JPH0740488B2 - Method for producing positive electrode mixture for thermal battery and thermal battery using the same - Google Patents

Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Info

Publication number
JPH0740488B2
JPH0740488B2 JP63299841A JP29984188A JPH0740488B2 JP H0740488 B2 JPH0740488 B2 JP H0740488B2 JP 63299841 A JP63299841 A JP 63299841A JP 29984188 A JP29984188 A JP 29984188A JP H0740488 B2 JPH0740488 B2 JP H0740488B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
thermal battery
voltage
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63299841A
Other languages
Japanese (ja)
Other versions
JPH02144855A (en
Inventor
博資 山崎
和典 原口
彰規 粟野
真紀 冨士本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63299841A priority Critical patent/JPH0740488B2/en
Publication of JPH02144855A publication Critical patent/JPH02144855A/en
Publication of JPH0740488B2 publication Critical patent/JPH0740488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム/二硫化鉄系熱電池のスパイク電圧を
抑制し、放電電圧の平坦化に関するものである。
TECHNICAL FIELD The present invention relates to suppressing the spike voltage of a lithium / iron disulfide-based thermal battery and flattening the discharge voltage.

従来の技術 熱電池は常温で不活性であるが、高温に加熱する活性化
して、外部へ電力を供給し得るようになる電池で、貯蔵
型電池の一種である。従って、10年あるいはそれ以上の
貯蔵後においても製造直後と何ら電池特性が変ることな
く使用できるため、各種緊急用電源に利用されている。
また、高温で作動させるために電極反応が進み易いので
大電流放電性に優れる、使用希望時には簡単な操作で起
動信号を入れてやると、瞬時に電力を取出せる等の特徴
を有している。一方、使用される機器側の電圧範囲の制
限が厳しくなる傾向にあり、出来る限り作動電圧が平坦
であることが望まれている。
2. Description of the Related Art A thermal battery is a type of storage battery that is inactive at room temperature, but can be activated by heating to a high temperature to supply electric power to the outside. Therefore, it can be used even after storage for 10 years or more without changing the battery characteristics immediately after production, and thus it is used for various emergency power sources.
In addition, since it is operated at high temperature, the electrode reaction is easy to proceed, so it is excellent in large current discharge characteristics, and when it is desired to use it, it has features such that power can be taken out instantly by inputting a start signal with a simple operation. . On the other hand, there is a tendency that the voltage range on the side of the equipment used becomes severer, and it is desired that the operating voltage be as flat as possible.

熱電池においてこの具体的現象は、熱電池へ起動信号を
入れ、発熱剤を燃焼し、素電池を加熱した時、電圧が立
上がり始めた初期状態に現われる、一次的な高電圧であ
り、これを一般的にスパイク電圧と称している。すなわ
ち起動信号を加えた後0.5〜2秒間位に生じる瞬時的な
ピーク電圧を指し、その後直ぐに安定電圧となる電圧パ
ターンとなる現象を言っている。この様な電圧特性を有
する電池を使用して機器設計をすると、電気回路上の安
全を考慮し高耐圧部品を用いねばならないので、機器が
大型化,重量化してしまう。
In the thermal battery, this specific phenomenon is a primary high voltage that appears in the initial state where the voltage starts to rise when a starting signal is input to the thermal battery, the heat generating agent is burned, and the unit cell is heated. Generally referred to as spike voltage. That is, it refers to a momentary peak voltage that occurs in about 0.5 to 2 seconds after applying a start signal, and a phenomenon that a voltage pattern becomes a stable voltage immediately after that. When a device is designed using a battery having such a voltage characteristic, a high voltage component must be used in consideration of safety in an electric circuit, and the device becomes large and heavy.

スパイク電圧の発生原因は、正極活物質の二硫化鉄(Fe
S2)の粉体表面に僅かながら形成されている酸化物や硫
酸塩の被膜によるものと考えられる。これは硫酸鉄(Fe
SO4)をポリ硫化アルカリと共に封管中で加熱反応させ
てFeS2を生成したり、鉄(Fe)粉を亜硫酸アルカリと共
に反応させてFeS2を製造するときに、FeS2の表面に酸化
鉄,硫酸鉄が形成もしくは残留するからである。FeS2
対しこれらの化合物は電位が高く、放電により表面被膜
が破れるとFeS2の安定電圧となる。
The cause of the spike voltage is iron disulfide (Fe
It is thought that this is due to the oxide and sulfate coatings formed on the powder surface of S 2 ). This is iron sulfate (Fe
SO 4) or by heating the reaction in a sealed tube to produce the FeS 2 with poly alkali sulfide, and the iron (Fe) powder when producing FeS 2 is reacted with alkali sulfite, iron oxide on the surface of the FeS 2 , Because iron sulfate is formed or remains. These compounds with respect to FeS 2 becomes stable voltage of FeS 2 When the potential is high, the surface coating by the discharge is broken.

