with a predetermined coating amount, and the following evaluation tests were conducted.

その性能評価試験結果を示す第2表から判るように、本
発明の鋼板は比較例鋼板に比して、耐食性能及び塗装性
能において極めてすぐれた特性を有する。
As can be seen from Table 2 showing the performance evaluation test results, the steel plate of the present invention has extremely superior properties in terms of corrosion resistance and painting performance compared to the steel plate of the comparative example.

O評価試験法 (I)無塗装材の耐食性 ■ 塩水噴霧試験後の耐食性 評価材に対して、地鉄に達するスクラッチ疵を入れ、塩
水噴霧試験360時間後の孔食深さにより、その耐食寿
命を評価した。  1手イ面P−準(z、以下の過−1
11”ある。
O Evaluation Test Method (I) Corrosion Resistance of Unpainted Material ■ Corrosion resistance evaluation material after salt spray test A scratch that reaches the base steel is made and the corrosion resistance life is determined by the pitting depth after 360 hours of salt spray test. was evaluated. 1 move i-face P-semi(z, the following pass-1
There are 11".

0・・・・・・穿孔腐食部の板厚減少量0.25mm以
下 () 、、、 、、、       //      
 0.35mm以下Δ・・・・・・      // 
      0.40mm以下×・・・・・・    
  //       0.40ts薦をこえる場合 ■ サイクリックコロジョンテストによる耐食性(A) 0.8mmの板厚の評価材を用いて。
0...Plate thickness reduction in the corroded part of the hole is 0.25mm or less () , , , , , //
0.35mm or less Δ・・・・・・ //
0.40mm or less×・・・・・・
// When exceeding the recommended 0.40ts■ Corrosion resistance by cyclic corrosion test (A) Using evaluation material with a plate thickness of 0.8mm.

中塩木噴霧(5%NaC文 35℃×4時間)→(1?
)乾燥(70℃ 湿度60%2時間) =!ii)湿潤
(49℃ 湿度98%2時間)呻OV)冷却(−20℃
×2時間)→I’r塩水噴霧 (・1t〜(iQ>が1サイクル) の条件のサイクリックコロジョンテストロ0サイクル後
の穿孔腐食深さの測定により、す下の評価基準でその耐
食寿命の評価を行なった。
Medium salt wood spray (5% NaC 35℃ x 4 hours) → (1?
) Drying (70℃, humidity 60% for 2 hours) =! ii) Humidity (49°C, humidity 98% for 2 hours) Cooling (-20°C)
x 2 hours) → I'r salt spray (・1t ~ (iQ> is 1 cycle)) Cyclic corrosion test under the conditions of The lifespan was evaluated.

■・・・・・・最大穿孔腐食深さ  0,3■未満○・
・・・・・     //       0.40mm
未満Δ・・・−tt       O,50rg!11
未満×・・・・・・     //       0 
、50 m r11以上〜孔明き発生 ■ サイクリックコロジョンテストによる耐食性(B) 0.8mraの板厚の評価材を用いて、470×470
 marのブランクサイズから200 X200 rs
rs角、絞り深さ100■の角筒絞り材を用いて、北記
■項のサイクリックコロジョンテスト、50サイクル後
の穿孔腐食深さの測定により、加工部の耐食寿命の評価
を行なった。
■・・・Maximum drilling corrosion depth Less than 0.3■○・
・・・・・・ // 0.40mm
Less than Δ...-tt O, 50rg! 11
Less than×・・・・・・// 0
, 50 m r11 or more ~ Pouring occurs ■ Corrosion resistance by cyclic corrosion test (B) Using evaluation material with a plate thickness of 0.8 mra, 470 x 470
200 x 200 rs from mar blank size
Using a rectangular tube drawn material with rs angle and drawing depth of 100cm, the corrosion resistance life of the machined part was evaluated by the cyclic corrosion test described in section 2 above and the measurement of the drilling corrosion depth after 50 cycles. .

評価基準は以下の方法によった。The evaluation criteria were as follows.

