JPH0744809A - Magnetic head and its production - Google Patents

Magnetic head and its production

Info

Publication number
JPH0744809A
JPH0744809A JP21425492A JP21425492A JPH0744809A JP H0744809 A JPH0744809 A JP H0744809A JP 21425492 A JP21425492 A JP 21425492A JP 21425492 A JP21425492 A JP 21425492A JP H0744809 A JPH0744809 A JP H0744809A
Authority
JP
Japan
Prior art keywords
magnetic
thermal expansion
magnetic head
soft magnetic
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21425492A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ishiwata
延行 石綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21425492A priority Critical patent/JPH0744809A/en
Publication of JPH0744809A publication Critical patent/JPH0744809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide magnetic head of high output by holding a magnetic core from its both sides and providing the core with a pair of reinforcing bodies having through- holes for regulating the depth of a gap. CONSTITUTION:This magnetic head has the magnetic core 1 which consists of a magnetic metallic material provided with a gap 6 having a prescribed depth on a surface facing a recording medium and a through-hole 3 for regulating the depth of this gap 6 and a pair of the reinforcing bodies 2a, 2b which hold the core 1 from both side. The reinforcing bodies 2a, 2b having coefft. of thermal expansion larger than the coefft. of thermal expansion of the soft magnetic metallic material are used when the saturation magnetic strain of the soft magnetic metallic material forming the magnetic core 1 is positive. The reinforcing bodies 2a, 2b having a coefft. of thermal expansion smaller than the coefft. of thermal expansion of the soft magnetic metallic material are used when the saturation magnetic strain of the soft magnetic metallic material is negative. The magnetic path direction of magnetic fluxes 33 introduced from the gap 34 (6) into the magnetic core 1 is the direction of the axis of difficult magnetization in the magnetic domain structure thereof and, therefore, the magnetic fluxes are passed in the core with good efficiency even for high frequency and the higher output is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ヘッドに関し、特
に、高密度記録再生用に金属軟磁性材を磁気コアとする
磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head, and more particularly to a magnetic head using a metal soft magnetic material as a magnetic core for high density recording / reproduction.

【0002】[0002]

【従来の技術およびその課題】磁気記録の高密度化に伴
い、記録媒体としては大きな保磁力が、磁気ヘッドとし
ては、保磁力の大きい媒体に対応した大きい飽和磁化が
求められている。金属軟磁性材料(例えばセンダスト、
アモルファス)は従来のフェライトに比べて飽和磁束密
度が大きいことから、これを磁気コアとする磁気ヘッド
が開発されている。
2. Description of the Related Art With the increasing density of magnetic recording, a large coercive force is required for a recording medium and a large saturation magnetization is required for a magnetic head corresponding to a medium having a large coercive force. Metal soft magnetic materials (eg sendust,
Amorphous) has a higher saturation magnetic flux density than conventional ferrite, so magnetic heads using this as a magnetic core have been developed.

【0003】図1は上記の磁気ヘッドの代表的な例であ
る。この磁気ヘッドは磁気コア1と、この磁気コアをそ
の両側から挟み込む補強体2a,2bとからなり、巻き
線窓3を利用してコイル4が形成されている。ここでは
この構造の磁気ヘッドを積層型ヘッドと総称する。
FIG. 1 shows a typical example of the above magnetic head. The magnetic head comprises a magnetic core 1 and reinforcing bodies 2a and 2b sandwiching the magnetic core from both sides thereof, and a coil 4 is formed by utilizing a winding window 3. Here, the magnetic head having this structure is generically referred to as a laminated head.

【0004】この積層型磁気ヘッドにおいて、磁気コア
としてセンダストスパッタ膜(FeSiAl合金、ある
いはFeSiAlにCr、Ru、Tiなどを添加した合
金)を用いたヘッドが開発された(1991年10月発
行の第15回日本応用磁気学会学術講演会概要集,p.
10)。更に、センダスト(飽和磁化約10kG)以上
の大きな飽和磁化を持つ、FeNMスパッタ膜(MはT
a,Zr,Nb,Hf,Tiの中から選択される少なく
とも一種類の元素であり、Fex y z の組成で表し
た場合、x,y,zを原子%とすると、70.5≦x≦
84、7≦y≦14、9≦z≦15.5の範囲:特願平
2−023686号)、あるいはFeNMLスパッタ膜
(MはTa,Zr,Nb,Hf,Tiの中から選択され
る少なくとも一種類の元素、LはCuおよび/またはA
gであり、(Fex y z ab の組成で表した場
合、x,y,z,a,bを原子%とすると、70.5≦
x≦84、7≦y≦14、9≦z≦15.5、95≦a
≦99.5、0.5≦b≦5の範囲:特願平2−104
952号)が発明され、Fe、Ta、Nを主成分とする
スパッタ膜(飽和磁化15kG以上)を用いたヘッドの
開発も行われている(1991年10月発行の第15回
日本応用磁気学会学術講演会概要集,p.11)。しか
しながら、このFeTaN膜を用いた磁気ヘッドは磁気
コアの磁気特性その他に改善の余地を残している。すな
わち、磁気コアの磁区構造が再生効率を高くするように
最適化されていないのが現状である。
In this laminated magnetic head, a head using a sendust sputtered film (FeSiAl alloy or an alloy in which Cr, Ru, Ti or the like is added to FeSiAl) as a magnetic core has been developed (issued in October 1991). Proceedings of the 15th Annual Meeting of the Applied Magnetics Society of Japan, p.
10). Furthermore, a FeNM sputtered film (M is T) having a large saturation magnetization of sendust (saturation magnetization of about 10 kG) or more.
a, Zr, Nb, Hf, at least one kind of element selected from among Ti, when represented by a composition of Fe x M y N z, x , y, when the the atomic% z, 70.5 ≦ x ≦
84, 7 ≦ y ≦ 14, 9 ≦ z ≦ 15.5 range: Japanese Patent Application No. 2-023686) or FeNML sputtered film (M is at least selected from Ta, Zr, Nb, Hf and Ti). One element, L is Cu and / or A
g, and when expressed by a composition of (Fe x M y N z) a L b, x, y, z, a, when b is referred to as atomic%, 70.5 ≦
x ≦ 84, 7 ≦ y ≦ 14, 9 ≦ z ≦ 15.5, 95 ≦ a
Range of ≦ 99.5, 0.5 ≦ b ≦ 5: Japanese Patent Application No. 2-104
952) was invented, and a head using a sputtered film (saturation magnetization of 15 kG or more) containing Fe, Ta, and N as the main components is also being developed (15th Japan Society for Applied Magnetics, published in October 1991). Academic Lecture Summary, p.11). However, the magnetic head using this FeTaN film leaves room for improvement in the magnetic characteristics of the magnetic core and the like. That is, the magnetic domain structure of the magnetic core is not optimized so as to improve the reproduction efficiency under the present circumstances.

【0005】本発明の目的は、このような従来の問題点
を解決することにある。
An object of the present invention is to solve such conventional problems.

【0006】[0006]

【課題を解決するための手段】本発明は、記録媒体に対
向する面に所定の深さを有するギャップを備え、かつ該
ギャップの深さを規定する貫通孔を備えた金属軟磁性材
よりなる磁気コアと、該磁気コアをその両側から挟み込
み、前記貫通孔に適合する貫通孔を有する一対の補強体
とからなる磁気ヘッドにおいて、金属軟磁性材の飽和磁
歪が正であるときには補強体の熱膨張係数を金属軟磁性
材の熱膨張係数よりも大きく、金属軟磁性材の飽和磁歪
が負であるときには補強体の熱膨張係数を金属軟磁性材
の熱膨張係数よりも小さくすることを特徴とする磁気ヘ
ッドである。
The present invention comprises a metal soft magnetic material having a gap having a predetermined depth on a surface facing a recording medium, and a through hole defining the depth of the gap. In a magnetic head comprising a magnetic core and a pair of reinforcing bodies sandwiching the magnetic core from both sides thereof and having a through hole matching the through hole, when the saturation magnetostriction of the metal soft magnetic material is positive, the heat of the reinforcing body is increased. The expansion coefficient is larger than the thermal expansion coefficient of the metal soft magnetic material, and when the saturation magnetostriction of the metal soft magnetic material is negative, the thermal expansion coefficient of the reinforcing body is smaller than that of the metal soft magnetic material. It is a magnetic head.