表面被膜層のあるFeS2と、表面被膜層のない単結晶FeS2
の比較において、前者はスパイク電圧の発生が見られる
が、後者のFeS2は見られない事が証明されている。そこ
で、従来検討された内容は次の3点であった。
FeS 2 with surface coating layer and single crystal FeS 2 without surface coating layer
It is proved that in the former case, spike voltage is generated in the former, but FeS 2 in the latter is not observed. Therefore, the following three points have been studied conventionally.

(1)未処理FeS2に硫化水素ガス(H2S)を流しながら3
50℃で加熱反応し、表面不純物をFeS2化する。
(1) Flowing hydrogen sulfide gas (H 2 S) through untreated FeS 2 3
Heat reaction at 50 ° C to convert surface impurities into FeS 2 .

(2)FeS(硫化鉄)とLi2S(硫化リチウム)を加熱反
応により合成させたLixFeS2を用いる。
(2) Li x FeS 2 prepared by heating reaction of FeS (iron sulfide) and Li 2 S (lithium sulfide) is used.

(3)脱酸化剤として2ケイ化カルシウム(CaSi2)粉
末を添加する。
(3) Calcium disilicide (CaSi 2 ) powder is added as a deoxidizing agent.

発明が解決しようとする課題 上記(1)は、SAND79−0090,1979に示す先行技術であ
り、H2Sガスを流しながら(フローティング)350℃で30
分間電気炉中にて焼成することで、FeS2表面のFe2O3やF
eSO4を純粋なFeS2に変化させ、電圧上昇要因を除去する
ものであるが、放出する有毒性のあるH2Sガスの後処理
装置を必要とする。(2)は、International Power So
urces Symposium(IPSS),P677,1986年に示された方法
であり、Li2Sが湿度に対して非常に敏感な性質を有して
いるため、取扱い作業中にLiOHとH2Sに分解しやすく、
悪臭を放ち健康に悪い影響を与える。
Problem to be Solved by the Invention The above (1) is the prior art shown in SAND79-0090,1979, in which H 2 S gas is flowed (floating) at 350 ° C. for 30 hours.
By firing in an electric furnace for 1 minute, the FeS 2 surface Fe 2 O 3 and F
It converts eSO 4 into pure FeS 2 and eliminates the voltage rise factor, but requires an aftertreatment device of toxic H 2 S gas to be released. (2) is International Power So
urces Symposium (IPSS), P677, published in 1986.Since Li 2 S is extremely sensitive to humidity, it decomposes into LiOH and H 2 S during handling. Easy,
It gives off a bad smell and has a bad effect on health.

(3)は、同IPSS,1982に記述されているCaSi2粉末をFe
S2に対し3〜5重量%添加した粉末混合物に、溶融塩電
解質粉末,溶融塩−2酸化ケイ素粉末を加え均一な正極
合剤粉末とした後、減圧乾燥を経て電池に用いられてい
たが、CaSi2の添加による容量低下、電圧波形に二段変
化が生じるという課題があった。
In (3), the CaSi 2 powder described in the same IPSS, 1982 is used as Fe.
The relative S 2 powder mixture was added 3-5% by weight, the molten salt electrolyte powder, after a uniform positive electrode mixture powder was added a molten salt -2 silicon oxide powder, which had been used in the battery through the vacuum drying However, there was a problem that the addition of CaSi 2 causes the capacity to decrease and the voltage waveform to change two steps.

本発明は、上記のような従来の課題を解消するため、前
記(3)のCaSi2の添加方法に着目して正極容量の低下
がなく、かつ電圧波形に優れ、更にスパイク電圧を極力
抑制したリチウム/二硫化鉄系熱電池を実現させ、合せ
て正極合剤の容易な処理法を提供することを目的とす
る。
In order to solve the conventional problems as described above, the present invention focuses on the method of adding CaSi 2 in (3) above, has no decrease in positive electrode capacity, has an excellent voltage waveform, and suppresses spike voltage as much as possible. It is an object of the present invention to realize a lithium / iron disulfide-based thermal battery and also provide an easy method for treating a positive electrode mixture.