O・・・・・・最大穿孔腐食深さ  0.20mm未満
○・・・・・・     /l       0.25
mm未満Δ・・・・・・     tt       
0.30rarn未満×・・・・・・     // 
      0.30mm以上〜(II )塗装材の耐
食性能 柔 サイクリックコロジョンテストによる塗装性能(A
) 評価材に対して、各々付着量2〜2.5g / m’の
燐酸塩結晶被覆層を生成させ、次いで、カチオン電着塗
装を20 ’g厚さ施してから、地鉄に達するスクラッ
チ疵を入れて前記■項のサイクリックコロジョンテスト
条件で75サイクル後のスクラッチ部の塗膜フクレ巾及
びスクラッチ部の最大穿孔腐食深さの測定を行なった。
O...Maximum drilling corrosion depth Less than 0.20mm○.../l 0.25
Less than mm Δ・・・・・・tt
Less than 0.30 rarn×・・・・・・ //
0.30mm or more (II) Corrosion resistance performance of coating materials Coating performance by cyclic corrosion test (A
) A phosphate crystal coating layer with a coating weight of 2 to 2.5 g/m' was formed on each evaluation material, and then a cationic electrodeposition coating was applied to a thickness of 20 g, and then scratches reaching the base steel were removed. After 75 cycles under the cyclic corrosion test conditions described in item (1) above, the width of the coating film blistering in the scratched area and the maximum perforation corrosion depth in the scratched area were measured.

上記試験により、塗膜欠陥部を対象とした、その経時後
の塗料密着性及び塗装後耐食性を中心とした評価を行な
った。
Through the above test, evaluations were conducted focusing on paint film adhesion over time and post-painting corrosion resistance, targeting defective parts of the paint film.

@・・・・・・スクラッチ部からの片側最大フクレ巾5
+sm以下で、かつ最大穿孔腐食深さ0.1mm以下 ○・・・・・・スクラッチ部からの片側最大フクレ巾7
.0 mm以下で、かつ最大穿孔腐食深さ0.2 mm
以下 Δ・・・・・・スクラッチ部からの片側最大フクレ巾8
.5 mm以下で、かつ最大穿孔腐食深さ0.3 mm
以下 ×・・・・・・スクラッチ部からの片側最大フクレ巾8
.51mm超または最大穿孔腐食深さ0.3 arm超 (5)  サイクリックコロジョンテストによる塗装性
能(B) 0.8■板厚の前記ぐΦ項のカチオン電着材を用いて、
バルジ加工により20%の変形加工した後に、前記■項
のサイクリックコロジョンテストの条件で50サイクル
テスト後に、加工による塗膜欠陥部からの腐食を対象と
した評価テストを実施した。
@・・・Maximum swell width on one side from scratch part 5
+sm or less, and the maximum drilling corrosion depth is 0.1mm or less.
.. 0 mm or less, and the maximum drilling corrosion depth is 0.2 mm.
Below Δ・・・Maximum bulge width on one side from scratch part 8
.. 5 mm or less, and the maximum drilling corrosion depth is 0.3 mm.
Less than ×・・・Maximum bulge width on one side from scratch part 8
.. Exceeding 51 mm or maximum drilling corrosion depth exceeding 0.3 arm (5) Painting performance by cyclic corrosion test (B) 0.8 ■ Using a cationic electrodeposition material with the above Φ term of board thickness,
After 20% deformation by bulge processing and 50 cycle tests under the conditions of the cyclic corrosion test described in item (1) above, an evaluation test was conducted targeting corrosion from the defective parts of the coating film due to processing.

