JP2808627B2 - Thermal battery - Google Patents
Thermal batteryInfo
- Publication number
- JP2808627B2 JP2808627B2 JP33445388A JP33445388A JP2808627B2 JP 2808627 B2 JP2808627 B2 JP 2808627B2 JP 33445388 A JP33445388 A JP 33445388A JP 33445388 A JP33445388 A JP 33445388A JP 2808627 B2 JP2808627 B2 JP 2808627B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- agent
- heat
- thermal
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/30—Deferred-action cells
- H01M6/36—Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Primary Cells (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、熱電池の素電池と加熱剤からなる積層体の
上・下部に設置された蓄熱層の改良を図った保温効果に
優れ長時間作動用の熱電池に関するものである。Description: BACKGROUND OF THE INVENTION The present invention relates to an improved thermal storage layer provided above and below a laminate composed of a unit cell of a thermal battery and a heating agent, and has an excellent heat retaining effect and is operated for a long time. The present invention relates to a thermal battery for use.
従来の技術 熱電池は常温で不活性であるが、高温に加熱すると活
性となり、外部へ電力を供給し得るようになる電池で貯
蔵型電池の一種である。従って、きわめて良好な貯蔵性
を有し5〜10年間の貯蔵後も製造直後となんら電池特性
上変わることなく使用できる。また高温で作動させるた
めに電極反応が進み易く分極も少ないので大出力放電に
よく耐えること、使用時には起動信号を入れると瞬時に
電圧発生するなどの特徴を有するが、数分間以内の短時
間しか使用できないという短所を有している。2. Description of the Related Art Thermal batteries are inactive at room temperature, but become active when heated to a high temperature, and can supply power to the outside, and are a type of storage battery. Therefore, it has very good storability and can be used without any change in battery characteristics even after storage for 5 to 10 years. In addition, it operates at a high temperature, and the electrode reaction is easy to proceed and the polarization is small, so it can withstand large output discharge well.In use, it has a feature such as instantaneous voltage generation when a start signal is input, but only for a short time within several minutes. It has the disadvantage that it cannot be used.
しかし、近年では15分作動の電池などが発表されてお
り、今後は数十分から1時間ぐらいの比較的長時間にわ
たり、大電流,高出力,大容量での用途が増える傾向に
ある。そのためには、電池作動中の電解質を長時間溶融
状態に保つことが必要となり、結果として放電寿命を延
ばすことが出来る。従って、熱電池の保温技術について
は今後ますます重要な課題となる。However, in recent years, a battery operated for 15 minutes has been announced, and in the future, there is a tendency that applications for a large current, a high output, and a large capacity for a relatively long time of several tens of minutes to one hour are increasing. For that purpose, it is necessary to keep the electrolyte in a molten state for a long time during the operation of the battery, and as a result, the discharge life can be extended. Therefore, thermal insulation technology for thermal batteries will become an increasingly important issue in the future.
保温技術の中心は断熱技術と蓄熱技術である。前者に
ついては商品名MIN−K及びマイクロサームと呼ばれる
低熱伝導係数を有する特殊断熱材を用いたり、後者につ
いては溶融塩の凝固潜熱を利用した蓄熱剤を用いるとい
う蓄電池の研究がされている。この溶融塩蓄熱剤はペレ
ット状に成形して加熱溶融用の加熱剤とともに素電池と
加熱剤の積層体の両端部に使用されている。Heat insulation technology is centered on insulation technology and heat storage technology. For the former, studies have been made on storage batteries using a special heat insulating material having a low thermal conductivity coefficient called MIN-K and Microtherm, and using the heat storage agent utilizing the latent heat of solidification of molten salt for the latter. This molten salt heat storage agent is formed into pellets and used together with a heating agent for heating and melting at both ends of the laminate of the unit cell and the heating agent.
以下に従来の熱電池用蓄熱層について説明する。 Hereinafter, a conventional heat storage layer for a thermal battery will be described.