課題を解決するための手段 この課題を解決するために本発明は、未処理二硫化鉄と
溶融塩電解質と2ケイ化カルシウムをそれぞれ粉体で、
必要に応じてこれにさらに電解質を含有した無機バイン
ダーを加えて混合攪拌する工程と、この合剤をアルゴ
ン,窒素またはこれらの混合ガスを流通させた高温炉で
加熱処理する工程と、同炉内で冷却する工程と、乾燥雰
囲気中で処理済み正極合剤を粉砕する工程を経て正極合
剤粉末を得るものである。
Means for Solving the Problem In order to solve the problem, the present invention provides untreated iron disulfide, molten salt electrolyte, and calcium disilicide in powder form, respectively.
If necessary, an inorganic binder containing an electrolyte is further added to the mixture and mixed and stirred, and a step of heat-treating the mixture in a high-temperature furnace in which argon, nitrogen or a mixed gas thereof is passed, And a step of pulverizing the treated positive electrode mixture in a dry atmosphere to obtain a positive electrode mixture powder.

なお、電池としては負極にはリチウム又はリチウム合金
を使用し、電解質層に溶融塩電解質を保持させた酸化マ
グネシウム(MgO)の粉末成型体を用い、そして正極層
に本発明の正極合剤を粉末成型層とした3層からなる素
電池と、テルミット反応を利用した発熱剤を組合せてLi
/FeS2系熱電池に構成する。
As the battery, lithium or a lithium alloy was used for the negative electrode, a magnesium oxide (MgO) powder molded body holding a molten salt electrolyte in the electrolyte layer was used, and the positive electrode mixture of the present invention was powdered in the positive electrode layer. By combining a unit cell consisting of three layers as a molding layer and an exothermic agent utilizing the thermite reaction, Li
/ FeS 2 system thermal battery.

作用 この製造法と前記の熱電池を用いれば、従来のようなス
パイク電圧は小さく抑制され、作動電圧が平坦化され
る。すなわち、FeS2の表面に形成されていた鉄酸化物や
鉄硫酸塩等の不純物は、熱処理中にCaSi2と反応して被
膜が除去され、活性なFeS2表面に変るためである。CaSi
2の添加量は出来る限り少量で効果を得られるよう量的
に制限してスパイク電圧以外への悪影響が出ないよう配
慮を行なう。添加量がFeS2に対し1.5重量%を越え2.0重
量%以上になると、顕著に二段波の放電カーブが発生
し、放電寿命の低下も表われてくるので、0.2〜1.5重量
%の範囲がよい。
By using this manufacturing method and the above-mentioned thermal battery, the spike voltage as in the conventional case is suppressed to a low level and the operating voltage is flattened. That is, impurities such as iron oxides and iron sulfates formed on the surface of FeS 2 react with CaSi 2 during the heat treatment to remove the coating film, so that the FeS 2 surface becomes active. CaSi
The addition amount of 2 should be limited as much as possible so that the effect can be obtained, and consideration should be given so that it does not adversely affect other than the spike voltage. If the amount added exceeds 1.5% by weight relative to FeS 2 and is 2.0% by weight or more, a two-step wave discharge curve remarkably occurs, and the discharge life is also shortened. Good.

アルゴンや窒素をフローティングして高温焼成炉中で正
極混合物を熱処理すると、不活性雰囲気下でFeS2表面の
不純物は溶融塩の効果を受けてCaSi2との反応を促進し
易くなり、少ない添加量で処理効果を大きく出来る。従
って、放電寿命への影響も受けることなく、初期のスパ
イク電圧のみを取除くことができる。
When argon or nitrogen is floated and the positive electrode mixture is heat-treated in a high-temperature firing furnace, impurities in the FeS 2 surface under the inert atmosphere are easily affected by the molten salt and accelerate the reaction with CaSi 2 , so the addition amount is small. Can increase the processing effect. Therefore, only the initial spike voltage can be removed without being affected by the discharge life.

尚、従来のようにFeS2粉末,電解質粉末,CaSi2粉末を
ただ単に機械的に混合しただけの正極合剤を用いて、素
電池の正極層を形成した場合に比べ、本発明品を正極層
とした場合には、成型密度が高まり、素電池の薄形化に
よって電池のエネルギー密度(Wh/l)が改善出来る作用
も有する。
In addition, as compared with the case where the positive electrode layer of the unit cell is formed by using the positive electrode mixture in which FeS 2 powder, the electrolyte powder, and the CaSi 2 powder are simply mechanically mixed as in the conventional case, When it is used as a layer, the molding density is increased, and the energy density (Wh / l) of the battery can be improved by making the unit battery thinner.

以上のように、製造が容易で、スパイク電圧が抑制され
た平坦な放電カーブが得られ、放電寿命に影響ない、エ
ネルギー密度の改善された熱電池を構成できることとな
る。
As described above, a thermal battery that is easy to manufacture, has a flat discharge curve with suppressed spike voltage, does not affect the discharge life, and has improved energy density can be configured.

実施例 以下に、本発明の実施例を第1図,第2図および第3図
を用いて説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1, 2, and 3.

第1図は正極合剤の製造工程図を示す。図において、Fe
S2粉末を69重量%(以下同じ)、塩化リチウム−塩化カ
リウム(LiCl−KCl,融点352℃)溶融塩電解質(Eで表
示)粉末10%,LiCl−KCl溶融塩電解質を二酸化ケイ素
(SiO2)バインダーに保持させた粉末(EBで表示)20
%、CaSi2の100メッシュパス粉末0.5%をそれぞれ秤取
し総量1Kgとする。次に、ボールミル容器に入れ密封
し、1時間回転して均一混合粉末を得る。これをパイレ
ックスガラス容器に移し、不活性ガスが流通するフロー
ティング方式の電気炉中に入れ、アルゴン(Ar)ガスを
前記合剤1Kg当り5〜50l/minのガス流量で流し続け、電
気炉を昇温し電解質の融点以上の370〜500℃間で1時間
保持する。こののち、Arガスを流し続けながら冷却し、
100℃以下で容器を引出し、乾燥雰囲気中に移す。この
状態では、比較的くずれ易い塊状となっており、乳鉢等
で粉砕し50〜250メッシュに整粒して正極合剤とする。
尚ここで、EBを用いたが、E比率を若干増量して除去し
てもよく、またArガスの替りに窒素ガス(N2)又はArと
N2との混合ガスを流してもよい。
FIG. 1 shows a manufacturing process drawing of the positive electrode mixture. In the figure, Fe
69% by weight of S 2 powder (same below), lithium chloride-potassium chloride (LiCl-KCl, melting point 352 ° C) molten salt electrolyte (indicated by E) powder 10%, LiCl-KCl molten salt electrolyte of silicon dioxide (SiO 2 ) Powder held in binder (displayed as EB) 20
%, 0.5% of CaSi 2 100 mesh pass powder are weighed to make the total amount 1 kg. Next, it is put in a ball mill container, sealed, and rotated for 1 hour to obtain a uniform mixed powder. This is transferred to a Pyrex glass container and placed in a floating electric furnace in which an inert gas flows, and argon (Ar) gas is continuously flowed at a gas flow rate of 5 to 50 l / min per 1 kg of the mixture, and the electric furnace is raised. Warm and hold for 1 hour at 370-500 ° C above the melting point of the electrolyte. After this, cool while continuing to flow Ar gas,
Pull the container out at 100 ° C or below and transfer to a dry atmosphere. In this state, it is in a lump shape that is relatively easy to crumble, and it is crushed in a mortar or the like and sized to 50 to 250 mesh to obtain a positive electrode mixture.
Although EB was used here, it may be removed by slightly increasing the E ratio, and nitrogen gas (N 2 ) or Ar may be used instead of Ar gas.
Mixed gas of N 2 may be flowed.

フローティングガス量は、仕込み量1Kgに対し5l/minよ
り少ない場合は炉内に空気の混入の心配があって、FeS2
が鉄酸化物を生成する危険があり、一方50l/min以上で
は経済的に不利となる。
Floating gas amount, if less than 5l / min to the charged amount 1Kg if there is fear of mixing of air into the furnace, FeS 2
However, there is a risk of producing iron oxides, while 50 l / min or more is economically disadvantageous.

また、高温炉の温度は電解質にLiCl−KCl溶融塩を用い
た場合、370℃下限、500℃上限が特性上好ましく、370
℃以下では温度調整バラツキによってCaSi2の効果が小
さく、500℃以上ではFeS2が徐々に分解するので放電特
性を劣下させる。
The temperature of the high-temperature furnace is preferably 370 ° C lower limit and 500 ° C upper limit in terms of characteristics when LiCl-KCl molten salt is used for the electrolyte.
At temperatures below ℃, the effect of CaSi 2 is small due to variations in temperature adjustment, and at temperatures above 500 ℃, FeS 2 gradually decomposes, resulting in poor discharge characteristics.

第2図は、本発明の第1図に示した正極合剤層を用いた
素電池の断面図を示す。
FIG. 2 shows a sectional view of a unit cell using the positive electrode mixture layer shown in FIG. 1 of the present invention.