評価基準は以下の方法によった ■・・・・・・穿孔腐食深さ    0.05mm未満
O・・・・・・   /−0,10mff1未満Δ・・
・・・・   tt        0.15mm未満
X 、、、 、、、     tt        0
.15mm以しに達するスクラッチ疵を入れて、5% NaC交水を1回/1日評価材に散布して、2年間の屋
外曝露テストを実施した後、その穿孔腐食深さ測定及び
評価材の端面からの腐食状況を観察して、以下の評価基
準によりその耐食性を評価した。
The evaluation criteria were as follows: ■...Punching corrosion depth less than 0.05mm O.../-0, less than 10mff1Δ...
... tt Less than 0.15mmX , , , , tt 0
.. After making scratches reaching 15 mm or more and spraying 5% NaC water once a day on the evaluation material and conducting an outdoor exposure test for two years, the depth of perforation corrosion was measured and the evaluation material was tested. The corrosion state from the end face was observed and the corrosion resistance was evaluated according to the following evaluation criteria.

■・・・・・・最大穿孔腐食深さ0.25mm未満で、
端面部からの腐食光んどなし、 ○・・・・・・最大穿孔腐食深さ0.25mm以上〜0
,40mm未満で、端面部からの腐食若干発 生 Δ・・・・・・最大穿孔腐食深さ0.40mra以上〜
0,60111ff1未満で、端面部からの腐食が可成
り発生 ×・・・・・・最大穿孔腐食深さ0.60mm以上〜部
分的に孔食発生、また端面部からの腐 食により端面の初期の形状光んどな し、 (: 成形加工性 0.8a+m X 480 X 480 m11のブラ
ンクサイズから、しわ押え圧力20Tで、200 X2
0Offillサイズ、絞り深さ125mmの角筒絞り
を行ない、その割れ発生状況表面のカジリ発生状況を相
対的に比較して、その成形加工性を評価した。
■・・・Maximum drilling corrosion depth less than 0.25mm,
No corrosion spots from the end face, ○...Maximum drilling corrosion depth 0.25mm or more ~ 0
, Less than 40 mm, slight corrosion occurs from the end surface Δ... Maximum drilling corrosion depth 0.40 mra or more ~
If it is less than 0.60111ff1, corrosion from the end face will occur considerably. Shape: None (: Molding processability: 0.8a+m
A rectangular tube was drawn with a size of 0Offill and a drawing depth of 125 mm, and the forming processability was evaluated by relatively comparing the occurrence of cracks and the occurrence of galling on the surface.

O・・・・・・非常にすぐれている O・・・・・・可成り良好 Δ・・・・・・可成り劣る ×・・・・・・非常に劣るO...Excellent O... Fairly good condition Δ・・・・・・Significantly inferior ×・・・・・・Very poor

【図面の簡単な説明】[Brief explanation of drawings]

第1図はZnメッキ層及びZn−16%Fe合金メッキ
層と本発明メッキ原卆反との5%NaC文水溶液中にお
けるカップル腐食電流の一例を示すグラフである。 代理人 弁理士  秋 沢 政 光 外2名
FIG. 1 is a graph showing an example of the couple corrosion current of a Zn plating layer, a Zn-16% Fe alloy plating layer, and the plating material of the present invention in a 5% NaC aqueous solution. Agent: Patent attorney Masaaki Akizawa, Mitsugai (2 people)

