JPH0758213A - Well forming method in semiconductor device - Google Patents

Well forming method in semiconductor device

Info

Publication number
JPH0758213A
JPH0758213A JP5201567A JP20156793A JPH0758213A JP H0758213 A JPH0758213 A JP H0758213A JP 5201567 A JP5201567 A JP 5201567A JP 20156793 A JP20156793 A JP 20156793A JP H0758213 A JPH0758213 A JP H0758213A
Authority
JP
Japan
Prior art keywords
well
forming
impurity
resist pattern
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5201567A
Other languages
Japanese (ja)
Inventor
Kazuya Suzuki
和哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5201567A priority Critical patent/JPH0758213A/en
Publication of JPH0758213A publication Critical patent/JPH0758213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate the non-uniformity of impurity density of a well due to microscopic formation in the method of well formation in a semiconductor device. CONSTITUTION:First, an impurity layer 16, which is smaller than a well-forming region, is formed, impurities 16 are diffused by heat treatment and a well 17 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置におい
て、半導体基板(以下、単に基板と称す)にウェルをよ
り均一に形成する方法に関するものである。周知のよう
に、同一基板上にPMOS、NMOSを組み合わせて作
るようなとき、基板がp型ならn型の不純物拡散領域を
基板の所定部分に形成するが、その不純物拡散領域をウ
ェルという。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming wells in a semiconductor substrate (hereinafter simply referred to as a substrate) more uniformly in a semiconductor device. As is well known, when a combination of PMOS and NMOS is formed on the same substrate, if the substrate is p-type, an n-type impurity diffusion region is formed in a predetermined portion of the substrate, and the impurity diffusion region is called a well.

【0002】[0002]

【従来の技術】前述したウェルの従来の形成方法を図3
に、その主要部分の工程を断面図で示し、以下に説明す
る。
2. Description of the Related Art A conventional method for forming a well described above is shown in FIG.
The process of the main part is shown in a sectional view, and will be described below.

【0003】まず、図3(a)に示す基板(本例ではp
型シリコン基板)21上に、熱酸化法により二酸化シリ
コン膜いわゆる酸化膜22を1000Å程度の厚さ形成
して図3(b)の形状を得る。
First, the substrate shown in FIG.
A silicon dioxide film, a so-called oxide film 22, having a thickness of about 1000 Å is formed on the (type silicon substrate) 21 by a thermal oxidation method to obtain the shape of FIG.

【0004】次に、図3(c)に示すように、前記構造
上にレジストを塗布して公知のホトリソ(ホトリソグラ
フィ)・エッチング技術で、目的のウェル形成領域対応
部に開口部をもつようパターニングし、レジストパター
ン25を形成する。次いで、そのレジストパターン25
をマスクにして、不純物(本例の場合n型不純物、例え
ばリン)をイオン注入技術(通称イオンインプラ)によ
り注入すると、同図に示すように基板21内上部に不純
物層(本例ではn型)23ができる。
Next, as shown in FIG. 3 (c), a resist is applied on the structure and a well-known photolithography (etching) etching technique is used to form an opening at a corresponding well formation region. Patterning is performed to form a resist pattern 25. Then, the resist pattern 25
Is used as a mask to implant impurities (n-type impurities in this example, for example, phosphorus) by an ion implantation technique (commonly called ion implantation), as shown in FIG. ) 23 can be done.

【0005】この後、前記レジスト25を除去し、N2
雰囲気中で温度1150℃、処理時間300分程度の熱
処理を行なうと、前記不純物層23が縦、横方向に拡散
し、基板21表面に達する不純物領域即ちウェル24が
形成される。図3では、領域の大きいウェル(左側)と
小さいウェル(右側)との2つを模式的に表示してあ
る。
After that, the resist 25 is removed and N 2 is removed.
When heat treatment is performed in an atmosphere at a temperature of 1150 ° C. for a processing time of about 300 minutes, the impurity layer 23 is diffused in the vertical and horizontal directions, and an impurity region, that is, a well 24 reaching the surface of the substrate 21 is formed. In FIG. 3, two wells having a large area (left side) and a small well (right side) are schematically shown.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た方法では、半導体装置が近年のように微細化してくる
に伴い、ウェルの大きさも縮小されてくると、図4に示
すように元来ウェルの不純物濃度はそのパターンの中央
部が高く、周辺部が低くなる傾向があるので、ウェル全
体として不純物濃度が不均一になる。ウェルが大きい
(幅が広い)場合(図4のa)はさほど問題にはならな
いが、小さい(幅が狭い)場合(図4のb)は前記傾向
が顕著に現われ、図4のように大きいウェルaと小さい
ウェルbとが混在していると、両者の不純物濃度のピー
ク濃度にも差が生じる。
However, in the above-described method, when the size of the well is reduced as the semiconductor device is miniaturized in recent years, as shown in FIG. Since the impurity concentration tends to be high in the central portion of the pattern and low in the peripheral portion, the impurity concentration becomes non-uniform in the entire well. When the well is large (wide) (a in FIG. 4), it does not matter so much, but when the well is small (narrow in width), the above tendency is conspicuous and large as shown in FIG. When the well a and the small well b are mixed, a difference occurs in the peak concentration of the impurity concentration of both.