1は正極合剤層であり放電電気量と利用率の関係に応じ
て適量が決定され、規定量秤取し金型内に入れ、低圧の
予備成型ののち、LiCl−KCl50%を含浸処理したMgOバイ
ンダーからなる電解質粉末を定量秤取して重ねて入れ、
高圧で本成型を行なって電解質層2を形成すると共に、
2層一体ペレットを得る。3は負極カップ、4は負極カ
ップ3の内面に配置した純リチウムと鉄粉の一体混合層
もしくはリチウム・アルミニウム合金とEからなる負極
活物質層でこの2つを合せ負極5と呼び、前記ペレット
と組合せ素電池とする。
Reference numeral 1 is a positive electrode mixture layer, an appropriate amount of which is determined according to the relationship between the amount of discharge electricity and the utilization rate, a specified amount is weighed and placed in a mold, and after low-pressure preforming, it is impregnated with 50% LiCl-KCl. Quantitatively weigh and stack electrolyte powder consisting of MgO binder,
While performing main molding at high pressure to form the electrolyte layer 2,
A two-layer integral pellet is obtained. Reference numeral 3 is a negative electrode cup, 4 is an integrated mixed layer of pure lithium and iron powder arranged on the inner surface of the negative electrode cup 3, or a negative electrode active material layer made of a lithium-aluminum alloy and E. And the unit cell.

第3図は、第1図の製造法を用いた正極合剤、第2図の
素電池を用いた積層型熱電池の縦断面図である。
FIG. 3 is a vertical cross-sectional view of a laminated type thermal battery using the positive electrode mixture prepared by the manufacturing method of FIG. 1 and the unit cell of FIG.

6は第2図の素電池で必要数を直列に積層構成すること
で容易に所望の電圧が得られ、過塩素酸カリウムと鉄粉
との均一混合物からなる発熱剤7と交互に積層する。8,
9は前記積層体の上・下部に配置した蓄熱剤層であり、
例えば硫酸リチウムと塩化ナトリウムの混合塩とSiO2
インダーからなる層で495℃で凝固潜熱を発生して素電
池スタック温度を長時間保持させ、電池の長寿命化に不
可欠の蓄熱材である。10は点火器でそのリード線は一対
の起動用端子11に接続され、この端子よりパルス電流を
通電すると火炎を発してヒートパッド12を燃焼し、その
火炎は導火帯13に燃焼伝ぱさせる。14、15は正,負極出
力端子でスタックの最上部と最下部から取出した内部リ
ード線16,17と接続する。18は断熱層でMIN−K と呼ば
れる高性能の無機質断熱材を用いてスタックを包囲し
た。19は電池蓋、20は電池ケースでいずれもステンレス
鋼からなり、それらの嵌合部を溶接密封する。
6 is the unit cell shown in FIG.
The desired voltage can be easily obtained with, and potassium perchlorate and iron powder
And the exothermic agent 7 composed of a uniform mixture of 8,
9 is a heat storage agent layer arranged on the top and bottom of the laminate,
For example, mixed salt of lithium sulfate and sodium chloride and SiO2Ba
A layer of inder generates latent heat of solidification at 495 ° C
Keeping the pond stack temperature for a long time is not suitable for extending the battery life.
It is an essential heat storage material. 10 is an igniter and its lead wire is a pair
It is connected to the starting terminal 11 of the
When energized, it emits a flame and burns the heat pad 12,
The flame propagates to the blaze zone 13. 14 and 15 are positive and negative
Internal terminals taken from the top and bottom of the stack with force terminals.
Connect to the lead wires 16 and 17. 18 is a heat insulating layer MIN-K Called
Enclose the stack with high performance inorganic insulation
It was 19 is a battery lid and 20 is a battery case, both of which are made of stainless steel.
It is made of steel and the fittings are welded and sealed.

本発明を用いた積層型電池は、一対の起動用端子11から
パルス電流を通電することにより、点火器10,ヒートパ
ッド12,導火帯13,発熱剤7の順に燃焼し、素電池6を加
熱して起動する。素電池は約500℃に昇温し、LiCl−KCl
電解質が溶融すると、本発明の正極合剤層は放電開始し
て、スパイク電圧の抑制された平坦な出力電圧を供給す
る。
The laminated battery using the present invention burns the igniter 10, the heat pad 12, the squib 13 and the exothermic agent 7 in this order by applying a pulse current from the pair of starting terminals 11 to form the unit cell 6 Start by heating. The unit cell heats up to about 500 ℃, and LiCl-KCl
When the electrolyte is melted, the positive electrode material mixture layer of the present invention starts discharging and supplies a flat output voltage with suppressed spike voltage.

次に本実施例の効果を調べた結果を述べる。第4図は、
素電池直径75mm,電池外径95mm,電池高さ90mmの電池形状
における100mA/cm2電流密度の放電試験結果を示す。素
電池直列数15,平均作動電圧2V/セルである。
Next, the results of examining the effect of this embodiment will be described. Figure 4 shows
The discharge test results of 100 mA / cm 2 current density in a cell shape with a cell diameter of 75 mm, a cell outer diameter of 95 mm, and a cell height of 90 mm are shown. The number of series cells is 15, and the average operating voltage is 2V / cell.

図中Aは、本発明実施例の放電カーブを示し、CaSi2
添加比は0.5%である。Bは従来例1を示し、CaSi2無添
加,熱処理工程のない粉末混合のみで作られた正極合剤
を用いた電池である。Cは従来例2を示し、CaSi25%
添加、熱処理工程のない粉末混合のみで作られた正極合
剤を用いた電池である。電池Bは作動直後に生じるスパ
イク電圧が35Vを示した後急落して約30Vで安定的な電圧
を維持、25V以上の持続時間は15分以上である。電池C
はスパイク電圧が抑制されて32Vとなるが、電圧2段
波、電圧傾斜の増大、持続時間の短縮が生じるという結
果であった。本発明例Aは、スパイク電圧は完璧に取除
かれていないものの31.5Vと実用的に問題のない値まで
改善され、電圧2段波および持続時間への影響もなく、
電圧の平坦性が改良されるという効果を示した。
In the figure, A shows the discharge curve of the example of the present invention, and the addition ratio of CaSi 2 is 0.5%. B shows Conventional Example 1, which is a battery using a positive electrode mixture made without powdery CaSi 2 and only by powder mixing without a heat treatment step. C indicates Conventional Example 2, CaSi 2 5%
It is a battery using a positive electrode mixture made only by powder mixing without addition and heat treatment steps. Battery B showed a spike voltage of 35V immediately after its operation and then dropped sharply to maintain a stable voltage of about 30V, and the duration of 25V or more was 15 minutes or more. Battery C
Although the spike voltage was suppressed to 32V, the result was that the voltage double-stepped wave, the voltage slope increased, and the duration decreased. In the invention sample A, the spike voltage was not completely removed, but was improved to a practically problem-free value of 31.5 V, and there was no effect on the voltage two-stage wave and the duration.
The effect is that the flatness of the voltage is improved.

第5図は、本発明の方法を用いて、FeS2,CaSi2,E,EBの
組成を変化し、CaSi2の添加比率がスパイク電圧とスタ
ック高さに与える影響を調べる目的で実施した。従来例
1では正極合剤の充填密度がやや低く層厚みが厚くなる
ため、15枚の素電池と16枚の発熱剤からなるスタック高
さは47mmであった。試料No.1〜7は熱処理によって正極
合剤,粒子間が固くしまるようになり充填密度が高まる
効果が得られ、正極合剤層が従来例1よりも薄く成型で
きるので、スタック高さは約1.7mm低くなった。また、
スパイク電圧は従来例1と同組成で熱処理を施した試料
No.1は逆に上昇したが、0.1〜5%の範囲で添加した試
料No.2〜12はいずれも低下傾向を示し、特に0.3〜1.5%
の範囲の試料No.3〜7はスパイク電圧、スタック高さの
両方の効果も得られ実用的であった。試料No.8〜12は放
電反応に直接関与しないCaSi2が電池抵抗として悪効果
となり、添加効果よりも作動電圧の低下、素電池厚みの
増加によるスタック高さの増加となって実用的な範囲で
なかった。
FIG. 5 was carried out for the purpose of investigating the effect of the CaSi 2 addition ratio on the spike voltage and the stack height by changing the composition of FeS 2 , CaSi 2 , E and EB using the method of the present invention. In Conventional Example 1, since the packing density of the positive electrode mixture was slightly low and the layer thickness was large, the stack height consisting of 15 unit cells and 16 exothermic agents was 47 mm. Sample Nos. 1 to 7 have an effect that the positive electrode mixture and particles are hardened by heat treatment and the packing density is increased, and the positive electrode mixture layer can be formed thinner than in Conventional Example 1, so that the stack height is It became about 1.7 mm lower. Also,
Spike voltage is the same composition as in Conventional Example 1
On the contrary, No.1 increased, but Sample Nos. 2 to 12 added in the range of 0.1 to 5% showed a decreasing tendency, especially 0.3 to 1.5%.
Sample Nos. 3 to 7 in the range of 3) were practical because both effects of spike voltage and stack height were obtained. Sample Nos. 8 to 12 have a practical range in which CaSi 2 that does not directly participate in the discharge reaction has a bad effect as battery resistance, lowers the operating voltage than the effect of addition, and increases the stack height due to an increase in the unit cell thickness. It wasn't.