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.01%未満、酸可溶Al;0.005〜0.1
0%、P;0.02〜0.15%、Cu;0.1〜0.
8%、さらにTi、Nb、Zr、Vの1種又は2種以上
で0.03〜0.5%を含有する鋼板の片面又は両面に
、亜鉛或いは亜鉛系合金メッキ層を施してなる耐食性、
塗装性能及び加工性に優れた亜鉛系メッキ鋼板。
(1) In weight%, C: less than 0.01%, acid-soluble Al: 0.005 to 0.1
0%, P; 0.02-0.15%, Cu; 0.1-0.
8%, and further contains 0.03 to 0.5% of one or more of Ti, Nb, Zr, and V. Corrosion resistance obtained by applying a zinc or zinc-based alloy plating layer on one or both sides of a steel plate,
Galvanized steel sheet with excellent painting performance and workability.
(2)重量%で、 C;0.01%未満、酸可溶Al;0.005〜0.1
0%、P;0.02〜0.15%、Cu;0.1〜0.
8%、Ni;1%以下を含有しさらにTi、Nb、Zr
、Vの1種又は2種以上で0.03〜0.5%を含有す
る鋼板の片面又は両面に、亜鉛或いは亜鉛系合金メッキ
層を施してなる耐食性、塗装性能及び加工性に優れた亜
鉛系メッキ鋼板。
(2) In weight%, C: less than 0.01%, acid-soluble Al: 0.005 to 0.1
0%, P; 0.02-0.15%, Cu; 0.1-0.
8%, Ni; Contains 1% or less, and further contains Ti, Nb, Zr
, zinc or zinc-based alloy plating layer on one or both sides of a steel plate containing 0.03 to 0.5% of one or more of V, which has excellent corrosion resistance, coating performance, and workability. type plated steel plate.
(3)重量%で、 C;0.01%未満、酸可溶Al;0.005〜0.1
0%、P;0.02〜0.15%、Cu;0.1〜0.
8%を含有し、Ti、Nb、Zr、Vの1種又は2種以
上;0.03〜0.5%を含有する鋼板の片面又は両面
に、Ni系下地被覆層とその上層に亜鉛或いは亜鉛系合
金メッキ層を施してなる耐食性、塗装性能及び加工性に
優れた亜鉛系メッキ鋼板。
(3) In weight%, C: less than 0.01%, acid-soluble Al: 0.005 to 0.1
0%, P; 0.02-0.15%, Cu; 0.1-0.
8% and one or more of Ti, Nb, Zr, and V; on one or both sides of a steel plate containing 0.03 to 0.5%, a Ni-based base coating layer and a zinc or A zinc-plated steel sheet with excellent corrosion resistance, coating performance, and workability, which is coated with a zinc-based alloy plating layer.
(4)重量%で、 C;0.01%未満、酸可溶Al;0.005〜0.1
0%、P;0.02〜0.15%、Cu;0.1〜0.
8%、Ni:1%以下を含有し、さらにTi、Nb、Z
r、Vの1種又は2種以上で0.03〜0.5%を含有
する鋼板の片面又は両面に、Ni系下地被覆層とその上
層に亜鉛或いは亜鉛系合金メッキ層を施してなる耐食性
、塗装性能及び加工性に優れた亜鉛系メッキ鋼板。
(4) In weight%, C: less than 0.01%, acid-soluble Al: 0.005 to 0.1
0%, P; 0.02-0.15%, Cu; 0.1-0.
8%, Ni: 1% or less, and further contains Ti, Nb, Z
Corrosion resistance obtained by applying a Ni-based base coating layer and a zinc or zinc-based alloy plating layer on one or both sides of a steel plate containing 0.03 to 0.5% of one or more of r and V. , galvanized steel sheet with excellent painting performance and workability.
JP60146404A 1985-07-03 1985-07-03 Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability Expired - Fee Related JPH0768634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146404A JPH0768634B2 (en) 1985-07-03 1985-07-03 Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146404A JPH0768634B2 (en) 1985-07-03 1985-07-03 Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability

Publications (2)

Publication Number Publication Date
JPS627890A true JPS627890A (en) 1987-01-14
JPH0768634B2 JPH0768634B2 (en) 1995-07-26

Family

ID=15406934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146404A Expired - Fee Related JPH0768634B2 (en) 1985-07-03 1985-07-03 Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability

Country Status (1)