第2図は従来の溶融塩蓄熱層の断面図である。aにお
いて、3は硫酸リチウムと塩化ナトリウム(Li2SO4−Na
Cl)の溶融塩蓄熱剤に二酸化珪素(SiO2)のバインダー
を10〜15重量%加え、熱処理により均質に含浸保持した
固定化蓄熱層で、これを鉄粉と過塩素酸カリウムからな
る加熱剤5を補強体としてその上から一体成形に構成し
たものである。bにおいて、13は封口された金属容器で
この中に硫酸リチウムと塩化ナトリウムからなる溶融塩
蓄熱剤14を溶融状態で注入したのち、封口したものであ
る。FIG. 2 is a sectional view of a conventional molten salt heat storage layer. In a, 3 is lithium sulfate and sodium chloride (Li 2 SO 4 —Na
Cl) 10 to 15% by weight of a binder of silicon dioxide (SiO 2 ) is added to the molten salt heat storage agent, and this is a fixed heat storage layer that is uniformly impregnated and held by heat treatment. This is a heating agent composed of iron powder and potassium perchlorate. 5 is integrally formed from above as a reinforcing body. In FIG. 2B, reference numeral 13 denotes a sealed metal container into which a molten salt heat storage agent 14 comprising lithium sulfate and sodium chloride is injected in a molten state, and then sealed.
これらの蓄熱層の使用方法は電池に構成する場合には
層状に加工した蓄熱層を加熱剤と交互に積み重ねて使用
する。また作用は、硫酸リチウムと塩化ナトリウムの蓄
熱剤は498℃で90cal/gの凝固潜熱を発生し、素電池−加
熱剤のスタックに熱を供給して500℃前後で温度が一定
となり、放熱の緩やかな状態をつくって、素電池の電解
質層の溶融状態を長時間保つことが出来るのである。When these heat storage layers are used in a battery, the heat storage layers processed in layers are alternately stacked with a heating agent. The effect is that the heat storage agent of lithium sulfate and sodium chloride generates a latent heat of solidification of 90 cal / g at 498 ° C, supplies heat to the unit cell-heating agent stack, and the temperature becomes constant at around 500 ° C. By forming a gentle state, the molten state of the electrolyte layer of the unit cell can be maintained for a long time.
発明が解決しようとする課題 しかしながら、上記従来の蓄熱層にはそれぞれ問題点
があった。即ちaの構成において、固定化蓄熱層3は加
熱剤5上に成形しているために機械的強度は十分に有す
るが蓄熱剤が加熱溶融したとき十分な無機バインダーを
含ませていないと、層の変形を生じ構成が安定しない。
また、加熱剤と固定化蓄熱層が直接に接触する構成とな
っているので、鉄と過塩素酸カリウムからなる加熱剤が
発熱反応を起こした時に生成する塩化カリウム(KCl)
が固定化蓄熱層3に拡散していき、Li2SO4−NaCl−KCl
の3元溶融塩に変質するため、Li2SO4−NaClの共晶点49
8℃よりも低い450℃付近で作用し、かつ低カロリーの潜
熱を発生してしまう。このため、200mA/cm2以上の高率
放電の場合や、2000mA/cm2以上のパルス電流が印加され
る場合などに必要とする作動温度480℃以上を長時間に
わたって保持し得なくなる。Problems to be Solved by the Invention However, each of the above-mentioned conventional heat storage layers has a problem. That is, in the configuration of a, the immobilized heat storage layer 3 has sufficient mechanical strength because it is formed on the heating agent 5, but if the heat storage agent does not contain a sufficient inorganic binder when heated and melted, the layer And the configuration is not stable.
In addition, since the heating agent and the fixed heat storage layer are in direct contact, potassium chloride (KCl) generated when the heating agent consisting of iron and potassium perchlorate causes an exothermic reaction
Diffuses into the immobilized heat storage layer 3 to form Li 2 SO 4 —NaCl—KCl
Eutectic point of Li 2 SO 4 —NaCl
It works around 450 ° C, which is lower than 8 ° C, and generates latent heat of low calories. Therefore, and if the 200 mA / cm 2 or more high-rate discharge, not obtained and held for a long time the operating temperature of 480 ° C. or higher to necessary if the 2000 mA / cm 2 or more of the pulse current is applied.
またbの構成では無機吸着剤を用いないため、溶融塩
蓄熱剤が多量に用いられるので体積高率は良くなるが、
注入工程,封口工程,冷却固化工程の工程数が増え、か
つ作業が煩雑になるのでコスト高となる。In addition, in the configuration of b, since the inorganic adsorbent is not used, the molten salt heat storage agent is used in a large amount, so that the volume ratio is improved,
The number of steps of the pouring step, the sealing step, and the cooling and solidifying step increases, and the operation becomes complicated, resulting in high cost.
本発明は、上記のような問題点を解消するため、使用
前後において蓄熱層の構成が安定し、製作が容易で、加
熱剤と蓄熱剤が混り合わないで、Li2SO4−NaClの本来物
性をもつ長時間用熱電池の保温技術の向上を図ることを
目的とする。The present invention is to solve the above problems, the configuration of the heat storage layer is stabilized before and after use, easy manufacture, the heating agent and the heat storage agent is not suitable intermingled, the Li 2 SO 4 -NaCl It is an object of the present invention to improve the heat retention technology of a long-time thermal battery having inherent physical properties.
課題を解決するための手段 本発明は前記の課題を解決するために、前記のLi2SO4
−NaCl溶融塩蓄熱剤と、無機吸着剤の均一混合物を主材
とした粉末を溶融塩蓄熱剤の融点以上で熱処理して固定
化した蓄熱剤を金属カップに入れ、上部を円盤状の金属
板で蓋をして得た熱電池用蓄熱層を素電池と加熱剤を交
互に積み重ねてなる積層体の上・下部に設置すること
で、固定化蓄熱剤と加熱剤とが直接接触しない構成とす
る。Means for Solving the Problems In order to solve the above problems, the present invention provides the above Li 2 SO 4
-Place the heat storage agent fixed by heat-treating the powder mainly composed of the homogeneous mixture of the NaCl molten salt heat storage agent and the inorganic adsorbent at the melting point of the molten salt heat storage agent or higher into a metal cup. By installing the heat storage layer for the heat battery obtained by covering with the lid at the top and bottom of the stacked body composed of the unit cells and the heating agent alternately stacked, the immobilized heat storage agent and the heating agent do not directly contact I do.
作 用 この蓄熱層を用いれば、固定化蓄熱剤は金属カップ中
にとじこめられているため、機械的強度が大きくなるの
で無機吸着材を減らし、蓄熱剤を増やすことが可能とな
ると共に、粉末を金属カップに入れて蓋をしたのちプレ
ス加工するだけの単純な工程なので容易に製造すること
が出来る。また加熱剤と直接接触しないので鉄と過塩素
酸カリウムが発熱反応を起こした時生成する塩化カリウ
ム(KCl)によって、低融点化や低カロリー化する恐れ
もなくなる。これらの結果熱電池に最適の蓄熱層が得ら
れる。Using this thermal storage layer, the immobilized thermal storage agent is bound in the metal cup, which increases the mechanical strength.Therefore, it is possible to reduce the amount of the inorganic adsorbent and increase the amount of the thermal storage agent, and to reduce the powder. Since it is a simple process of simply pressing the cover after placing it in a metal cup, it can be easily manufactured. Further, since there is no direct contact with the heating agent, there is no danger of lowering the melting point or calorie due to potassium chloride (KCl) generated when iron and potassium perchlorate cause an exothermic reaction. As a result, an optimal heat storage layer for the thermal battery is obtained.
実施例 本発明の代表的な実施例について以下に示す。Examples The following describes typical examples of the present invention.
第1図は金属カップ1と金属蓋2により固定化蓄熱層
3を包囲したものである。固定化蓄熱層は溶融塩蓄熱剤
Li2SO4−NaCl88重量%と無機吸着材SiO212重量%のボー
ルミルで均一混合後、600℃で16時間熱処理してSiO2にL
i2SO4−NaClを固定化させる。その後粉砕,造粒して固
定化蓄熱剤とし、金型内に金属カップ,固定化蓄熱剤,
金属蓋を入れ成型しながらカシメ加工して図示するよう
な熱電池用蓄熱層とする。更に詳細を述べると、金属カ
ップは素電池の負極にも使用しているもので、厚さ0.1m
mの鉄をプレス加工し高さ1.5mmのカップ状にしたもので
ある。この金属カップの中に固定化蓄熱剤の粉末を入
れ、均一に分散した後、全体を単位面積当り0.1〜0.2to
n/cm2で予備加圧成型し、その上にカップと同様の厚さ
0.1mmの円盤状金属蓋を入れ、成形面を覆う。カップの
周囲を板カシメした後単位面積当り2.6ton/cm2で本加圧
成形して得られる。このようにして得られた熱電池用蓄
熱層は、厚みが1mm程度の平板状であり、固定化蓄熱層
の粉末成形体は従来のSiO215重量%に比べて強度が若干
低下するが、金属カップの中に封じ込められているの
で、電池の組み立て時に誤って床に落としたり、ぶつけ
たりしても容易に崩れる事はなく、非常に取り扱い易く
改良された。また固定化蓄熱層が金属カップと蓋により
加熱剤とは分離されて直接接触しないので、加熱剤の発
熱反応により生成物として生じるKClの影響を受けない
ので、蓄熱層からの凝固潜熱は常に500℃付近で発揮さ
れる。FIG. 1 is a diagram in which a fixed heat storage layer 3 is surrounded by a metal cup 1 and a metal lid 2. The fixed thermal storage layer is a molten salt thermal storage agent
After uniformly mixing in a ball mill of Li 2 SO 4 -88% by weight of NaCl and 12% by weight of inorganic adsorbent SiO 2 , heat treatment is performed at 600 ° C. for 16 hours to convert L to SiO 2 .
i 2 SO 4 immobilizing -NaCl. After that, it is ground and granulated to obtain a fixed heat storage agent, and a metal cup, a fixed heat storage agent,
The metal lid is inserted and caulked while being molded to form a heat storage layer for a thermal battery as shown. In more detail, the metal cup is also used for the negative electrode of the unit cell and has a thickness of 0.1 m
m is pressed into a cup with a height of 1.5 mm. Put the powder of the immobilized heat storage agent in this metal cup and after evenly dispersing, the whole is 0.1 ~ 0.2 to
Pre-press molding at n / cm 2 , and the same thickness as cup
Insert a 0.1mm disc-shaped metal lid and cover the molding surface. It is obtained by caulking the periphery of the cup with a plate and then subjecting it to full-pressure molding at 2.6 ton / cm 2 per unit area. The heat storage layer for a heat battery thus obtained is a flat plate having a thickness of about 1 mm, and the powder compact of the fixed heat storage layer has a slightly lower strength than the conventional SiO 2 of 15% by weight. Since the battery is enclosed in a metal cup, it does not easily collapse or fall down on the floor when the battery is assembled, and it is very easy to handle and improved. In addition, since the immobilized heat storage layer is separated from the heating agent by the metal cup and the lid and does not come into direct contact with the heating agent, it is not affected by KCl generated as a product by the exothermic reaction of the heating agent, so the latent heat of solidification from the heat storage layer is always 500. Appears around ℃.
第3図は本発明を用いた熱電池を示す断面図である。
4は素電池で本発明の場合10セルを直列に積層した場合
で、素電池4間には加熱剤5が交互に挿入されている。
6及び6′は上部及び下部に設けられた本発明の熱電池
用蓄熱層で、これに熱を与えるための素電池間に挿入し
たものと同様の加熱剤と共に上・下部に2セットづつ配
置した。7は電気式の点火器、8は導火帯で燃焼すると
各層の加熱剤5に着火させる。9は点火器の外部端子
で、微小電流を通電するトリガー入力に用いる。10およ
び10′は熱電池の正極端子と負極端子であり、電池外装
蓋11にハーメチックシールを取付けて用いる。12は外装
ケース、13は外装ケースと内部積層体との間に設けた断
熱材である。FIG. 3 is a sectional view showing a thermal battery using the present invention.
Reference numeral 4 denotes a unit cell in the case of the present invention in which ten cells are stacked in series, and heating agents 5 are inserted between the unit cells 4 alternately.
Reference numerals 6 and 6 'denote heat storage layers for the thermal battery of the present invention provided on the upper and lower parts, and two sets of upper and lower thermal storage layers for heating the same with the same heating agent inserted between the cells. did. Reference numeral 7 denotes an electric igniter, and reference numeral 8 ignites the heating agent 5 in each layer when burning in a fuse zone. Reference numeral 9 denotes an external terminal of the igniter, which is used for a trigger input for supplying a small current. Reference numerals 10 and 10 'denote a positive terminal and a negative terminal of the thermal battery, which are used by attaching a hermetic seal to the battery outer cover 11. Reference numeral 12 denotes an outer case, and 13 denotes a heat insulating material provided between the outer case and the inner laminate.
この本発明の電池は、点火器外部端子9に微小点火ト
リガーを入れると、点火器7が火炎を発して、その下に
配された加熱剤に着火し、さらに導火帯8に燃焼伝播
し、各層のセル加熱剤5が燃焼してその熱で素電池3の
溶融塩電解質を溶して、電池は活性化する。このとき熱
電池用蓄熱層の蓄熱剤も約600℃まで加熱溶融され、そ
の後の放熱により500℃付近まで冷却してくると、潜熱
を発生し、一定時間この温度を保つ。In the battery of the present invention, when a micro-ignition trigger is applied to the external terminal 9 of the igniter, the igniter 7 emits a flame, ignites the heating agent disposed thereunder, and further propagates by combustion to the squib 8. Then, the cell heating agent 5 of each layer burns and the heat dissolves the molten salt electrolyte of the unit cell 3 to activate the cell. At this time, the heat storage agent of the heat storage layer for the heat battery is also heated and melted to about 600 ° C., and when it is cooled to around 500 ° C. by the subsequent heat radiation, latent heat is generated and this temperature is maintained for a certain time.
第4図は第3図の熱電池の内部温度測定カーブであ
る。縦軸は素電池の内部温度、横軸は放電時間である。
内部温度は積層体の最下部に位置する素電池に熱電対を
入れ測定したものである。1は本発明の実施例の熱電池
用蓄熱層を用いた場合、2は第2図aの従来型の加熱剤
の上に形成した固定化蓄熱層を用いた場合、3は第2図
bの従来型の溶融塩蓄熱剤のみを封入した蓄熱層を用い
た場合の内部温度である。FIG. 4 is an internal temperature measurement curve of the thermal battery of FIG. The vertical axis represents the internal temperature of the unit cell, and the horizontal axis represents the discharge time.
The internal temperature was measured by inserting a thermocouple into the unit cell located at the bottom of the laminate. 1 is a case where the heat storage layer for a thermal battery according to the embodiment of the present invention is used, 2 is a case where a fixed heat storage layer formed on the conventional heating agent of FIG. 2a is used, and 3 is FIG. 2b. This is the internal temperature when using the conventional heat storage layer in which only the conventional molten salt heat storage agent is sealed.
この図から蓄熱剤を金属ケースの中に封入する等加熱
剤と分離した状態の実施例1,3は保温効果が優れ、凝固
潜熱を発生する約500℃付近で一定温度を示す。電池か
ら大きな電流を取出せにくくなる400℃に到達するまで
の時間は、実施例1では24分、実施例3では25分持続
し、バインダーを含む事による発熱効率の差はわずか1
分程度短かいものであったが、しかし、実施例2のよう
に蓄熱層と加熱剤が直接接触する場合は、加熱剤の反応
生成物KClによってLi2SO4−NaCl−KClの三成分組成とな
るため明らかな潜熱発生による平坦部が見られず450℃
付近で若干の平坦部がみられる程度の蓄熱効果しか現れ
ないため、400℃に到達する時間は21分と前述に比べ温
度の維続時間が短くなる結果であった。From this figure, Examples 1 and 3 in which the heat storage agent is separated from the heating agent, such as enclosing the heat storage agent in a metal case, are excellent in the heat retaining effect and exhibit a constant temperature at about 500 ° C. where latent heat of solidification is generated. The time required to reach 400 ° C., at which it becomes difficult to extract a large current from the battery, is 24 minutes in Example 1 and 25 minutes in Example 3, and the difference in heat generation efficiency due to the inclusion of the binder is only 1 minute.
However, when the heat storage layer and the heating agent were in direct contact as in Example 2, the ternary composition of Li 2 SO 4 —NaCl—KCl was determined by the reaction product KCl of the heating agent. 450 ° C with no visible flat area due to latent heat generation
Since only a small amount of heat storage effect was observed in the vicinity, the time required to reach 400 ° C was 21 minutes, which was a result of a shorter temperature maintenance time than the above.
発明の効果 以上述べてきたように、本発明によれば、固定化蓄熱
剤を容易な工程で金属カップ中に封じ入れる事が出来る
ため、無機吸着剤を減らし溶融塩蓄熱剤を増やせるこ
と、また加熱剤の影響を受けることなく500℃付近で大
きな凝固潜熱を発生させ得て一定温度を長く保持しえる
ので、実用的に極めて有用である。Effects of the Invention As described above, according to the present invention, the immobilized heat storage agent can be sealed in a metal cup in an easy step, so that the amount of the inorganic salt adsorbent can be reduced and the molten salt heat storage agent can be increased, and It is practically extremely useful because it can generate a large latent heat of solidification at around 500 ° C. without being affected by a heating agent and can maintain a constant temperature for a long time.
第1図は本発明実施例の熱電池用蓄熱層の断面図、第2
図a,bは従来例における蓄熱層の断面図、第3図は蓄熱
層を用いた積層形熱電池の断面図、第4図は内部温度の
測定カープを示す図である。 1……金属カップ、2……金属蓋、3……固定化蓄熱
層、4……素電池、5……加熱剤、6……上部熱電池用
蓄熱層、6′……下部熱電池用蓄熱層。FIG. 1 is a sectional view of a heat storage layer for a thermal battery according to an embodiment of the present invention.
FIGS. A and b are cross-sectional views of a heat storage layer in a conventional example, FIG. 3 is a cross-sectional view of a stacked thermal battery using the heat storage layer, and FIG. 4 is a diagram showing a carp for measuring an internal temperature. DESCRIPTION OF SYMBOLS 1 ... Metal cup, 2 ... Metal lid, 3 ... Fixed thermal storage layer, 4 ... Unit cell, 5 ... Heating agent, 6 ... Thermal storage layer for upper thermal battery, 6 '... Lower thermal battery Thermal storage layer.