本実施例ではFeS2,CaSi2,E,EBを同時に混合する例につ
いて記述したが、次のような工程を経た場合も同様の効
果が得られる。
In this embodiment, an example in which FeS 2 , CaSi 2 , E and EB are mixed at the same time has been described, but similar effects can be obtained even when the following steps are performed.

a)FeS2とCaSi2を所望組成で混合し、これをArガスフ
ローティング電気炉で焼成し、冷却後取出して、E,EBを
加え再混合したものを、再びArガスフローティング電気
炉中で焼成,冷却,粉砕を行なう方法。
a) FeS 2 and CaSi 2 are mixed in a desired composition, fired in an Ar gas floating electric furnace, cooled, taken out, remixed by adding E and EB, and fired again in an Ar gas floating electric furnace. , How to cool and crush.

b)FeS2とCaSi2とEの3種類とし、混合,焼成,冷
却,粉砕を行なう方法で、EBを削除した一部の電解質を
Eに増量させる。
b) FeS 2 , CaSi 2 and E are used as the three types, and mixing, firing, cooling and pulverization are carried out to increase the amount of EB-deleted part of the electrolyte to E.

発明の効果 以上の説明から明らかなように、2ケイ化カルシウムを
ただ単に正極合剤に粉末状で混ぜ込むだけではなく、粉
末で混合した後、Arガス,窒素ガス又はこれらの混合ガ
スを流通させた高温炉中で加熱処理後、同炉内で冷却、
のち乾燥雰囲気で粉砕した各工程を経た正極合剤粉末を
素電池の正極合剤層に成型して使用し、そして発熱剤と
組合せた本発明の積層型電池は、起動初期に生じる一次
的なスパイク状高電圧が抑制され、作動電圧の平坦化が
得られる。更にCaSi2量が0.3〜1.5重量%の範囲の同処
理工程を経た正極合剤は、放電持続時間が同等であり、
成型密度が大きくなるのでスタック高さが低くなって電
池の小型化が図れる。かつ、製造工程も簡単で量産時の
不都合も生じないという効果が得られる。
EFFECTS OF THE INVENTION As is clear from the above description, not only is calcium disilicide mixed into the positive electrode mixture in powder form, but after mixing with powder, Ar gas, nitrogen gas or a mixed gas thereof is passed. After heat treatment in the high temperature furnace, cooled in the same furnace,
After that, the positive electrode material mixture powder that has been pulverized in a dry atmosphere is used by molding it into a positive electrode material mixture layer of a unit cell, and is combined with a heat generating agent. The spiked high voltage is suppressed and the operating voltage is flattened. Further, the positive electrode mixture that has undergone the same treatment step in the range of 0.3 to 1.5% by weight of CaSi 2 has the same discharge duration,
Since the molding density is high, the stack height is low and the battery can be miniaturized. In addition, the effect that the manufacturing process is simple and no inconvenience occurs during mass production can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す正極合剤の製造工程図、
第2図は同合剤を成型し正極合剤層として構成した素電
池の断面図、第3図は第2図の素電池を直列構成した本
発明の積層型熱電池の断面図、第4図は本発明の実施例
および従来例の放電カーブの比較図、第5図は合剤組成
とスパイク電圧,スタック高さの特性傾向図である。 1……正極合剤層、2……電解質層、5……負極、6…
…素電池、7……発熱剤。
FIG. 1 is a manufacturing process diagram of a positive electrode mixture showing an embodiment of the present invention,
FIG. 2 is a sectional view of a unit cell formed by molding the same mixture as a positive electrode mixture layer, and FIG. 3 is a sectional view of a laminated thermal battery of the present invention in which the unit cells of FIG. FIG. 5 is a comparison diagram of the discharge curves of the example of the present invention and the conventional example, and FIG. 5 is a characteristic tendency diagram of the mixture composition, spike voltage, and stack height. 1 ... Positive electrode mixture layer, 2 ... Electrolyte layer, 5 ... Negative electrode, 6 ...
… Battery cell, 7… Exothermic agent.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リチウム又はリチウム合金を用いた負極,
溶融塩を用いた電解質層、二硫化鉄を用いた正極を有す
る熱電池において、少なくとも二硫化鉄と溶融塩と2ケ
イ化カルシウムを含む正極合剤を均質に混合攪拌する工
程と、アルゴン,窒素またはそれらの混合ガスを流通さ
せた高温炉中で加熱処理する工程と、同炉内で冷却する
工程とを経た後、乾燥雰囲気中で粉砕する工程とからな
る熱電池用正極合剤の製造法。
1. A negative electrode using lithium or a lithium alloy,
In a thermal battery having an electrolyte layer using a molten salt and a positive electrode using iron disulfide, a step of homogeneously mixing and stirring at least a positive electrode mixture containing iron disulfide, a molten salt and calcium disilicide, and argon and nitrogen. Alternatively, a method for producing a positive electrode mixture for a thermal battery, which comprises a step of performing heat treatment in a high-temperature furnace in which a mixed gas of these is circulated, a step of cooling in the same furnace, and a step of pulverizing in a dry atmosphere. .
【請求項2】2ケイ化カルシウムの添加量が、二硫化鉄
に対して0.30重量%以上、1.50重量%以下の範囲である
特許請求の範囲第1項記載の熱電池用正極合剤の製造
法。
2. The production of a positive electrode mixture for a thermal battery according to claim 1, wherein the amount of calcium disilicide added is in the range of 0.30% by weight or more and 1.50% by weight or less with respect to iron disulfide. Law.
【請求項3】流通ガス量は、正極合剤の仕込み量1Kgに
対して、5〜50l/minの流量である特許請求の範囲第1
項記載の熱電池用正極合剤の製造法。
3. The amount of flowing gas is a flow rate of 5 to 50 l / min with respect to the charged amount of the positive electrode mixture of 1 kg.
Item 6. A method for producing a positive electrode mixture for a thermal battery according to item.
【請求項4】熱処理温度が370〜500℃の範囲である特許
請求の範囲第1項記載の熱電池用正極合剤の製造法。
4. The method for producing a positive electrode mixture for a thermal battery according to claim 1, wherein the heat treatment temperature is in the range of 370 to 500 ° C.
【請求項5】特許請求の範囲第1項記載の熱電池用正極
合剤粉末を一定量秤取し、金型内で加圧成型した正極合
剤層を正極に用いた熱電池。
5. A thermal battery in which a positive electrode mixture powder for a thermal battery according to claim 1 is weighed in a fixed amount and pressure-molded in a mold to use a positive electrode mixture layer as a positive electrode.
JP63299841A 1988-11-28 1988-11-28 Method for producing positive electrode mixture for thermal battery and thermal battery using the same Expired - Lifetime JPH0740488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299841A JPH0740488B2 (en) 1988-11-28 1988-11-28 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299841A JPH0740488B2 (en) 1988-11-28 1988-11-28 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Publications (2)

Publication Number Publication Date
JPH02144855A JPH02144855A (en) 1990-06-04
JPH0740488B2 true JPH0740488B2 (en) 1995-05-01

Family

ID=17877574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299841A Expired - Lifetime JPH0740488B2 (en) 1988-11-28 1988-11-28 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Country Status (1)

Country Link
JP (1) JPH0740488B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124274B2 (en) 2003-11-21 2012-02-28 Eveready Battery Company, Inc. High discharge capacity lithium battery
CN108349740A (en) * 2015-10-29 2018-07-31 株式会社丰田自动织机 The manufacturing method of silicon materials

Also Published As

Publication number Publication date
JPH02144855A (en) 1990-06-04

Similar Documents

Publication Publication Date Title
JP3453099B2 (en) Method for producing lithium secondary battery
JP4498688B2 (en) Method for producing lithium ion conductive sulfide glass and glass ceramics
JP4580149B2 (en) Lithium ion conductive sulfide glass manufacturing method and lithium ion conductive sulfide glass ceramic manufacturing method
EP0645833B1 (en) Method for producing a hydrogen absorbing alloy electrode
JP2004265685A (en) Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic
KR101043309B1 (en) Cathodal pellet for thermal battery, method for fablicatign the same, and thermal battery having the same
JP5006548B2 (en) Thermal battery
JPH0740488B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2751389B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2808627B2 (en) Thermal battery
JP2979207B2 (en) Method of manufacturing negative electrode for thermal battery and laminated thermal battery using the negative electrode
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2689448B2 (en) Thermal battery
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JPH02295066A (en) Manufacture of positive active material for thermal battery and thermal battery using this material
JPH0261095B2 (en)
JPH0666143B2 (en) Heating agent for thermal batteries
JPH04155768A (en) Manufacture of thermobattery electrolyte and thermobattery using same
JPH0461756A (en) Manufacture of ni-h storage battery
JPH05242896A (en) Positive electrode active material for thermal cell, manufacture thereof and thermal cell using it
JPH0441468B2 (en)
JPH01122562A (en) Manufacture of negative electrode for thermobattery
JPH04282569A (en) Manufacture for metal hydride storage battery
JPS5942422B2 (en) Thermal battery manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14