Country Link
JP (1) JPH0768634B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346645A (en) * 1991-05-23 1992-12-02 Nippon Steel Corp Production of high strength galvanized steel sheet excellent in bore expandability
JPH07316029A (en) * 1994-03-21 1995-12-05 L'oreal Sa Oxidation dye composition for dyeing keratin fiber and method for using its composition
JPH0834713A (en) * 1994-01-24 1996-02-06 L'oreal Sa Composition for oxidation dyeing of keratin fiber containing para-phenylenediamine derivative and meta-phenylenediamine derivative and method for dyeing usingsaid composition
JP2001316860A (en) * 2000-05-11 2001-11-16 Sumitomo Metal Ind Ltd Attractive electrogalvanized steel sheet and manufacturing method
WO2012043776A1 (en) * 2010-09-29 2012-04-05 Jfeスチール株式会社 High-strength steel sheet and manufacturing method therefor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549113A (en) * 1977-06-23 1979-01-23 Nippon Steel Corp Highly anti-corrosive steel plate for automoviles
JPS5524943A (en) * 1978-08-09 1980-02-22 Kawasaki Steel Corp Manufacture of high tensile hot galvanized steel plate for press processing
JPS55110794A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Preparation of zn based alloy coated steel plate
JPS55141555A (en) * 1979-04-18 1980-11-05 Kawasaki Steel Corp Production of high tension galvanized steel sheet for press machining
JPS56139655A (en) * 1980-04-01 1981-10-31 Nippon Steel Corp Low alloy steel with pitting corrosion resistance
JPS56166390A (en) * 1980-05-28 1981-12-21 Nippon Steel Corp Zn-co type alloy coated steel plate of superior corrosion resistance
JPS5714748A (en) * 1980-07-01 1982-01-26 Dainippon Pharmaceut Co Ltd Kit for quantitative determination of valproic acid and its method for quantitative determination
JPS5776176A (en) * 1980-10-28 1982-05-13 Nippon Steel Corp Manufacture of high preformance hot-galvanized steel plate
JPS57104656A (en) * 1980-12-22 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of high-tensile steel with low galvanizing crack sensitivity
JPS57171692A (en) * 1981-04-15 1982-10-22 Kawasaki Steel Corp Surface treatment steel plate having high corrosion resistance
JPS5819442A (en) * 1981-07-27 1983-02-04 Nippon Kokan Kk <Nkk> Manufacture of high strength cold rolled steel plate for working by continuous annealing
JPS5845396A (en) * 1981-09-11 1983-03-16 Nippon Steel Corp Ni-zn alloy plated steel plate for fuel vessel
JPS58117890A (en) * 1982-01-06 1983-07-13 Kawasaki Steel Corp Highly corrosion resistant surface treated steel plate
JPS5923894A (en) * 1982-07-29 1984-02-07 Sumitomo Metal Ind Ltd Plate steel sheet with superior corrosion resistance and its manufacture
JPS6115948A (en) * 1984-07-02 1986-01-24 Kawasaki Steel Corp High-tension cold-rolled steel sheet for deep drawing

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549113A (en) * 1977-06-23 1979-01-23 Nippon Steel Corp Highly anti-corrosive steel plate for automoviles
JPS5524943A (en) * 1978-08-09 1980-02-22 Kawasaki Steel Corp Manufacture of high tensile hot galvanized steel plate for press processing
JPS55110794A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Preparation of zn based alloy coated steel plate
JPS55141555A (en) * 1979-04-18 1980-11-05 Kawasaki Steel Corp Production of high tension galvanized steel sheet for press machining
JPS56139655A (en) * 1980-04-01 1981-10-31 Nippon Steel Corp Low alloy steel with pitting corrosion resistance
JPS56166390A (en) * 1980-05-28 1981-12-21 Nippon Steel Corp Zn-co type alloy coated steel plate of superior corrosion resistance
JPS5714748A (en) * 1980-07-01 1982-01-26 Dainippon Pharmaceut Co Ltd Kit for quantitative determination of valproic acid and its method for quantitative determination
JPS5776176A (en) * 1980-10-28 1982-05-13 Nippon Steel Corp Manufacture of high preformance hot-galvanized steel plate
JPS57104656A (en) * 1980-12-22 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of high-tensile steel with low galvanizing crack sensitivity
JPS57171692A (en) * 1981-04-15 1982-10-22 Kawasaki Steel Corp Surface treatment steel plate having high corrosion resistance
JPS5819442A (en) * 1981-07-27 1983-02-04 Nippon Kokan Kk <Nkk> Manufacture of high strength cold rolled steel plate for working by continuous annealing
JPS5845396A (en) * 1981-09-11 1983-03-16 Nippon Steel Corp Ni-zn alloy plated steel plate for fuel vessel
JPS58117890A (en) * 1982-01-06 1983-07-13 Kawasaki Steel Corp Highly corrosion resistant surface treated steel plate
JPS5923894A (en) * 1982-07-29 1984-02-07 Sumitomo Metal Ind Ltd Plate steel sheet with superior corrosion resistance and its manufacture
JPS6115948A (en) * 1984-07-02 1986-01-24 Kawasaki Steel Corp High-tension cold-rolled steel sheet for deep drawing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346645A (en) * 1991-05-23 1992-12-02 Nippon Steel Corp Production of high strength galvanized steel sheet excellent in bore expandability
JPH0834713A (en) * 1994-01-24 1996-02-06 L'oreal Sa Composition for oxidation dyeing of keratin fiber containing para-phenylenediamine derivative and meta-phenylenediamine derivative and method for dyeing usingsaid composition
JP2601641B2 (en) * 1994-01-24 1997-04-16 ロレアル Composition for oxidative dyeing of keratin fibers, containing a para-phenylenediamine derivative and a meta-phenylenediamine derivative, and a dyeing method using the composition
JPH07316029A (en) * 1994-03-21 1995-12-05 L'oreal Sa Oxidation dye composition for dyeing keratin fiber and method for using its composition
JP2582233B2 (en) * 1994-03-21 1997-02-19 ロレアル Oxidation dye composition for dyeing keratin fibers and method of using the composition
JP2001316860A (en) * 2000-05-11 2001-11-16 Sumitomo Metal Ind Ltd Attractive electrogalvanized steel sheet and manufacturing method
WO2012043776A1 (en) * 2010-09-29 2012-04-05 Jfeスチール株式会社 High-strength steel sheet and manufacturing method therefor
JP2012072447A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
US9598743B2 (en) 2010-09-29 2017-03-21 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0768634B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
JPH04214895A (en) Surface treated steel sheet excellent in plating performance and weldability and manufacture thereof
JPS6358228B2 (en)
JPS59170288A (en) Zinc alloy plated steel sheet having superior corrosion resistance and coatability
JPS627890A (en) Zinc or zinc alloy plated steel sheet having superior corrosion resistance, paintability and workability
JPS5815554B2 (en) Plated steel materials for cationic electrodeposition coating
KR890001109B1 (en) Corrosion-resistant steel strip having zn-fe-p alloy electroplated thereon
JPS627889A (en) Zinc or zinc alloy plated steel sheet having superior corrosion resistance and paintability
JPS6327438B2 (en)
JPS6343479B2 (en)
JPS6026835B2 (en) Zinc-manganese alloy electroplated steel sheet with excellent corrosion resistance in salt water environments
JPS5925992A (en) Surface treated steel sheet having high corrosion resistance and its production
JPH0536518B2 (en)
JPS61194195A (en) Highly-corrosion resistant two-layer plated steel plate
JPH0548313B2 (en)
JPH0520514B2 (en)
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance
JP2827709B2 (en) Surface treated steel sheet with multiple plating layers, excellent in filiform rust resistance, corrosion resistance and weldability
JPH0324293A (en) Multi-ply plated steel sheet excellent in workability, corrosion resistance and water-resistant adhesion
KR920010776B1 (en) High corrosion resistant steel sheets with two layer being of alloy metal and process for making
JPH0536516B2 (en)
JPS642195B2 (en)
KR930007927B1 (en) Two-layer plating alloy steel sheet of high corrosion resistance and method for producing the same
JPS61252148A (en) Coated steel plate having excellent corrosion resistance
JPS63153299A (en) Zn-based double-layer electroplated steel sheet having high corrosion resistance
Yamashita et al. Newly developed organic-silicate composite coated steel sheet with bake hardenability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees