JPH075977B2 - 熱間圧延における一方向性電磁鋼板用連続鋳造スラブの加熱方法 - Google Patents

熱間圧延における一方向性電磁鋼板用連続鋳造スラブの加熱方法

Info

Publication number
JPH075977B2
JPH075977B2 JP6718491A JP6718491A JPH075977B2 JP H075977 B2 JPH075977 B2 JP H075977B2 JP 6718491 A JP6718491 A JP 6718491A JP 6718491 A JP6718491 A JP 6718491A JP H075977 B2 JPH075977 B2 JP H075977B2
Authority
JP
Japan
Prior art keywords
slab
temperature
heating
rolling
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6718491A
Other languages
English (en)
Other versions
JPH0617131A (ja
Inventor
信也 石井
浩二 藤井
潔一 市村
伸夫 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6718491A priority Critical patent/JPH075977B2/ja
Publication of JPH0617131A publication Critical patent/JPH0617131A/ja
Publication of JPH075977B2 publication Critical patent/JPH075977B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、一方向性電磁鋼板の製
造において、連続鋳造によって製造した一方向性電磁鋼
用スラブの加熱法に関するものであり、特に、スラブ幅
方向エッジ部の温度を上昇せしめて中央部より高くする
偏差加熱を行い、生産性に優れ磁気特性の向上した一方
向性電磁鋼板を得るための熱間圧延時におけるスラブの
高温加熱法に係るものである。
【0002】
【従来の技術】周知の如く、方向性電磁鋼板は、高い磁
束密度と低い鉄損を持つ優れた磁気特性により変圧器な
どの鉄芯材料として広く用いられている。その製造方法
の特徴として、〔110〕<001>のいわゆるゴス方
位が高度に集積した二次再結晶粒を得るために、Mn
S、AlNといった粒方向性を制御するインヒビター元
素が用いられている。このインヒビター元素が適性に意
図した作用をもたらすためには、熱間圧延に先立つスラ
ブ加熱時に充分に解離固溶(以下溶体化と呼ぶ)させた
後、適切な条件での熱間圧延と次いで行う冷却によって
微細かつ均一分散析出させることが非常に重要であり、
かかるインヒビターの溶体化には、例えば1300℃以
上のスラブ高温加熱を行っている。
【0003】このスラブ高温加熱を行う方法として、ガ
ス燃焼型加熱炉を用いた場合には、加熱炉内で多量の溶
融スケールが発生し、歩留の悪化が生じるだけでなく、
加熱炉の安定した操業性を損なうと共に、成品表面欠陥
や幅方向端部のいわゆる耳割れ欠陥の発生原因となる。
加えて、この種の加熱炉で目標とする温度まで到達させ
るには極めて長時間を要することから、その間にスラブ
組織の粗大化が生じ、その後の圧延で巨大延伸粒を発現
させることになり、その結果成品磁気特性を不安定にさ
せる原因にもなっている。
【0004】上記の問題点に対して、特開昭63−10
9115号公報や、特開平1−162725号公報等で
は、スラブを1250℃程度までガス燃焼型加熱炉で予
備加熱し、その後1500℃程度までの高温加熱を、不
活性雰囲気に制御された誘導加熱炉で短時間行うことが
提案されている。しかしながら、これらの内部発熱型の
誘導加熱炉を用いた高温急速加熱では、従来のガス加熱
方式と異なり、炉抽出時の温度パターンが、表面部で最
冷点となるため、その後の熱延処理において、特に熱延
板幅方向のエッジ部温度が極めて低下しやすく、その結
果として、インヒビター凝集による2次再結晶不良とな
り、磁気特性の劣化が生じる。又、熱延板幅方向に温度
偏差が生じることにより、幅方向磁気特性が不安定にな
る。
【0005】一方、特開平2−11717号公報には、
スラブの高温加熱を、不活性雰囲気にした誘導加熱で行