【0007】[0007]

【作用】図3に積層型ヘッドの磁気コアの磁区構造の一
例を示す。ギャップ34からコア内に導入された磁束3
3は、その磁路方向が32に示す磁区構造により磁化困
難軸方向となるため、高周波でも効率良くコア内を通過
することができる。それに対し、図4に示す磁区構造の
場合、磁路方向は磁化容易軸方向となるため、高周波で
の効率は低下する。よって、図3の磁区構造により高効
率な積層型ヘッドが得られる。
FIG. 3 shows an example of the magnetic domain structure of the magnetic core of the laminated head. Magnetic flux 3 introduced into the core from the gap 34
Since the magnetic path direction of 3 is in the hard axis direction due to the magnetic domain structure shown by 32, it can efficiently pass through the core even at high frequencies. On the other hand, in the case of the magnetic domain structure shown in FIG. 4, the magnetic path direction is the direction of the easy axis of magnetization, and therefore the efficiency at high frequencies is reduced. Therefore, a highly efficient stacked head can be obtained by the magnetic domain structure of FIG.

【0008】図3に示す磁区構造を実現するためには、
磁気コアの磁歪と応力とを介した応力誘導異方性を制御
すればよい。即ち、磁気コアに引張力が生じている場合
は磁歪を負とすることによって、あるいは圧縮力が生じ
ている場合は磁歪を正とすることによって、磁気コアの
外周部や巻線窓周辺部、即ち応力がそれらの法線方向に
は解放されている部分では法線方向が磁化容易軸とな
り、図3に示す磁区が形成される。この磁区構造によっ
て再生効率の高い積層型ヘッドが得られる。
In order to realize the magnetic domain structure shown in FIG. 3,
The stress-induced anisotropy via the magnetostriction and stress of the magnetic core may be controlled. That is, by making the magnetostriction negative when the tensile force is generated in the magnetic core, or by making the magnetostriction positive when the compressive force is generated, the outer peripheral portion of the magnetic core or the winding window peripheral portion, That is, in the portion where the stress is released in the normal direction, the normal direction becomes the easy axis of magnetization, and the magnetic domain shown in FIG. 3 is formed. With this magnetic domain structure, a laminated head having high reproduction efficiency can be obtained.

【0009】FeNM膜、FeMNL膜の飽和磁歪は膜
中の窒素組成と熱処理条件によって制御される。また、
応力は基板の熱膨張係数によって制御される。
The saturation magnetostriction of the FeNM film and the FeMNL film is controlled by the nitrogen composition in the film and the heat treatment conditions. Also,
The stress is controlled by the coefficient of thermal expansion of the substrate.

【0010】Fe、N、M(MはTa,Zr,Nb,H
f,Tiの中から選択される少なくとも一種類の元素)
を主成分とした合金膜においてMとしてTaを用い、マ
グネトロンスパッタ法によりセラミックスあるいはガラ
ス基板上にFeTaN膜を約3μm成膜した。ターゲッ
トとしてはFeのプレート上にTaのチップを配置した
複合型、あるいはFeTaの合金型を用い、窒素は成膜
中の雰囲気ガスから供給し、窒素圧力を変えることによ
り膜中の濃度を変化させた。成膜後、1×10- 5 To
rr以下の真空中で550℃,1時間の熱処理を施し、
その後、膜面内の回転磁界中で飽和磁歪(λs)を測定
した。図5はそのλsの組成依存性である。保磁力(H
c)が10e以下になるヘッド材として適当な組成領域
でλsは窒素の組成に依存して正から負にわたって変化
した。即ち、窒素組成によりλsの制御が可能であっ
た。図6はFeTaN膜のλsの熱処理温度依存性を示
す図である。熱処理温度の上昇と共にλsは同一組成で
あっても正から負へと変化した。熱処理温度によっても
λsは制御可能であった。
Fe, N, M (M is Ta, Zr, Nb, H
(at least one element selected from f and Ti)
In the alloy film containing as a main component, Ta was used as M, and a FeTaN film was formed to a thickness of about 3 μm on a ceramic or glass substrate by a magnetron sputtering method. As a target, a composite type in which a Ta chip is arranged on a Fe plate or an alloy type of FeTa is used, and nitrogen is supplied from an atmosphere gas during film formation, and the concentration in the film is changed by changing the nitrogen pressure. It was After the deposition, 1 × 10 - 5 To
Heat treatment at 550 ° C for 1 hour in a vacuum of rr or less,
Then, the saturation magnetostriction (λs) was measured in the rotating magnetic field in the film plane. FIG. 5 shows the composition dependence of λs. Coercive force (H
In the composition region suitable as a head material where c) is 10e or less, λs varied from positive to negative depending on the composition of nitrogen. That is, λs could be controlled by the nitrogen composition. FIG. 6 is a diagram showing the heat treatment temperature dependence of λs of the FeTaN film. With increasing heat treatment temperature, λs changed from positive to negative even with the same composition. Λs could be controlled also by the heat treatment temperature.

【0011】図7に異なった熱膨張係数(α)を持つ基
板に成膜したFeTaN膜の内部応力の温度依存性を示
す。αが35×10- 7 の基板はSiの(100)面が
表面に平行となった単結晶であり、136×10- 7
基板はNiO、CaO、TiO2 を主成分とするセラミ
ックである。図中のそれぞれの直線の傾きは、基板とF
eTaN膜との熱膨張係数の差により決定されている。
図7からFeTaN膜の熱膨張係数を求めると112×
10- 7 が得られた。この値を用いて基板の熱膨張係数
を変えたときのFeTaN膜の応力を熱処理温度550
℃の場合について計算した結果を図8に示す。図8から
FeTaN膜の応力は基板の熱膨張係数により制御でき
ることが明らかである。
FIG. 7 shows the temperature dependence of the internal stress of the FeTaN film formed on the substrates having different thermal expansion coefficients (α). α is 35 × 10 - 7 substrate is a single crystal became parallel to the surface (100) plane of Si, 136 × 10 - substrate 7 is a ceramic whose main component NiO, CaO, and TiO 2 . The slopes of the straight lines in the figure are the substrate and F
It is determined by the difference in the coefficient of thermal expansion from the eTaN film.
When the thermal expansion coefficient of the FeTaN film is calculated from FIG. 7, it is 112 ×
10-7 was obtained. Using this value, the stress of the FeTaN film when the thermal expansion coefficient of the substrate is changed is set to the heat treatment temperature 550.
The calculation results for the case of ° C are shown in Fig. 8. It is clear from FIG. 8 that the stress of the FeTaN film can be controlled by the thermal expansion coefficient of the substrate.

【0012】以上の飽和磁歪、応力の制御によって、F
eTaN膜の応力を引張力、磁歪を負とすることによっ
て、また、応力を圧縮力、磁歪を正とすることによっ
て、磁気コアには図3に示す磁区が形成された。逆に、
FeTaN膜の応力を引張力、磁歪を正とすることによ
って、また、応力を圧縮力、磁歪を負とすることによっ
て、磁気コアには図4に示す磁区が形成された。
By controlling the saturation magnetostriction and stress as described above, F
By making the stress of the eTaN film a tensile force and making the magnetostriction negative, and making the stress a compressive force and making the magnetostriction positive, the magnetic domains shown in FIG. 3 were formed in the magnetic core. vice versa,
By making the stress of the FeTaN film a tensile force and making the magnetostriction positive, and making the stress a compressive force and making the magnetostriction negative, the magnetic domains shown in FIG. 4 were formed in the magnetic core.

【0013】[0013]

【実施例】次に本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0014】図1に示す積層型ヘッドにおいて、磁気コ
ア膜として3μm厚のFeTaN膜を0.1μm厚のア
ルミナ中間層膜を介し4層積層した積層膜を用い、補強
体としてNiO、CaO、TiO2 を主成分としたセラ
ミック(熱膨張係数136×10- 7 )、および、Ca
O、TiO2 を主成分としたセラミック(熱膨張係数1
05×10- 7 )を用い、ギャップ長0.2μmで積層
型ヘッドを作製した。FeTaN膜の飽和磁歪は成膜時
の窒素圧力を変えて膜中の窒素組成を制御することによ
って行った。成膜はDCマグネトロンスパッタ法によ
り、雰囲気ガスとしてはアルゴンと窒素の混合ガスを用
い、総圧力は3mTorr、窒素圧力は0.2mTor
rから0.3mTorrで変化させた。
In the laminated head shown in FIG. 1, four layers of a FeTaN film having a thickness of 3 μm are laminated as a magnetic core film through an alumina intermediate layer film having a thickness of 0.1 μm, and NiO, CaO, and TiO are used as a reinforcing member. ceramics 2 as a main component (coefficient of thermal expansion 136 × 10 - 7), and, Ca
Ceramics mainly composed of O and TiO 2 (coefficient of thermal expansion 1
05 × 10 - 7) was used to prepare a multilayer head with a gap length 0.2 [mu] m. The saturation magnetostriction of the FeTaN film was performed by changing the nitrogen pressure during film formation to control the nitrogen composition in the film. The film formation is performed by a DC magnetron sputtering method, a mixed gas of argon and nitrogen is used as an atmospheric gas, the total pressure is 3 mTorr, and the nitrogen pressure is 0.2 mTorr.
It was changed from r to 0.3 mTorr.

【0015】図6に示す組成の膜を成膜し、550℃で
熱処理することによってFe7 6 .0 Ta8 . 5
1 5 . 5 (at%)の膜で正の磁歪、Fe7 7 . 8 Ta
8 . 2 1 4 . 0 (at%)の膜で負の磁歪を得た。両
者の飽和磁化はともに15kGから16kGであった。
正磁歪の膜とNiO、CaO、TiO2 を主成分とした
セラミック基板(熱膨張係数136×10- 7 )との組
み合わせ、あるいは負磁歪の膜とCaO、TiO2 を主
成分としたセラミック基板(熱膨張係数105×10
- 7 )との組み合わせにより、図3に示す磁区構造を持
つヘッドを、また、正磁歪の膜とCaO、TiO2 を主
成分としたセラミック基板(熱膨張係数105×10
- 7 )との組み合わせ、あるいは負磁歪の膜とNiO、
CaO、TiO2を主成分としたセラミック基板(熱膨
張係数136×10- 7 )との組み合わせにより、図4
に示す磁区構造を持つヘッドを得た。
[0015] forming a film of the composition shown in FIG. 6, Fe 7 6 .0 Ta 8 by a heat treatment at 550 ° C.. 5 N
1 5.5 film with a positive magnetostriction (at%), Fe 7 7 . 8 Ta
8. 2 N 1 4. 0 to give a negative magnetostriction film (at%). Both saturation magnetizations were 15 kG to 16 kG.
Positive magnetostriction of the film and NiO, CaO, ceramic substrate mainly composed of TiO 2 (thermal expansion coefficient of 136 × 10 - 7) the ceramic substrate mainly composed combination, or negative magnetostrictive film and CaO, of TiO 2 and ( Thermal expansion coefficient 105 × 10
-7 ) in combination with the head having the magnetic domain structure shown in FIG. 3, and a positive magnetostrictive film and a ceramic substrate mainly composed of CaO and TiO 2 (coefficient of thermal expansion 105 × 10 5
- combination of 7) or negative magnetostrictive film and NiO,,
CaO, ceramic substrate mainly composed of TiO 2 (thermal expansion coefficient of 136 × 10 - 7) In combination with, FIG. 4
A head having a magnetic domain structure shown in FIG.

【0016】図9に、以上により作製した図3の磁区構
造の積層型ヘッドと、図4の磁区構造のヘッドの再生出
力の記録密度特性を示す。磁気テープとして保磁力15
00(Oe)のメタルテープを用い、ヘッドとテープと
の相対速度は21.4m/secとした。図3の磁区構
造の積層型ヘッドによって高い出力が得られた。
FIG. 9 shows the recording density characteristics of the reproduction output of the magnetic domain structure laminated head shown in FIG. 3 and the magnetic domain structure head shown in FIG. Coercive force of 15 as magnetic tape
A metal tape of 00 (Oe) was used, and the relative speed between the head and the tape was 21.4 m / sec. A high output was obtained by the laminated head having the magnetic domain structure of FIG.

【0017】以上の結果はFeTaN膜でFex y
z の組成で表した場合、x,y,zを原子%とすると、
70.5≦x≦84、7≦y≦14、9≦z≦15.5
の組成範囲であれば同様である。FeMN膜において、
Ta以外のZr、Hf、Ti、Nbを用いた場合も同様
に、磁歪の制御は窒素組成と熱処理条件とにより、応力
の制御は基板の熱膨張係数により可能である。
The above results show that FeTaN film is Fe x M y N
When expressed by the composition of z , if x, y, and z are atomic%,
70.5 ≦ x ≦ 84, 7 ≦ y ≦ 14, 9 ≦ z ≦ 15.5
The same applies if the composition range is In the FeMN film,
Similarly, when Zr, Hf, Ti or Nb other than Ta is used, the magnetostriction can be controlled by the nitrogen composition and the heat treatment condition, and the stress can be controlled by the thermal expansion coefficient of the substrate.

【0018】また、磁気コア材としてFeNML膜を用
いた場合は、(Fex y z ab の組成で表した
場合、x,y,z,a,bを原子%とすると、70.5
≦x≦84、7≦y≦14、9≦z≦15.5、95≦
a≦99.5、0.5≦b≦5の組成範囲であれば同様
である。
When FeNML film is used as the magnetic core material, when expressed by the composition of (Fe x M y N z ) a L b , x, y, z, a, and b are atomic%, 70.5
≦ x ≦ 84, 7 ≦ y ≦ 14, 9 ≦ z ≦ 15.5, 95 ≦
The same applies if the composition range is a ≦ 99.5 and 0.5 ≦ b ≦ 5.

【0019】また、本発明の実施例においては、磁気テ
ープ用磁気ヘッドについて説明してきたが、本発明はハ
ードディスク用磁気ヘッドにも適用されるのは言うまで
もない。また、磁気ヘッドの構造が図2のようであって
も図1の場合と同様の結果が得られる。
Although the magnetic head for magnetic tape has been described in the embodiments of the present invention, it goes without saying that the present invention is also applied to a magnetic head for hard disk. Even if the structure of the magnetic head is as shown in FIG. 2, the same result as in the case of FIG. 1 is obtained.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば図
3に示す磁区構造を持った積層型ヘッドが得られ、高出
力化が実現した。
As described above, according to the present invention, the laminated head having the magnetic domain structure shown in FIG. 3 is obtained, and high output is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】積層型磁気ヘッドの一例の斜視図である。FIG. 1 is a perspective view of an example of a laminated magnetic head.

【図2】積層型磁気ヘッドの別の一例の斜視図である。FIG. 2 is a perspective view of another example of a laminated magnetic head.

【図3】積層型磁気ヘッドの磁気コアの磁区構造の一例
の説明図である。
FIG. 3 is an explanatory diagram of an example of a magnetic domain structure of a magnetic core of a laminated magnetic head.

【図4】積層型磁気ヘッドの磁気コアの磁区構造の別の
一例の説明図である。
FIG. 4 is an explanatory diagram of another example of the magnetic domain structure of the magnetic core of the laminated magnetic head.

【図5】FeTaNスパッタ膜の550℃、1時間の熱
処理後の飽和磁歪(λs)と保磁力(Hc)の組成依存
性を示す図である。
FIG. 5 is a diagram showing composition dependence of saturation magnetostriction (λs) and coercive force (Hc) after heat treatment of a FeTaN sputtered film at 550 ° C. for 1 hour.

【図6】FeTaN膜の飽和磁歪の熱処理温度依存性を
示す図である。
FIG. 6 is a diagram showing the heat treatment temperature dependence of the saturation magnetostriction of the FeTaN film.

【図7】FeTaN膜の応力の温度依存性を示す図であ
る。
FIG. 7 is a diagram showing temperature dependence of stress in the FeTaN film.

【図8】FeTaN膜の応力の基板熱膨張係数依存性を
示す図である。
FIG. 8 is a diagram showing the substrate thermal expansion coefficient dependence of the stress of the FeTaN film.

【図9】図3の磁区構造の積層型ヘッドと図4の磁区構
造の積層型ヘッドの再生出力の記録密度特性を示す図で
ある。
9 is a diagram showing recording density characteristics of reproduction output of the laminated head having the magnetic domain structure of FIG. 3 and the laminated head having the magnetic domain structure of FIG.

【符号の説明】[Explanation of symbols]

1 磁気コア 2a,2b 補強体 3 巻き線窓 4 コイル 5 ガラス接合層 6,34,44 ギャップ 7,8 接合ガラス 31,41 磁気コア 32,42 磁壁 33,43 磁束 DESCRIPTION OF SYMBOLS 1 magnetic core 2a, 2b reinforcement body 3 winding window 4 coil 5 glass bonding layer 6,34,44 gap 7,8 bonding glass 31,41 magnetic core 32,42 domain wall 33,43 magnetic flux

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 記録媒体に対向する面に所定の深さを有
するギャップを備え、かつ該ギャップの深さを規定する
貫通孔を備えた金属軟磁性材よりなる磁気コアと、該磁
気コアをその両側から挟み込み、前記貫通孔に適合する
貫通孔を有する一対の補強体とからなる磁気ヘッドにお
いて、金属軟磁性材の飽和磁歪が正であるときには補強
体の熱膨張係数を金属軟磁性材の熱膨張係数よりも大き
く、金属軟磁性材の飽和磁歪が負であるときには補強体
の熱膨張係数を金属軟磁性材の熱膨張係数よりも小さく
することを特徴とする磁気ヘッド。
1. A magnetic core made of a soft metal magnetic material having a gap having a predetermined depth on a surface facing a recording medium, and a through hole defining the depth of the gap, and the magnetic core. In a magnetic head composed of a pair of reinforcing bodies sandwiched from both sides thereof and having a through hole matching the through hole, when the saturation magnetostriction of the metal soft magnetic material is positive, the coefficient of thermal expansion of the reinforcement is set to that of the metal soft magnetic material. A magnetic head having a coefficient of thermal expansion larger than that of the metal soft magnetic material and a coefficient of thermal expansion of the reinforcing body being smaller than that of the metal soft magnetic material when the saturation magnetostriction of the metal soft magnetic material is negative.
【請求項2】 前記金属軟磁性材が、Fe、NおよびM
(MはTa,Zr,Nb,Hf,Tiの中から選択され
る少なくとも一種類の元素)を主成分とした合金であ
り、Fex y z の組成で表した場合、x,y,zを
原子%とすると、70.5≦x≦84、7≦y≦14、
9≦z≦15.5の範囲であることを特徴とする請求項
1記載の磁気ヘッド。
2. The metal soft magnetic material is Fe, N and M.
(M is Ta, Zr, Nb, Hf, at least one element selected from among Ti) is an alloy mainly comprising, when expressed with the composition of Fe x M y N z, x , y, When z is atomic%, 70.5 ≦ x ≦ 84, 7 ≦ y ≦ 14,
The magnetic head according to claim 1, wherein the range is 9≤z≤15.5.
【請求項3】 前記金属軟磁性材が、Fe、N、M(M
はTa,Zr,Nb,Hf,Tiの中から選択される少
なくとも一種類の元素)およびL(LはCuおよび/ま
たはAg)を主成分とした合金であり、(Fex y
z a b の組成で表した場合、x,y,z,a,bを
原子%とすると、70.5≦x≦84、7≦y≦14、
9≦z≦15.5、95≦a≦99.5、0.5≦b≦
5の範囲であることを特徴とする請求項1記載の磁気ヘ
ッド。
3. The soft magnetic metal material comprises Fe, N, M (M
A is Ta, Zr, Nb, Hf, at least one element selected from among Ti) and L (alloy L is mainly composed of Cu and / or Ag) and, (Fe x M y N
z ) a L b , where x, y, z, a, and b are atomic%, 70.5 ≦ x ≦ 84, 7 ≦ y ≦ 14,
9 ≦ z ≦ 15.5, 95 ≦ a ≦ 99.5, 0.5 ≦ b ≦
The magnetic head according to claim 1, wherein the magnetic head has a range of 5.
【請求項4】 前記金属軟磁性材がFeTaN合金であ
り、この合金の飽和磁歪が負であるときには前記補強体
の熱膨張係数を112×10- 7 以下とし、この飽和磁
歪が正であるときには前記補強体の熱膨張係数を112
×10- 7 以上とすることを特徴とする請求項2記載の
磁気ヘッド。
Wherein said soft magnetic metal material is FeTaN alloy, the thermal expansion coefficient of the reinforcing member when the saturation magnetostriction of the alloy is negative 112 × 10 - and 7 below, when the saturation magnetostriction is positive The coefficient of thermal expansion of the reinforcement is 112
× 10 - 7 or a magnetic head according to claim 2, characterized in that.
【請求項5】 熱膨張係数が112×10- 7 以下の補
強体がCaOとTiO2 とを主成分とするセラミックで
あることを特徴とする請求項4記載の磁気ヘッド。
The magnetic head according to claim 4, wherein the 7 following reinforcement is a ceramic mainly composed of the CaO and TiO 2 - 5. A thermal expansion coefficient of 112 × 10.
【請求項6】 請求項1〜5のいずれかに記載の磁気ヘ
ッドの製造方法であって、金属軟磁性材は薄膜形成後に
熱処理を施すことによって得られ、かつ金属軟磁性材の
飽和磁歪をその空素組成および/または薄膜形成後の熱
処理条件で制御することを特徴とする磁気ヘッドの製造
方法。
6. The method of manufacturing a magnetic head according to claim 1, wherein the metal soft magnetic material is obtained by subjecting the metal soft magnetic material to heat treatment after forming a thin film, A method of manufacturing a magnetic head, which is controlled by the void composition and / or heat treatment conditions after thin film formation.
JP21425492A 1992-01-17 1992-08-11 Magnetic head and its production Pending JPH0744809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21425492A JPH0744809A (en) 1992-01-17 1992-08-11 Magnetic head and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2594592 1992-01-17
JP4-25945 1992-01-17
JP21425492A JPH0744809A (en) 1992-01-17 1992-08-11 Magnetic head and its production

Publications (1)

Publication Number Publication Date
JPH0744809A true JPH0744809A (en) 1995-02-14

Family

ID=26363653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21425492A Pending JPH0744809A (en) 1992-01-17 1992-08-11 Magnetic head and its production

Country Status (1)

Country Link
JP (1) JPH0744809A (en)

Similar Documents

Publication Publication Date Title
JPH0466366B2 (en)
US5537278A (en) Thin film laminate magnetic head with reaction prevention layers
JP2586367B2 (en) Soft magnetic material, method of manufacturing the same, and magnetic head
KR910009970B1 (en) Amorphous magnetic alloy of co-nb-zr system and magnetic head made from the same
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
US5862023A (en) Metal in gap magnetic head having metal magnetic film including precious metal layer
JPH0744809A (en) Magnetic head and its production
JPH06215325A (en) Laminate type core of magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPH02208811A (en) Magnetic head and its production
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2523854B2 (en) Magnetic head
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
KR100324730B1 (en) Method for fabricating magnetic head
KR950001603B1 (en) Magnetic head for multi-layer
JP2639719B2 (en) Magnetic film for magnetic head
JP2882927B2 (en) Magnetic head and method of manufacturing magnetic head
JPH08130114A (en) Multilayer soft magnetic film
JPH08162355A (en) Manufacture of soft magnetic film and magnetic head
JPH097874A (en) Manufacture of soft magnetic film and magnetic head formed thereof
JPS63293710A (en) Magnetic head
JPS59117729A (en) Production of magnetic head core
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPH03263307A (en) Laminated layer soft magnetic thin film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960618