【0007】本発明は、以上述べた微細化に伴うウェル
濃度の不均一性の問題を除去するため、ウェルを形成す
る際、まず、形成するウェルより小さいパターンの不純
物層を複数個形成し、熱処理でそれを拡散して一つのウ
ェルにすることにより、より均一な濃度のウェルを形成
することを目的とする。
According to the present invention, in order to eliminate the above-mentioned problem of non-uniformity of well concentration due to miniaturization, when forming a well, first, a plurality of impurity layers having a pattern smaller than the well to be formed are formed, The purpose is to form a well with a more uniform concentration by diffusing it into one well by heat treatment.

【0008】[0008]

【課題を解決するための手段】本発明は前記目的達成の
ため、ウェル形成の方法として、まず、一つの少なくと
も一番小さいウェルの大きさより小さい不純物層を対応
したレジストパターンをマスクにして不純物を注入して
形成し、熱処理によりそれを拡散して(拡散すれば、複
数個の不純物層がつながる。勿論、パターンもそのよう
に形成する)一つのウェルにするようにしたものであ
る。
In order to achieve the above object, the present invention provides a method for forming a well by first removing impurities by using a resist pattern corresponding to an impurity layer smaller than the size of at least one of the smallest wells as a mask. It is formed by implantation, and is diffused by heat treatment (if diffused, a plurality of impurity layers are connected. Of course, the pattern is also formed in this way) to form one well.

【0009】[0009]

【作用】本発明は前述したように、ウェル領域を分割し
た複数個の不純物層をまず形成し、それを熱処理によっ
て拡散してウェルを形成するようにしたので、ウェルの
大きさに依存されない不純物注入ができ、不純物濃度の
均一なウェルが形成できる。
As described above, according to the present invention, a plurality of impurity layers that divide the well region are first formed, and the well layers are formed by diffusing the impurity layers by heat treatment. Injection is possible, and a well having a uniform impurity concentration can be formed.

【0010】[0010]

【実施例】図1に本発明の実施例のウェル形成方法を、
従来例同様その主要部の工程を断面図で示し、以下に説
明する。
EXAMPLE FIG. 1 shows a well forming method according to an example of the present invention.
Similar to the conventional example, the process of the main part is shown in a sectional view, which will be described below.

【0011】まず、図1(a)に示す基板(本実施例も
従来同様p型シリコン基板)11上に、従来同様、酸化
膜12を形成して図1(b)の形状を得る。
First, an oxide film 12 is formed on a substrate 11 (a p-type silicon substrate in this embodiment as in the prior art) 11 shown in FIG. 1A as in the prior art to obtain the shape shown in FIG. 1B.

【0012】次いで、その上にレジストを塗布して公知
のホトリソ・エッチング技術で図1(c)のようにパタ
ーニング13する。このパターン13は、最終的に形成
しようとするウェル(図1(d)の17)の幅内に該ウ
ェルとなる複数個の不純物層16を不純物イオン注入法
で形成するためのマスク15になるよう開口部14を設
けたパターンとする。かつ、該パターン13の条件は、
そのレジストパターン13で形成された前記不純物層1
6が、次ぎの工程の熱処理で拡散して隣同士つながり一
つのウェル17となるようにする。即ち、レジストパタ
ーン13の開口部14間の距離(マスクパターン15の
幅)をLとし、注入した不純物(16)の熱処理時間を
t、そのときの不純物拡散係数をDとした場合、L<√
Dt/2となるように設定する。つまり、不純物層16
の熱処理による拡散長は√Dtであり、その1/2より
Lが小さければ(つまり、不純物層16間の距離)、図
2に示すように拡散により不純物層16はつながり、ウ
ェル17となる。このようなレジストパターン13をマ
スクにして、不純物(本実施例も従来例同様、n型不純
物例えばリン)をイオンインプラ技術で注入すると(例
えば、リンを150keV、2E13cm-2の条件で注
入)、図1(c)に示すように基板16上層部に不純物
層16が目的の一つのウェル領域内に複数個形成され
る。言うまでもないが、この不純物層16は、大きさの
異なるウェルが混在する場合、一番小さいウェル(図1
(d)では右側の17)より小さいパターンとする。
Next, a resist is applied thereon and patterned 13 as shown in FIG. 1C by a known photolithographic etching technique. The pattern 13 serves as a mask 15 for forming a plurality of impurity layers 16 to be the well within the width of the well (17 in FIG. 1D) to be finally formed by the impurity ion implantation method. The opening 14 is provided in the pattern. And the condition of the pattern 13 is
The impurity layer 1 formed of the resist pattern 13
6 are diffused in the heat treatment of the next step so that they are connected to each other to form one well 17. That is, when the distance between the openings 14 of the resist pattern 13 (width of the mask pattern 15) is L, the heat treatment time of the implanted impurities (16) is t, and the impurity diffusion coefficient at that time is D, L <√.
It is set to be Dt / 2. That is, the impurity layer 16
The diffusion length by the heat treatment of is √Dt, and if L is smaller than ½ of that (that is, the distance between the impurity layers 16), the impurity layers 16 are connected by diffusion as shown in FIG. Impurities (n-type impurities, such as phosphorus, are also implanted in the present embodiment as in the conventional example) by ion implantation using the resist pattern 13 as a mask (for example, phosphorus is implanted under the conditions of 150 keV and 2E13 cm −2 ). As shown in FIG. 1C, a plurality of impurity layers 16 are formed in an upper layer portion of the substrate 16 in one desired well region. Needless to say, this impurity layer 16 is the smallest well (see FIG. 1) when wells of different sizes are mixed.
In (d), the pattern is smaller than 17) on the right side.

【0013】この後、前記レジスト13を除去し、N2
雰囲気中で温度1150℃、処理時間300分程度の熱
処理を行なうと、前記複数個の不純物層16が縦、横に
拡散してつながり、基板11表面に達するウェル17が
形成される。
After that, the resist 13 is removed, and N 2
When heat treatment is performed in an atmosphere at a temperature of 1150 ° C. for a treatment time of about 300 minutes, the plurality of impurity layers 16 are vertically and horizontally diffused and connected to form a well 17 reaching the surface of the substrate 11.

【0014】以上述べた方法でウェル17を形成する
と、最初の不純物層16の形成をできるだけ小さいパタ
ーンにすれば、目的のウェル17の大きさに関係なく、
同じ大きさ同じ間隔で均一な濃度の不純物層16が形成
でき、それを熱処理で拡散させて一つのウェル17にす
るのであるから、そのウェル17の不純物濃度は大きさ
の異なるウェルが混在していても濃度差はなく均一にな
る。
When the well 17 is formed by the method described above, if the initial formation of the impurity layer 16 is made as small as possible, regardless of the size of the target well 17,
Since the impurity layers 16 having the same size and the same concentration can be formed and are diffused by the heat treatment to form one well 17, the wells 17 having different impurity concentrations are mixed. However, there is no difference in the density and it becomes uniform.

【0015】[0015]

【発明の効果】以上説明したように、本発明はウェル形
成方法として、一つのウェル形成領域内に、その大きさ
より小さい複数個の不純物層をまず形成して、それを熱
処理によって拡散して一つのウェルになるようにしたの
で、不純物注入がウェルの大きさに依存せずにでき、均
一な不純物濃度のウェルが形成できる。従って、半導体
装置の微細化に伴うウェルの不純物濃度の不均一性が解
消され、装置としての信頼性向上に貢献すること大であ
る。
As described above, according to the present invention, as a well forming method, a plurality of impurity layers each having a size smaller than the size of the well are first formed in one well forming region, and the impurity layers are diffused by heat treatment. Since the number of wells is one, the impurity implantation can be performed without depending on the size of the well, and a well having a uniform impurity concentration can be formed. Therefore, the non-uniformity of the impurity concentration in the well due to the miniaturization of the semiconductor device is eliminated, which greatly contributes to the improvement of the reliability of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の工程断面図FIG. 1 is a process sectional view of an embodiment of the present invention.

【図2】本発明の実施例のウェル形成説明図FIG. 2 is an explanatory diagram of well formation according to an embodiment of the present invention.

【図3】従来例の工程断面図FIG. 3 is a process sectional view of a conventional example.

【図4】問題点説明図[Fig. 4] Illustration of problems

【符号の説明】[Explanation of symbols]

11 基板 12 酸化膜 13 レジストパターン 14 レジストパターンの開口部 15 レジストパターンのマスク部(マスク幅) 16 不純物層 17 ウェル Reference Signs List 11 substrate 12 oxide film 13 resist pattern 14 resist pattern opening 15 resist pattern mask portion (mask width) 16 impurity layer 17 well

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板にウェルを形成する方法とし
て、まず、形成しようとするウェルの大きさより小さい
複数個の不純物層を前記ウェル形成領域の範囲内に形成
し、該複数個の不純物層を熱処理により拡散させて前記
ウェルを形成することを特徴とする半導体装置における
ウェルの形成方法。
1. A method for forming a well in a semiconductor substrate, which comprises first forming a plurality of impurity layers smaller than the size of the well to be formed within the well formation region, and then forming the plurality of impurity layers. A method for forming a well in a semiconductor device, characterized in that the well is formed by diffusion by heat treatment.
【請求項2】 前記複数個の不純物層を形成する方法と
して、該複数個の不純物層形成部に対応した開口部を有
するレジストパターンを半導体基板上に形成し、該レジ
ストパターンをマスクにして不純物を注入して前記複数
個の不純物層を形成する方法とし、該レジストパターン
は、それによって形成された一つのウェル形成領域の前
記不純物層の隣同士が熱処理によってつながる間隔の前
記開口部を有するパターンとすることを特徴とする請求
項1記載の半導体装置におけるウェルの形成方法。
2. As a method of forming the plurality of impurity layers, a resist pattern having an opening corresponding to the plurality of impurity layer forming portions is formed on a semiconductor substrate, and the resist pattern is used as a mask to remove impurities. To form the plurality of impurity layers, and the resist pattern has a pattern in which one well forming region formed by the resist pattern has the opening portions which are adjacent to each other by heat treatment. The method for forming a well in a semiconductor device according to claim 1, wherein:
【請求項3】 前記レジストパターンの条件として、該
レジストパターンの隣り合った前記開口部間の距離(マ
スクパターン幅)Lが、前記不純物の熱処理時間をt、
該不純物拡散係数をDとした場合、L<√Dt/2とな
るように設定することを特徴とする請求項2記載の半導
体装置におけるウェルの形成方法。
3. As a condition of the resist pattern, a distance (mask pattern width) L between the adjacent openings of the resist pattern is a heat treatment time of the impurities,
3. The method of forming a well in a semiconductor device according to claim 2, wherein when the impurity diffusion coefficient is D, L <√Dt / 2 is set.
JP5201567A 1993-08-13 1993-08-13 Well forming method in semiconductor device Pending JPH0758213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5201567A JPH0758213A (en) 1993-08-13 1993-08-13 Well forming method in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5201567A JPH0758213A (en) 1993-08-13 1993-08-13 Well forming method in semiconductor device

Publications (1)

Publication Number Publication Date
JPH0758213A true JPH0758213A (en) 1995-03-03

Family

ID=16443204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5201567A Pending JPH0758213A (en) 1993-08-13 1993-08-13 Well forming method in semiconductor device

Country Status (1)

Country Link
JP (1) JPH0758213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066373A1 (en) * 2003-01-23 2004-08-05 Austriamicrosystems Ag Method for producing a defined doping region in a semiconductor material
WO2006037560A2 (en) * 2004-10-01 2006-04-13 Austriamicrosystems Ag Nmos transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066373A1 (en) * 2003-01-23 2004-08-05 Austriamicrosystems Ag Method for producing a defined doping region in a semiconductor material
WO2006037560A2 (en) * 2004-10-01 2006-04-13 Austriamicrosystems Ag Nmos transistor
WO2006037560A3 (en) * 2004-10-01 2006-09-14 Austriamicrosystems Ag Nmos transistor

Similar Documents

Publication Publication Date Title
KR100189739B1 (en) Method of forming well for semiconductor wafer
JPH0758213A (en) Well forming method in semiconductor device
JP3092634B2 (en) Method for manufacturing thin film transistor
JPS5817655A (en) Manufacture of semiconductor device
JPH10149962A (en) Semiconductor substrate and its manufacturing netho
JPS60180158A (en) Manufacture of semiconductor device
JPH05175441A (en) Semiconductor device and manufacture thereof
KR850000037B1 (en) The method of mos with self alignment metal electroid
JPH0354833A (en) Manufacture of mis type transistor
JP2658983B2 (en) Method for manufacturing semiconductor device
JP2683847B2 (en) Method for manufacturing semiconductor device
JPH0152900B2 (en)
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH02202034A (en) Isolation of semiconductor element
JPS59964A (en) Manufacture of semiconductor device
JPH06163450A (en) Manufacture of semiconductor device
JPH04309226A (en) Manufacture of semiconductor device
JPS62248222A (en) Manufacture of semiconductor device
JPH0274042A (en) Manufacture of mis transistor
JPH01315133A (en) Manufacture of semiconductor device
JPH0548043A (en) Manufacture of semiconductor device
JPH05335409A (en) Manufacture of semiconductor device
JPH0575071A (en) Manufacture of semiconductor device
JPH02125658A (en) Manufacture of semiconductor device
JPS60101961A (en) Bipolar integrated circuit device and manufacture of thereof