ない、この誘導加熱コイルの内側を長手方向に複数の仕
切りを設け、この仕切り毎に不活性ガス吹き込み量を調
整して、スラブ長手方向の温度分布を制御することが開
示されている。この方法によれば、鋼片(スラブ)温度
より低い不活性ガスを、スラブ長手方向の各領域の温度
分布に応じてガス吹込口より吹き込んでいるが、雰囲気
のガス置換には多量のガスが必要であると共に、竪型に
挿入された鋼片と誘導コイル壁との間隔は狭いため、冷
却ガス吹込流が鋼片に直接当たるか、近傍を流れること
になり、その鋼片部分に冷却スポットが形成されて磁性
の劣化を惹起させる。又、炉内鋼片を長手方向に均一に
冷却するには、吹き込みガスの均一な領域内の環流が必
要となり、そのための設備を配備しなければならない。
【0006】他方、特開昭62−13562号公報に
は、加熱炉で加熱したスラブを誘導加熱炉でさらに高温
加熱する際に、該加熱炉の入側及び/又は出側仕上圧延
間のスラブ幅方向の温度分布を検出し、検出した温度偏
差をなくすために幅方向投入電力及び時間を補正して均
一加熱をする誘導加熱炉の温度制御方法が開示されてい
る。又特公昭52−47178号広報には、複数個のコ
イルを用いてスラブを加熱するのに、各コイルの電源の
周波数を異ならせて加熱部分の温度に応じて出力するこ
とが記述されている。
【0007】この様に、スラブを誘導加熱する方法に
は、多くの提案があるが、これらはスラブ長手方向の加
熱調整に関するものであるか、幅方向への加熱であって
も同方向への温度偏差をなくすための均熱についてであ
り、実際上このような方法での加熱では、熱延仕上げ出
側における幅端部分の温度降下を防ぎ得ないという問題
が生じる。
【0008】
【発明が解決しようとする課題】本発明は、上記した従
来技術の問題点を解消するものであって、熱延板の熱延
仕上圧延出口温度が少なくとも幅方向に亘ってほぼ均一
になるか、幅エッジ部分がわずかに高くなるように、竪
型電気式スラブ加熱炉の各コイルへの投入パワーを設定
して、スラブ幅方向エッジ部の温度を上昇せしめて中央
部より高くする偏差加熱を行い、この様なスラブの高温
加熱をすることにより、最終的に幅、長手方向とも良好
な磁気特性を得る熱間圧延における一方向性電磁鋼板用
連続鋳造スラブの加熱方法を提供することを目的とす
る。
【0009】
【課題を解決するための手段】上記目的を達成するため
に、本発明は次の構成を要旨とする。すなわち、C:
0.02〜0.085%、Si:2〜4.5%を含む連
続鋳造により製造した一方向性電磁鋼板用スラブを熱間
圧延する工程の中で、上下方向に夫々出力制御可能なコ
イルを多段に備えた竪型電気式加熱装置にて、スラブを
高温加熱した後、粗圧延および仕上圧延するに際し、仕
上圧延の出口温度が熱延板の全幅に亘りほぼ均一になる
ように、前記竪型電気式加熱装置におけるスラブ幅方向
の温度を中央部より両端部が高くなるように設定し、こ
れによって各コイルへの出力を調整することを特徴とす
る熱間圧延における一方向性電磁鋼板用連続鋳造スラブ
の加熱方法である。
【0010】又、上記粗圧延と仕上圧延の間にエッジ加
熱装置を設け、粗圧延バー材の幅方向端部を加熱するこ
とによって、熱延鋼板全幅方向に温度偏差を無くするこ
とができる。更に、前記エッジ加熱装置の前段、或いは
エッジ加熱装置と組み合わせて粗圧延バー材加熱(保
温)装置を設置しても良い。この様に本発明は、誘導加
熱のような電気式加熱装置によって、スラブ幅方向エッ
ジ部の温度を中央部より高温にする偏差加熱をすること
で、エッジ部温度を確保し、仕上圧延出側の鋼板温度を
ほぼ1000〜1100℃の範囲を目標に全幅に亘って
ほぼ均一に得ることが可能となる。或いはエッジ部はや
や高めで有ってもよく、これにより安定した特性が得ら
れる。しかも、電気式加熱装置における加熱雰囲気を、
不活性ガス等の非酸化性にすることにより優れた表面性
状も得られる。
【0011】
【作用】以下に本発明を詳細に説明する。前述の通り、
高磁束密度と低鉄損の優れた磁気特性をもつ方向性電磁
鋼板は、ゴス方位が高度に集積した二次再結晶粒を形成
しなければならず、そのために、MnS、AlNといっ
た粒方向性を制御するインヒビターが微細かつ均一に分
散析出させることが非常に重要である。このインヒビタ
ー元素が適性に意図した作用をもたらすためには、熱間
圧延に先立つスラブを、例えば1300℃以上に加熱し
充分に溶体化させた後、適切な条件での熱間圧延と次い
で行う冷却によっている。
【0012】このスラブ高温加熱をガス燃焼型加熱炉を
用いて行うと、炉内での多量の溶融スケールの発生等、
種々な操業上及び成品上の問題が生じるために、近時、
誘導加熱等による竪型電気式加熱装置(炉)が提案され
ているが、この方法による加熱においても、例えば図2
の点線で示したような温度パターンとなり、スラブの幅
方向エッジ部温度が極めて低下しやすくなっている。こ
の様な温度低下は、インヒビター成分の分離固溶が十分
でなく、その後熱延、冷却時インヒビターの有効な形成
ができなくなる。
【0013】本発明は、連続鋳造スラブの熱間圧延工程
において、竪型電気式加熱装置(炉)を使用するのであ
るが、該加熱炉によってスラブを高温加熱する際に、ス
ラブの幅方向エッジ部を中央部より高温になるように、
炉内に設けた多段コイルの出力を設定し、熱延仕上出側
の鋼板幅方向温度がほぼ均一になり、かつ目標温度にな
るように調整する。
【0014】図1の(イ)は、本発明の竪型電気式加熱
炉におけるスラブ高温加熱を模式的に示したものであっ
て、4段に設けた誘導加熱コイル(a)、(b)、
(c)、(d)内に、架台1上に載置したスラブ2を立
て装入した状態を示している。この誘導加熱コイルには
夫々にトランスを設け、或いは夫々に電源を直接接続す
る等の方法で、コイル毎に出力可変に調整できるように
している。特に温度降下し易いエッジ部分、即ち図1で
はコイル(a)、(d)の出力アップが可能となるよう
にする。
【0015】各誘導コイルの出力は、スラブの幅方向温
度を加熱時に適当箇所実測しながら抽出時スラブの各部
位が目標温度になるように調整するようにしてもよい
が、スラブ中心部を目標温度に加熱するための出力を標
準にし、幅方向エッジ部コイルを前記標準値より所定割
合アップさせた出力に設定する方法でも良く、これらの
場合、予備加熱された誘導加熱炉装入前のスラブの幅方
向温度パターン、および/或いは仕上圧延出側の幅方向
温度を参照し、補正値として採用することができる。
【0016】図1の(ロ)は同図(イ)における複数コ
イルの電力パワーの一例を模式的に示したもので、点線
は普通に行われるであろう入力パターン(比較例)であ
り、実線は本発明方法による入力パターンである。すな
わちスラブの幅方向エッジ部は比較例に置いても中心部
より高めであるが、この程度では、炉抽出後実際のエッ
ジ部温度は中心部より降下してしまう。本発明では、エ
ッジ部におけるコイルの出力を更に大きくし、炉抽出後
でもエッジ部温度が中心部温度よりも高温に保持できる
ようにしている。そのためには、エッジ部のコイル出力
を中心部のそれよりほぼ30%以上、好ましくは50%
以上増強することが望ましい。
【0017】又、本発明においては、粗圧延材と仕上圧
延の間にバー材エッジを加熱するエッジ加熱装置を付加
的に設けることにより、エッジ部の温度保持をより良く
行うことが出来、さらに保温装置と併用すれば一層効果
的である。
【0018】本発明における製造工程では、C:0.0
2〜0.085%、Si:2〜4.5%を含有する一方
向性電磁鋼板用スラブを連続鋳造法で製造し、該スラブ
を先ずガス燃焼型加熱炉で予備加熱を行う。この加熱
は、900〜1250℃という比較的低温で行うため、
溶融ノロの発生が少なく、既存加熱炉を利用して効率の
良い操業を可能にする。又、後工程の予備圧延の温度を
確保するものでもある。連続鋳造によって製造されるス
ラブは、鋳造安定性から制約される最大幅一定のサイズ
とすることが好ましく、これを所望の製品幅となるよう
に幅圧下を行うことにより、連続鋳造工程の生産性向上
に役立つ。即ち、前記予備加熱したスラブは直ちに圧延
ラインに搬送して、幅大圧下圧延を行うのであるが、連
鋳スラブには内質欠陥(偏析、ワレ)が形成され、高温
加熱を行うと、これが原因となって後の熱延鋼板に表面
欠陥が発生する。幅大圧下圧延は、この内質欠陥を助長
することになるので、それを生じさせないために、1回
のパスでの幅方向圧下量を50mm以下で3パス以上の条
件下で行うことを推奨する。
【0019】上記幅大圧下圧延後、900〜1250℃
範囲で20〜40%圧下の予備圧延を2パス以上にて速
やかに行う。前述のように連鋳スラブに生成する内質欠
陥に起因する表面欠陥は、製品特性に大きな影響を及ぼ
すため、本発明は、前記した条件でこの予備圧延を、前
記幅大圧下圧延と共に実施することにより、これを解消
することができる。又、この予備圧延では幅大圧下圧延
により形成されたドッグボーンを消去すると共に加熱効
率の良い形状にし、後工程の誘導加熱炉への装入を容易
に、且つ安定にする役割も果たす。尚、予備圧延を行う
手段は、特に限定しないが、粗圧延機を共用すると便利
である。
【0020】予備圧延したスラブは、N2 やArガス等
の非酸化性雰囲気にした誘導加熱等の電気式加熱炉で高
温溶体化処理される。即ち、スラブに含有されているM
nSやAlN等の固溶を図り、冷延、仕上焼鈍等を経た
最終製品に優れた磁気特性を付与するために必要な手段
であり、このために1300〜1450℃の温度範囲に
おいて、前述したようにスラブ幅方向の中央部とエッジ
部に積極的に温度差を設けて加熱する。加熱手段とし
て、例えば誘導コイル内にスラブを竪形に装入し、雰囲
気を非酸化性に出来る炉を、オンライン或いはオンライ
ン近傍に、しかも粗圧延機に近接して設置することが好
ましい。
【0021】この様に高温加熱されたスラブは、速やか
に粗圧延機に噛み込まれこれ以降常法に従って粗−仕上
圧延されるが、仕上圧延出側の熱延鋼板はほぼ1000
〜1100℃の範囲となり、且つ幅方向の温度がほぼ均
一化される。そして全幅この温度範囲にすることによ
り、MnSを微細に析出させると共にAlNを固溶状態
にして後工程での析出に効果在らしめ、従来法に見られ
る幅方向温度降下に起因する細粒の発生が防止できる。
【0022】その後、コイルに巻き取って一方向性電磁
鋼板用熱延鋼板となる。そして、この熱延鋼板を冷延、
焼鈍等通常の一方向性電磁鋼板の製造法で処理し、表面
性状及び磁気特性の優れた最終製品を安定して得ること
ができる。
【0023】
【実施例1】重量%で、C:0.07%、Si:3.2
5%、Mn:0.08%、S:0.026%、SolA
l:0.026%、N:0.0080%、Sn:0.1
2%、Cu:0.05%、残部実質的にFeよりなる連
続鋳造スラブ(スラブサイズ:248mm厚×1200mm
幅×7000mm長さ)を、ガス加熱炉にて平均温度11
50℃に加熱した後、竪型粗圧延機にてスラブ幅を10
00mmまで幅圧下し、更に粗圧延機にてドッグボーン矯
正およびスラブ厚さを210mmまで圧下後、誘導加熱炉
に導入し、炉中スラブの表面温度が図2に示すごとく、
本発明材(白丸印)はスラブ幅方向でのセンター部で1
330℃、両エッジ部で1350℃、比較に示した処理
材(黒丸印)ではセンター部で1340℃、両エッジ部
で1320℃となるように誘導加熱コイルパワーを調節
し、加熱した。この様なスラブ表面温度を得るためのセ
ンター部に対するエッジ部のコイルパワー比をみると、
図2に併記したように、比較材では、1.1(幅方向下
端部)〜1.2(同上端部)倍であるに対して、本発明
では1.5(幅方向下端部)〜2.0(同上端部)倍と
なっている。このように加熱したスラブを加熱炉から抽
出し、粗圧延、仕上圧延を行って、2.3mmのホットコ
イルとして巻き取った。
【0024】前記ホットコイルを酸洗下後1.5mmの板
厚に予備冷延してから1100℃のホットコイル焼鈍を
施し、次いで最終冷延により0.23mm厚の鋼帯とし
た。この冷延鋼帯には、更に835℃での脱炭焼鈍、及
び1200℃での高温焼鈍を実施した。
【0025】得られた高磁束密度方向性電磁鋼板の製品
幅方向の2次再結晶形成状況を見ると、図3の熱間圧延
仕上げ後面板温(エッジ部より25mm点の温度)とエッ
ジ細粒(1次再結晶儘で2次再結晶しない粒)との関係
で示すように、比較材各コイル(黒丸印)のエッジ部
は、殆ど1000℃近傍以下であって細粒が発生してい
るに対し、図2で示したようなスラブ幅方向エッジ部に
高出力の高温加熱をした本発明材は、ほぼ1000℃以
上に高温化されており、幅方向均一な2次再結晶が得ら
れて磁気特性の良好な製品となっている。
【0026】
【実施例2】重量%で、C:0.078%、Si:3.
25%、Mn:0.08%、S:0.026%、Sol
Al:0.026%、N:0.0085%、Sn:0.
08%、Cu:0.05%、残部実質的にFeよりなる
連続鋳造スラブ(スラブサイズ:248mm厚×1200
mm幅×7000mm長さ)を、ガス加熱炉にて平均温度1
150℃に加熱した後、竪型粗圧延機にてスラブ幅を1
000mmまで幅圧下し、更に粗圧延機にてドッグボーン
矯正およびスラブ厚さを210mmまで圧下後、誘導加熱
炉に導入し、実施例1と同様に、炉中スラブの表面温度
が図4に示すごとく、本発明材(白丸印)はスラブ幅方
向でのセンター部で1330℃、両エッジ部で1360
℃、比較に示した処理材(黒丸印)ではセンター部で1
340℃、両エッジ部で1320℃となるように誘導加
熱コイルパワーを調節し、加熱した。この様なスラブ表
面温度を得るためのセンター部に対するエッジ部のコイ
ルパワー比をみると、図4に併記したように、比較材で
は、1.1(幅方向下端部)〜1.2(同上端部)倍で
あるに対して、本発明では1.7(幅方向下端部)〜
2.2(同上端部)倍となっている。このように加熱し
たスラブを加熱炉から抽出し、粗圧延、仕上圧延を行っ
て、1.6mmのホットコイルとして巻き取った。
【0027】前記ホットコイルを酸洗下後1.5mmの板
厚に予備冷延してから1100℃のホットコイル焼鈍を
施し、次いで最終冷延により0.23mm厚の鋼帯とし
た。この冷延鋼帯には、更に835℃での脱炭焼鈍、及
び1200℃での高温焼鈍を実施した。
【0028】得られた高磁束密度方向性電磁鋼板の製品
幅方向の2次再結晶形成状況を見ると、図5に熱間圧延
仕上げ後面板温(エッジ部より25mm点の温度)とエッ
ジ細粒との関係で示すように、比較材各コイル(黒丸
印)のエッジ部は、殆ど1000℃近傍以下であって細
粒が発生しているに対し、図4で示したようなスラブ幅
方向エッジ部に高出力の高温加熱をした本発明材は、ほ
ぼ1000℃以上に高温化されており、幅方向均一な2
次再結晶が得られて磁気特性の良好な製品となってい
る。
【0029】
【発明の効果】以上のように、本発明法によれば、スラ
ブの溶体化処理に際し、竪型電気式スラブ加熱炉の各コ
イルへの投入パワーを設定して、スラブ幅方向エッジ部
の温度を上昇せしめて中央部より高くする偏差加熱を行
うことにより、熱延板の熱延仕上圧延出側温度が幅方向
にほぼ均一になり、細粒を発生せず、幅方向均一な2次
再結晶が得られて最終的に磁気特性及び表面性状の優れ
た方向性電磁鋼板を得ることができる。
【図面の簡単な説明】
【図1】(イ)は、本発明の竪型電気式加熱(誘導加
熱)炉におけるスラブ高温加熱を模式的に示下図であ
り、(ロ)は同図(イ)における複数コイルの電力パワ
ーの一例を模式的に示した図。
【図2】本発明実施例及び比較例の誘導加熱時における
スラブ幅方向の位置別表面温度及びコイルパワー比を示
す図。
【図3】本発明例及び比較例の熱間圧延仕上げ後面板温
とエッジ細粒深さとの関係を示す図。
【図4】本発明の他の実施例及び比較例の誘導加熱時に
おけるスラブ幅方向の位置別表面温度及びコイルパワー
比を示す図。
【図5】本発明の他の実施例及び比較例の熱間圧延仕上
げ後面板温とエッジ細粒深さとの関係を示す図。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 C:0.02〜0.085%、Si:2
    〜4.5%を含む連続鋳造により製造した一方向性電磁
    鋼板用スラブを熱間圧延する工程の中で、上下方向に夫
    々出力制御可能なコイルを多段に備えた竪型電気式加熱
    装置にて、スラブを高温加熱した後、粗圧延および仕上
    圧延するに際し、仕上げ圧延の出口温度が熱延板の全幅
    に亘りほぼ均一になるように、前記竪型電気式加熱装置
    におけるスラブ幅方向の温度を中央部より両端部が高く
    なるように設定し、これによって各コイルへの出力を調
    整することを特徴とする熱間圧延における一方向性電磁
    鋼板用連続鋳造スラブの加熱方法。
  2. 【請求項2】 粗圧延と仕上圧延の間にエッジ加熱装置
    を設け、粗圧延バー材の幅方向端部を加熱することを特
    徴とする請求項1記載の熱間圧延における一方向性電磁
    鋼板用連続鋳造スラブの加熱方法。
JP6718491A 1991-03-29 1991-03-29 熱間圧延における一方向性電磁鋼板用連続鋳造スラブの加熱方法 Expired - Lifetime JPH075977B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6718491A JPH075977B2 (ja) 1991-03-29 1991-03-29 熱間圧延における一方向性電磁鋼板用連続鋳造スラブの加熱方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6718491A JPH075977B2 (ja) 1991-03-29 1991-03-29 熱間圧延における一方向性電磁鋼板用連続鋳造スラブの加熱方法

Publications (2)

Publication Number Publication Date
JPH0617131A JPH0617131A (ja) 1994-01-25
JPH075977B2 true JPH075977B2 (ja) 1995-01-25

Family

ID=13337557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6718491A Expired - Lifetime JPH075977B2 (ja) 1991-03-29 1991-03-29 熱間圧延における一方向性電磁鋼板用連続鋳造スラブの加熱方法

Country Status (1)

Country Link
JP (1) JPH075977B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472857B2 (ja) * 1994-06-30 2003-12-02 新日本製鐵株式会社 耳形状のよい超高珪素電磁鋼熱延板の製造方法

Also Published As

Publication number Publication date
JPH0617131A (ja) 1994-01-25

Similar Documents

Publication Publication Date Title
KR920006581B1 (ko) 자기특성이 우수한 무방향성 규소강판의 제조방법
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
EP0391335B1 (en) Process for production of grain oriented electrical steel sheet having superior magnetic properties
KR100831756B1 (ko) 그레인 방향성 전기 강 스트립의 제조시 억제제 분포를조절하는 방법
JPH10130729A (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3357603B2 (ja) 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JPH08269571A (ja) 一方向性電磁鋼帯の製造方法
JPH062907B2 (ja) 無方向性電磁鋼板の製造方法
JPH075977B2 (ja) 熱間圧延における一方向性電磁鋼板用連続鋳造スラブの加熱方法
JP2536974B2 (ja) 極めて優れた磁気特性を有する無方向性電磁鋼板の熱間圧延方法
JP4206538B2 (ja) 方向性電磁鋼板の製造方法
JP2533987B2 (ja) 一方向性電磁鋼板用連続鋳造スラブの熱間圧延方法
JP2580403B2 (ja) 一方向性電磁鋼板用連続鋳造スラブの熱間圧延方法
JPS62130217A (ja) 電磁特性の良好な方向性けい素鋼板の製造方法
JPH06240358A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JPH08157963A (ja) 一方向性けい素鋼板の製造方法
JP4265054B2 (ja) 表面性状に優れた熱延鋼板の製造方法
JP3301622B2 (ja) 板幅方向に均一で優れた磁気特性を有する方向性けい素鋼板の製造方法
JP2703468B2 (ja) 高磁束密度一方向性電磁鋼板の安定製造方法
JPH0615306A (ja) 連続式熱間圧延設備列
JPS63100128A (ja) 磁気特性と表面性状の良好な方向性珪素鋼板の製造方法
JP3456861B2 (ja) 極めて優れた磁気特性を有する方向性電磁鋼板の製造方法
JPS5937330B2 (ja) 連続鋳造法の適用による一方向性電磁鋼板の製造方法
JPH075976B2 (ja) 一方向性電磁鋼板用連続鋳造スラブの熱間圧延方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 17