フロントページの続き (72)発明者 山崎 博資 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 6/36Continued on the front page (72) Hiroshi Yamazaki, Inventor 1006 Odakadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) H01M 6/36
Claims (1)
らなる溶融塩蓄熱剤と、無機質吸着材の均一混合物を主
材とした粉末を、前記溶融塩蓄熱剤の融点以上で熱処理
し粉体とした固体化蓄熱剤を作製し、前記固定化蓄熱剤
を金属カップと金属蓋により包囲して熱電池用蓄熱層を
構成し、素電池と加熱剤を交互に積み重ねてなる積層体
の上・下部に前記熱電池用蓄熱層を設置することで前記
固定化蓄熱剤と加熱剤とは直接接触しないことを特徴と
する熱電池。1. A powder mainly composed of a homogeneous mixture of a molten salt heat storage agent composed of a mixed salt of lithium sulfate and sodium chloride and an inorganic adsorbent is heat-treated at a temperature equal to or higher than the melting point of the molten salt heat storage agent to form a powder. A solidified heat storage agent is prepared, the fixed heat storage agent is surrounded by a metal cup and a metal lid to form a heat storage layer for a heat battery, and the upper and lower parts of the stacked body obtained by alternately stacking the unit cells and the heating agent are formed. A thermal battery, wherein the fixed thermal storage agent and the heating agent are not in direct contact with each other by providing the thermal storage layer for the thermal battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33445388A JP2808627B2 (en) | 1988-12-28 | 1988-12-28 | Thermal battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33445388A JP2808627B2 (en) | 1988-12-28 | 1988-12-28 | Thermal battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02177263A JPH02177263A (en) | 1990-07-10 |
JP2808627B2 true JP2808627B2 (en) | 1998-10-08 |
Family
ID=18277558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33445388A Expired - Lifetime JP2808627B2 (en) | 1988-12-28 | 1988-12-28 | Thermal battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2808627B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101553897B1 (en) * | 2014-02-03 | 2015-09-17 | 국방과학연구소 | Thermal battery |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109011696B (en) * | 2018-07-25 | 2020-12-08 | 中国科学院上海应用物理研究所 | Method for purifying insoluble impurities in molten salt |
CN111146464A (en) * | 2019-12-10 | 2020-05-12 | 中国电子科技集团公司第十八研究所 | Internal temperature measuring device of thermal battery |
CN116705973B (en) * | 2023-07-20 | 2024-02-09 | 天津大学 | Sulfide positive electrode material |
-
1988
- 1988-12-28 JP JP33445388A patent/JP2808627B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101553897B1 (en) * | 2014-02-03 | 2015-09-17 | 국방과학연구소 | Thermal battery |
Also Published As
Publication number | Publication date |
---|---|
JPH02177263A (en) | 1990-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3677822A (en) | Thermal battery having a thermal reservoir pellet | |
US4044192A (en) | Thermal batteries | |
JP2808627B2 (en) | Thermal battery | |
JP2006236993A (en) | Thermal cell | |
JP2006236990A (en) | Thermal cell | |
JP2751389B2 (en) | Method for producing positive electrode mixture for thermal battery and thermal battery using the same | |
JP3290604B2 (en) | Thermal battery | |
JPH0326911B2 (en) | ||
JP2751388B2 (en) | Thermal battery | |
JP2653065B2 (en) | Stacked thermal battery | |
JP2751390B2 (en) | Method for producing positive electrode mixture for thermal battery and thermal battery using the same | |
JPH0782855B2 (en) | Thermal battery | |
JPH0542781B2 (en) | ||
JPH097594A (en) | Thermal battery | |
JPH0535576Y2 (en) | ||
JP2815354B2 (en) | Stacked thermal battery | |
JPH0234760Y2 (en) | ||
KR940027210A (en) | Magnesium Thermo Battery and Manufacturing Method Thereof | |
JPH02284359A (en) | Manufacture of thermo-battery and positive-electrode active material for thermo-battery | |
JPS5885280A (en) | Thermal battery | |
JPS6319769A (en) | Thermal battery | |
JPH01115064A (en) | Manufacture of heat storage layer for thermal battery | |
JPH05251090A (en) | Manufacture of thermal cell negative electrode and laminated thermal cell using it | |
JPH0740488B2 (en) | Method for producing positive electrode mixture for thermal battery and thermal battery using the same | |
JPH04280071A (en) | Manufacture of positive electrode active material for thermal battery, and thermal battery using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070731 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20090731 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |