JP2006236993A - Thermal cell - Google Patents

Thermal cell Download PDF

Info

Publication number
JP2006236993A
JP2006236993A JP2006018732A JP2006018732A JP2006236993A JP 2006236993 A JP2006236993 A JP 2006236993A JP 2006018732 A JP2006018732 A JP 2006018732A JP 2006018732 A JP2006018732 A JP 2006018732A JP 2006236993 A JP2006236993 A JP 2006236993A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
thermal battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006018732A
Other languages
Japanese (ja)
Other versions
JP5006548B2 (en
Inventor
Shozo Fujiwara
昌三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006018732A priority Critical patent/JP5006548B2/en
Publication of JP2006236993A publication Critical patent/JP2006236993A/en
Application granted granted Critical
Publication of JP5006548B2 publication Critical patent/JP5006548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal cell having excellent high load discharge characteristics by increasing voltage during large current discharge. <P>SOLUTION: The thermal cell has a plurality of unit cells consisting of a positive electrode, a negative electrode, and an electrolyte arranged between the positive electrode and the negative electrode. The electrolyte contains a salt which melts at operating temperature of the thermal cell, and the positive electrode contains a titanium-contained sulfide as an active material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱電池に関し、特に熱電池の正極に用いられる活物質に関する。   The present invention relates to a thermal battery, and more particularly to an active material used for a positive electrode of a thermal battery.

一般に、熱電池は、負極、正極、および両電極間に介在させた電解質からなる素電池を複数個備える。電解質には、高温で溶融する塩が用いられる。この電解質は、常温では、イオン伝導性を有しないため、熱電池は不活性状態である。電解質は高温に加熱されると、溶融状態となり、良好なイオン伝導体となるため、熱電池は活性状態となり、外部へ電気を供給することができる。   In general, a thermal battery includes a plurality of unit cells including a negative electrode, a positive electrode, and an electrolyte interposed between the two electrodes. A salt that melts at a high temperature is used as the electrolyte. Since this electrolyte does not have ionic conductivity at room temperature, the thermal battery is in an inactive state. When the electrolyte is heated to a high temperature, it becomes molten and becomes a good ionic conductor, so that the thermal battery becomes active and can supply electricity to the outside.

熱電池は貯蔵型電池の一種であり、電解質が溶融しない限り、電池反応は進行しない。このため、5〜10年またはそれ以上の期間貯蔵した後でも、製造直後と同じ電池特性を発揮することができる。また、熱電池では、高温下で電極反応が進行する。このため、水溶液電解液や有機電解液などを用いる他の電池に比べて電極反応が格段に速く進行する。従って、熱電池は優れた大電流放電特性を有する。さらに、熱電池は、加熱手段によっても異なるが、電池使用時に電池に起動信号を送ると1秒以内の短時間で電力を取り出すことができるという利点を有する。このため、その特性を活かして、誘導機器といった各種防衛機器の電源や緊急用電源として好適に用いられている。   A thermal battery is a type of storage battery, and the battery reaction does not proceed unless the electrolyte melts. For this reason, even after storing for a period of 5 to 10 years or more, the same battery characteristics as those immediately after manufacture can be exhibited. Further, in the thermal battery, the electrode reaction proceeds at a high temperature. For this reason, the electrode reaction proceeds much faster than other batteries using an aqueous electrolyte solution or an organic electrolyte solution. Therefore, the thermal battery has excellent large current discharge characteristics. Furthermore, the thermal battery has an advantage that power can be taken out in a short time within one second when a start signal is sent to the battery when the battery is used, although it varies depending on the heating means. For this reason, taking advantage of the characteristics, it is suitably used as a power source for various defense devices such as induction devices and an emergency power source.

上記特性を向上させるために、正極活物質に二硫化鉄を用いた熱電池が種々検討されている。この正極活物質の特性を改善する目的で、例えば、特許文献1では、二硫化鉄と二硫化イリジウムの複合材料(イリジウム含有量:5〜20重量%)を正極活物質に用いることが提案されている。特許文献2では、二硫化鉄と二硫化チタンの複合材料(チタン含有量:5〜20重量%)を正極活物質に用いることが提案されている。特許文献3では、二硫化鉄と二硫化バナジウムの複合材料(バナジウム含有量:5〜20重量%)を正極活物質に用いることが提案されている。   In order to improve the above characteristics, various thermal batteries using iron disulfide as a positive electrode active material have been studied. For the purpose of improving the properties of this positive electrode active material, for example, Patent Document 1 proposes to use a composite material of iron disulfide and iridium disulfide (iridium content: 5 to 20% by weight) as the positive electrode active material. ing. Patent Document 2 proposes to use a composite material of iron disulfide and titanium disulfide (titanium content: 5 to 20% by weight) as the positive electrode active material. Patent Document 3 proposes to use a composite material of iron disulfide and vanadium disulfide (vanadium content: 5 to 20% by weight) as the positive electrode active material.

正極活物質に二硫化鉄を用い、負極活物質にリチウム金属を用いた一般的な熱電池における実用的な電流密度の領域(0.5〜2A/cm2程度)での素電池の電圧は、約1.8〜2V付近である。熱電池は、高出力で、負荷が大きい機器の電源に用いられる場合が多く、その電圧は数十V〜数百Vである。このため、素電池複数個を積層して積層体を構成し、電気的に直列に接続して、所要の電圧を得る必要がある。 The unit cell voltage in a practical current density region (about 0.5 to 2 A / cm 2 ) in a general thermal battery using iron disulfide as the positive electrode active material and lithium metal as the negative electrode active material is , About 1.8-2V. A thermal battery is often used as a power source for a device having a high output and a large load. For this reason, it is necessary to obtain a required voltage by stacking a plurality of unit cells to form a laminate and electrically connecting them in series.

ところで、近年、機器の小型化および高性能化にともない、熱電池の性能として、1〜2A/cm2以上の大電流放電において高電圧を維持し、優れた高負荷放電特性を有することが要求されている。また、素電池の電圧を増大させて、使用する素電池の数を少なくし、積層体の高さ、すなわち熱電池の高さを低減することが要求されている。
電流密度0.5A/cm2程度で熱電池を放電させる場合、正極活物質に上記の二硫化鉄を含む複合材料を用いた素電池の電圧は2.1V程度であり、正極活物質に二硫化鉄を単独で用いた素電池の電圧(約1.8V)よりも増大するため、熱電池の高さを低減することが可能である。
By the way, in recent years, with the miniaturization and high performance of equipment, the thermal battery performance is required to maintain a high voltage in a large current discharge of 1 to 2 A / cm 2 or more and to have excellent high load discharge characteristics. Has been. Moreover, it is required to increase the voltage of the unit cells to reduce the number of unit cells to be used and to reduce the height of the stacked body, that is, the height of the thermal cell.
When the thermal battery is discharged at a current density of about 0.5 A / cm 2 , the voltage of the unit cell using the above composite material containing iron disulfide as the positive electrode active material is about 2.1 V, and Since the voltage is higher than the voltage (about 1.8 V) of the unit cell using iron sulfide alone, it is possible to reduce the height of the thermal cell.

しかし、電流密度1〜2A/cm2の大電流放電で熱電池を放電させる場合、正極活物質に二硫化鉄を単独で用いた素電池の電圧は約1.6〜1.8Vであるのに対して、上記の二硫化鉄を含む複合材料を用いた素電池の電圧は、それぞれ約1.7〜1.9V、約1.6〜1.9V、および約1.6〜1.8Vである。このように、大電流で放電させる場合、正極活物質に上記の二硫化鉄を含む複合材料を用いた素電池の電圧は、正極活物質に二硫化鉄を単独で用いた素電池の電圧とほとんど変わらなくなり、放電時の電圧が大きい効果が小さくなる。
特開平5−242896号公報 特許第2847982号明細書 特許第2847983号明細書
However, when the thermal battery is discharged with a large current discharge having a current density of 1 to 2 A / cm 2 , the voltage of the unit cell using iron disulfide alone as the positive electrode active material is about 1.6 to 1.8 V. On the other hand, the voltage of the unit cell using the composite material containing iron disulfide is about 1.7 to 1.9 V, about 1.6 to 1.9 V, and about 1.6 to 1.8 V, respectively. It is. Thus, when discharging with a large current, the voltage of the unit cell using the composite material containing iron disulfide as the positive electrode active material is the same as the voltage of the unit cell using iron disulfide alone as the positive electrode active material. Almost no change, and the effect of high voltage during discharge is reduced.
JP-A-5-242896 Japanese Patent No. 2847982 Japanese Patent No. 28479983

そこで、本発明は、上記従来の問題を解決するため、大電流放電時の電圧を増大させて、優れた高負荷放電特性を有する熱電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a thermal battery having excellent high-load discharge characteristics by increasing the voltage during large current discharge in order to solve the above-described conventional problems.

本発明の熱電池は、正極、負極、および前記正極と前記負極との間に配された電解質からなる素電池を複数個備え、前記電解質は前記熱電池の作動温度で溶融する塩を含み、前記正極は活物質としてチタン含有硫化物を含むことを特徴とする。
前記チタン含有硫化物は、一般式:Ti1-ααx(式中、Mは、Cr、Mn、Co、Ni、Cu、Zn、Ge、Zr、Nb、Mo、Ag、Cd、Sn、およびWからなる群より選ばれた少なくとも一種であり、αおよびxは、それぞれ0≦α≦0.95および1.5≦x≦2.75を満たす。)で表される化合物であるのが好ましい。
The thermal battery of the present invention includes a plurality of unit cells made of a positive electrode, a negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode, and the electrolyte includes a salt that melts at an operating temperature of the thermal battery, The positive electrode includes a titanium-containing sulfide as an active material.
The titanium-containing sulfide has a general formula: Ti 1-α M α S x (where M is Cr, Mn, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ag, Cd, Sn) And at least one selected from the group consisting of W and α and x satisfy the following conditions: 0 ≦ α ≦ 0.95 and 1.5 ≦ x ≦ 2.75) Is preferred.

本発明によれば、大電流放電時においても高電圧を維持することができ、優れた高負荷放電特性を有する熱電池が得られる。また、高負荷放電特性を損なうことなく、使用する素電池の数を減らして高負荷放電仕様の熱電池の小型化が可能となる。   According to the present invention, a high voltage can be maintained even during a large current discharge, and a thermal battery having excellent high load discharge characteristics can be obtained. In addition, it is possible to reduce the number of unit cells to be used and to reduce the size of the high load discharge thermal battery without impairing the high load discharge characteristics.

本発明の熱電池は、正極、負極、および前記正極と前記負極との間に配され、熱電池の作動温度で溶融する塩(溶融塩)を含む電解質(換言すると、常温では不活性であり、所定温度で溶融することにより活性となる電解質)からなる素電池を複数個備え、前記正極は活物質としてチタン含有硫化物を含む点に特徴を有する。   The thermal battery of the present invention is an electrolyte containing a positive electrode, a negative electrode, and a salt (molten salt) that is disposed between the positive electrode and the negative electrode and melts at the operating temperature of the thermal battery (in other words, inactive at room temperature). A plurality of unit cells made of an electrolyte that becomes active when melted at a predetermined temperature), and the positive electrode includes titanium-containing sulfide as an active material.

正極活物質にチタン含有硫化物を用いることにより、正極の反応性が向上する。また、従来の熱電池の正極活物質である二硫化鉄よりも、本発明の熱電池の正極活物質であるチタン含有硫化物のほうが、正極の平衡電位が高く、かつ放電時の過電圧が小さいため、正極の放電電位が高くなる。従って、素電池すなわち熱電池の放電電圧が増大する。
このため、大電流放電時においても高電圧を維持することができ、優れた高負荷放電特性が得られる。また、高負荷放電特性を損なうことなく、使用する素電池の数を減らして高負荷放電仕様の熱電池の小型化が可能となる。
By using a titanium-containing sulfide as the positive electrode active material, the reactivity of the positive electrode is improved. Further, the titanium-containing sulfide that is the positive electrode active material of the thermal battery of the present invention has a higher equilibrium potential of the positive electrode and the overvoltage at the time of discharge is smaller than iron disulfide that is the positive electrode active material of the conventional thermal battery For this reason, the discharge potential of the positive electrode is increased. Therefore, the discharge voltage of the unit cell, that is, the thermal battery increases.
For this reason, a high voltage can be maintained even during a large current discharge, and excellent high load discharge characteristics can be obtained. In addition, it is possible to reduce the number of unit cells to be used and to reduce the size of the high load discharge thermal battery without impairing the high load discharge characteristics.

前記チタン含有硫化物は、例えば、一般式:Ti1-ααxで表される化合物である。Mは、Cr、Mn、Co、Ni、Cu、Zn、Ge、Zr、Nb、Mo、Ag、Cd、Sn、およびWからなる群より選ばれた少なくとも一種の元素であり、αおよびxは、それぞれ0≦α≦0.95および1.5≦x≦2.75を満たすのが好ましい。
αは元素Mの置換量を示し、xは化学量論組成からのずれを示す。αが0.95以下の範囲で、チタンの一部を元素Mで置換することにより放電電圧がさらに増大する。x<1.5、2.75<xのとき、放電電圧が若干低下する。
The titanium-containing sulfide is, for example, a compound represented by the general formula: Ti 1-α M α S x . M is at least one element selected from the group consisting of Cr, Mn, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ag, Cd, Sn, and W, and α and x are It is preferable that 0 ≦ α ≦ 0.95 and 1.5 ≦ x ≦ 2.75 respectively.
α represents the substitution amount of the element M, and x represents a deviation from the stoichiometric composition. By replacing a part of titanium with the element M in the range where α is 0.95 or less, the discharge voltage is further increased. When x <1.5 and 2.75 <x, the discharge voltage slightly decreases.

結晶性の向上などにより放電電圧の平坦性を維持することができるため、xは1.75〜2.25がより好ましい。結晶性の向上などにより放電電圧の平坦性を維持することができるため、αは0.25〜0.75がより好ましい。
特に、高い放電電圧が得られる点で、元素MはCoがより好ましい。これは、CoがTiの固相内に均一に拡散しやすく、結晶の均質性が向上して元素Mの置換による効果が発揮されやすいためであると考えられる。
チタン含有硫化物は、例えば、チタン粉末、硫黄粉末、および元素Mの粉末をボールミル等にて混合し、その混合物を焼成して得られる。
Since the flatness of the discharge voltage can be maintained by improving the crystallinity or the like, x is more preferably 1.75 to 2.25. Since the flatness of the discharge voltage can be maintained by improving the crystallinity, α is more preferably 0.25 to 0.75.
In particular, the element M is more preferably Co in that a high discharge voltage can be obtained. This is presumably because Co easily diffuses uniformly into the solid phase of Ti, improves the homogeneity of the crystal, and easily exhibits the effect of substitution of the element M.
The titanium-containing sulfide is obtained, for example, by mixing titanium powder, sulfur powder, and element M powder with a ball mill or the like, and firing the mixture.

ここで、本発明の熱電池の一実施の形態を、図1を参照しながら説明する。
素電池7と発熱剤5とを交互に複数個積み重ねた発電部が、金属製の外装ケース1に収納されている。発電部の最上部には、着火パッド4が配され、着火パッド4の上部に近接して点火栓3が設置されている。発電部の周囲には導火帯6が配されている。発熱剤5は鉄などを含み、導電性を有するため、素電池7は、発熱剤5を介して電気的に直列に接続されている。発熱剤5は、例えば、FeとKClO4の混合物からなり、電池の活性化時には発熱剤5の燃焼にともないFe粉が焼結するため、放電初期(燃焼初期)から放電末期(燃焼末期)まで、発熱剤5の導電性は維持される。
Here, an embodiment of the thermal battery of the present invention will be described with reference to FIG.
A power generation unit in which a plurality of unit cells 7 and heating agents 5 are alternately stacked is housed in a metal outer case 1. An ignition pad 4 is disposed at the top of the power generation unit, and a spark plug 3 is installed in the vicinity of the top of the ignition pad 4. A heat conduction zone 6 is arranged around the power generation unit. Since the heat generating agent 5 includes iron or the like and has conductivity, the unit cells 7 are electrically connected in series via the heat generating agent 5. The exothermic agent 5 is made of, for example, a mixture of Fe and KClO 4 , and the Fe powder is sintered as the exothermic agent 5 is burned when the battery is activated. The conductivity of the exothermic agent 5 is maintained.

外装ケース1は、一対の点火端子2、ならびに正極端子10aおよび負極端子10bを備えた電池蓋11により封口されている。正極端子10aは、正極リード板を介して発電部最上部の素電池7の正極に接続されている。一方、負極端子10bは、負極リード板8を介して発電部最下部の素電池7の負極に接続されている。電池蓋11と着火パッド4との間には、断熱材9aが配され、外装ケース1と発電部との間には、断熱材9bが充填されている。   The outer case 1 is sealed by a battery lid 11 having a pair of ignition terminals 2 and a positive terminal 10a and a negative terminal 10b. The positive electrode terminal 10a is connected to the positive electrode of the unit cell 7 at the top of the power generation unit via a positive electrode lead plate. On the other hand, the negative electrode terminal 10 b is connected to the negative electrode of the unit cell 7 at the bottom of the power generation unit via the negative electrode lead plate 8. A heat insulating material 9a is disposed between the battery lid 11 and the ignition pad 4, and a heat insulating material 9b is filled between the outer case 1 and the power generation unit.

素電池7は、図2に示すように、負極12、正極13、および負極12と正極13との間に配される電解質14からなる。
正極13は、例えば、上記のチタン含有硫化物の粉末と、シリカ粉末等の結着材と、後述する電解質14に用いられる塩との混合物からなる。この塩はイオン伝導性を改善するために用いられる。
As shown in FIG. 2, the unit cell 7 includes a negative electrode 12, a positive electrode 13, and an electrolyte 14 disposed between the negative electrode 12 and the positive electrode 13.
The positive electrode 13 is made of, for example, a mixture of the above titanium-containing sulfide powder, a binder such as silica powder, and a salt used for the electrolyte 14 described later. This salt is used to improve ionic conductivity.

負極12は、負極活物質を含む負極合剤層15、および負極合剤層15を収納する鉄製のカップ状集電体16からなる。負極合剤層15は、例えば、負極活物質と導電材との混合物からなる。負極活物質には、例えば、Li金属や、Li−Al、Li−Si合金等のリチウムを含む化合物が用いられる。導電材には、例えば、鉄、銅、ニッケル、もしくはマンガン等の金属粉末、または炭素材料が用いられる。また、負極合剤層15は、イオン伝導性を向上するため、後述する電解質14に用いられる塩を含んでもよい。   The negative electrode 12 includes a negative electrode mixture layer 15 containing a negative electrode active material, and an iron cup-shaped current collector 16 that houses the negative electrode mixture layer 15. The negative electrode mixture layer 15 is made of, for example, a mixture of a negative electrode active material and a conductive material. As the negative electrode active material, for example, a compound containing lithium such as Li metal, Li—Al, or Li—Si alloy is used. As the conductive material, for example, metal powder such as iron, copper, nickel, or manganese, or a carbon material is used. Moreover, in order to improve ion conductivity, the negative mix layer 15 may contain the salt used for the electrolyte 14 mentioned later.

電解質14は、例えば、高温すなわち熱電池の作動温度で溶融する塩と、MgO等の保持材との混合物からなる。塩としては、アルカリ金属塩、またはその混合物もしくは共晶塩など熱電池で使用可能なものであればよい。例えば、LiCl、KCl、もしくはAlCl3などのアルカリ金属塩、またはLiCl−KCl、LiCl−LiBr−LiF、LiCl−LiBr−KBr、もしくはLiNO3−KNO3などの共晶塩が用いられる。 The electrolyte 14 is made of, for example, a mixture of a salt that melts at a high temperature, that is, an operating temperature of a thermal battery, and a holding material such as MgO. Any salt that can be used in a thermal battery, such as an alkali metal salt, a mixture thereof, or a eutectic salt may be used. For example, an alkali metal salt such as LiCl, KCl, or AlCl 3 , or a eutectic salt such as LiCl—KCl, LiCl—LiBr—LiF, LiCl—LiBr—KBr, or LiNO 3 —KNO 3 is used.

上記熱電池の動作を以下に説明する。
点火端子2に接続された電源より、点火端子2に高電圧が印加されると点火栓3が発火する。これにより、着火パッド4および導火帯6へ燃焼が伝わり、発熱剤5が燃焼して素電池7が加熱される。そして、素電池7の電解質14が溶融し、溶融塩すなわちイオン伝導体となる。このようにして、電池が活性化し、放電が可能となる。
The operation of the thermal battery will be described below.
When a high voltage is applied to the ignition terminal 2 from a power source connected to the ignition terminal 2, the spark plug 3 is ignited. Thereby, combustion is transmitted to the ignition pad 4 and the igniting zone 6, the heat generating agent 5 burns, and the unit cell 7 is heated. Then, the electrolyte 14 of the unit cell 7 is melted to become a molten salt, that is, an ionic conductor. In this way, the battery is activated and can be discharged.

なお、上記では電池内部に点火栓を備え、電池内部より発電部を加熱して電池を活性化する内部加熱方式の熱電池について説明したが、本発明は、電池内部に点火栓を備えずに、バーナ等により電池外部から発電部を加熱して電池を活性化する外部加熱方式の熱電池にも適用することができる。
以下に、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
In the above description, an internal heating type thermal battery in which an ignition plug is provided inside the battery and the power generation unit is heated from inside the battery to activate the battery has been described. However, the present invention does not include an ignition plug inside the battery. Also, the present invention can be applied to an external heating type thermal battery in which the power generation unit is heated from the outside of the battery by a burner or the like to activate the battery.
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

《実施例1》
以下の手順により、図2と同様の素電池を作製した。なお、素電池の作製は、全て露点−45℃以下の乾燥空気中で水分の影響を極力排除した環境下で行った。
(1)正極活物質の作製
磁製のボールミルにてチタン粉末と硫黄粉末とを原子比1:2の割合で混合した。得られた混合物を磁製のるつぼにて約450℃で3時間加熱して焼成し、TiS2の焼成物を得た。この焼成物を磁製のボールミルにて200メッシュ以下になるよう粉砕・分級し、正極活物質としてTiS2粉末を得た。
Example 1
A unit cell similar to that shown in FIG. 2 was produced by the following procedure. The unit cells were all manufactured in a dry air having a dew point of −45 ° C. or less in an environment in which the influence of moisture was eliminated as much as possible.
(1) Production of positive electrode active material Titanium powder and sulfur powder were mixed in a ratio of 1: 2 by a magnetic ball mill. The obtained mixture was baked by heating at about 450 ° C. for 3 hours in a magnetic crucible to obtain a fired product of TiS 2 . This fired product was pulverized and classified with a magnetic ball mill to 200 mesh or less to obtain TiS 2 powder as a positive electrode active material.

(2)正極の作製
上記で得られたTiS2粉末と、共晶塩としてLiCl−KClと、結着材としてシリカ粉末とを、磁製のボールミルにて重量比240:110:7の割合で混合した。この混合物を、アルゴンガス雰囲気下にて、450℃で1時間焼成した。その後、焼成物を磁製のボールミルにて200メッシュ以下になるよう粉砕・分級し、正極合剤を得た。この正極合剤を2ton/cm2の圧力で直径13mmおよび厚さ0.4mmの円盤状に加圧成形し、正極13を得た。
(2) Production of positive electrode The TiS 2 powder obtained above, LiCl-KCl as eutectic salt, and silica powder as a binder at a weight ratio of 240: 110: 7 in a magnetic ball mill. Mixed. This mixture was baked at 450 ° C. for 1 hour under an argon gas atmosphere. Thereafter, the fired product was pulverized and classified to 200 mesh or less with a magnetic ball mill to obtain a positive electrode mixture. This positive electrode mixture was pressure-molded into a disk shape having a diameter of 13 mm and a thickness of 0.4 mm at a pressure of 2 ton / cm 2 to obtain a positive electrode 13.

(3)素電池の作製
共晶塩としてLiCl−KClと、保持材としてMgOとを重量比60:40で混合し、得られた混合物を2ton/cm2の圧力で直径13mmおよび厚さ0.4mmの円盤状に加圧成形して電解質14を得た。
(3) and LiCl-KCl as producing eutectic salt of the cell, and MgO were mixed in a weight ratio of 60:40 as the holding material, the resulting mixture 2 ton / cm 2 in diameter 13mm and thickness at a pressure of 0. The electrolyte 14 was obtained by pressure forming into a 4 mm disk shape.

負極12は、以下のように作製した。
直径11mmおよび厚さ0.7mmの円盤状のLi箔からなる負極合剤層15をステンレス鋼SUS304製のカップ状の集電体16に入れ、集電体16の開口端部を内方に折り曲げて、負極合剤層15の周縁部をかしめて、集電体16の折り曲げ部と底部との間で締め付けた。このようにして、負極合剤層15を集電体16内に固定し、直径13mmおよび厚さ1.2mmの円盤状の負極12を得た。
上記で得られた正極13と負極12とを電解質14を介して重ね合わせて素電池を得た。
The negative electrode 12 was produced as follows.
A negative electrode mixture layer 15 made of a disc-shaped Li foil having a diameter of 11 mm and a thickness of 0.7 mm is placed in a cup-shaped current collector 16 made of stainless steel SUS304, and the opening end of the current collector 16 is bent inward. Then, the peripheral edge portion of the negative electrode mixture layer 15 was caulked and clamped between the bent portion and the bottom portion of the current collector 16. In this way, the negative electrode mixture layer 15 was fixed in the current collector 16 to obtain a disc-shaped negative electrode 12 having a diameter of 13 mm and a thickness of 1.2 mm.
The positive electrode 13 and the negative electrode 12 obtained above were overlapped via an electrolyte 14 to obtain a unit cell.

《実施例2〜7》
磁製のボールミルにてチタン粉末と、硫黄粉末とを、原子比1:xの割合で混合した。得られた混合物を磁製のるつぼにて約450℃で3時間加熱して焼成し、TiSxの焼成物を得た。この焼成物を磁製のボールミルにて200メッシュ以下になるよう粉砕・分級し、正極活物質としてTiSx粉末を得た。
このとき、TiSxのx値を表1に示すように種々に変えてそれぞれ正極活物質を作製した。そして、これらの正極活物質を用いて実施例1と同様の方法によりそれぞれ素電池を作製した。
<< Examples 2 to 7 >>
Titanium powder and sulfur powder were mixed at an atomic ratio of 1: x in a magnetic ball mill. The obtained mixture was baked by heating at about 450 ° C. for 3 hours in a magnetic crucible to obtain a fired product of TiS x . This fired product was pulverized and classified with a magnetic ball mill to 200 mesh or less to obtain TiS x powder as a positive electrode active material.
At this time, positive electrode active materials were prepared by changing the x value of TiS x as shown in Table 1 in various ways. Then, using these positive electrode active materials, unit cells were produced in the same manner as in Example 1.

Figure 2006236993
Figure 2006236993

《実施例8〜69》
磁製のボールミルにてチタン粉末と、元素Mの粉末と、硫黄粉末とを、原子比1−α:α:xの割合で混合した。この混合物を磁製のるつぼにて約450℃で3時間加熱して焼成し、Ti1-ααxの焼成物を得た。この焼成物を磁製のボールミルにて200メッシュ以下になるよう粉砕・分級し、正極活物質としてTi1-ααx粉末を得た。
このとき、Ti1-ααxのα値、x値、および元素Mを表2〜5に示すように種々に変えてそれぞれ正極活物質を作製した。そして、これらの正極活物質を用いて実施例1と同様の方法によりそれぞれ素電池を作製した。
<< Examples 8 to 69 >>
Titanium powder, element M powder, and sulfur powder were mixed in a magnetic ball mill at an atomic ratio of 1-α: α: x. This mixture was heated in a magnetic crucible at about 450 ° C. for 3 hours and fired to obtain a fired product of Ti 1-α M α S x . This fired product was pulverized and classified with a magnetic ball mill to 200 mesh or less to obtain Ti 1-α M α Sx powder as a positive electrode active material.
At this time, positive electrode active materials were prepared by changing the α value, x value, and element M of Ti 1-α M α S x in various ways as shown in Tables 2 to 5. Then, using these positive electrode active materials, unit cells were produced in the same manner as in Example 1.

Figure 2006236993
Figure 2006236993

Figure 2006236993
Figure 2006236993

Figure 2006236993
Figure 2006236993

Figure 2006236993
Figure 2006236993

《比較例1》
磁製のボールミルにて鉄粉末と、硫黄粉末とを、原子比1:2の割合で混合した。この混合物を磁製のるつぼにて約450℃で3時間加熱して焼成し、FeS2の焼成物を得た。この焼成物を磁製のボールミルにて200メッシュ以下になるよう粉砕・分級し、正極活物質としてFeS2粉末を得た。この正極活物質を用いて実施例1と同様の方法により素電池を作製した。
<< Comparative Example 1 >>
Iron powder and sulfur powder were mixed at a ratio of atomic ratio of 1: 2 by a magnetic ball mill. This mixture was baked by heating at about 450 ° C. for 3 hours in a magnetic crucible to obtain a fired product of FeS 2 . The fired product was pulverized and classified with a magnetic ball mill to 200 mesh or less to obtain FeS 2 powder as a positive electrode active material. Using this positive electrode active material, a unit cell was produced in the same manner as in Example 1.

《比較例2》
硫黄粉末と、鉄粉末と、イリジウム粉末とを、重量比53.4:36.6:10の割合で混合した。この混合物を磁製のるつぼにて約450℃で3時間加熱して焼成した。焼成物を磁製の乳鉢にて粉砕し200メッシュ以下に粉砕・分級した。この焼成工程と粉砕工程とを交互に3回ずつ繰り返し行い、正極活物質として、FeS2とIrS2の複合材料(イリジウム含有量:10重量%)を得た。この正極活物質を用いて実施例1と同様の方法により素電池を作製した。
<< Comparative Example 2 >>
Sulfur powder, iron powder, and iridium powder were mixed at a weight ratio of 53.4: 36.6: 10. The mixture was baked by heating at about 450 ° C. for 3 hours in a magnetic crucible. The fired product was pulverized in a magnetic mortar and pulverized and classified to 200 mesh or less. This firing step and pulverization step were alternately repeated three times to obtain a composite material (iridium content: 10% by weight) of FeS 2 and IrS 2 as a positive electrode active material. Using this positive electrode active material, a unit cell was produced in the same manner as in Example 1.

《比較例3》
イリジウム粉末の代わりにチタン粉末を用いた以外は、比較例2と同様の方法により正極活物質として、FeS2とTiS2の複合材料(チタン含有量:10重量%)を得た。この正極活物質を用いて実施例1と同様の方法により素電池を作製した。
<< Comparative Example 3 >>
A composite material of FeS 2 and TiS 2 (titanium content: 10% by weight) was obtained as a positive electrode active material by the same method as in Comparative Example 2 except that titanium powder was used instead of iridium powder. Using this positive electrode active material, a unit cell was produced in the same manner as in Example 1.

《比較例4》
イリジウム粉末の代わりにバナジウム粉末を用いた以外は、比較例2と同様の方法により正極活物質として、FeS2とVS2の複合材料(バナジウム含有量:10重量%)を得た。この正極活物質を用いて実施例1と同様の方法により素電池を作成した。
<< Comparative Example 4 >>
A composite material of FeS 2 and VS 2 (vanadium content: 10% by weight) was obtained as a positive electrode active material by the same method as in Comparative Example 2 except that vanadium powder was used instead of iridium powder. Using this positive electrode active material, a unit cell was prepared in the same manner as in Example 1.

[評価]
上記で作製した素電池について以下のような評価を行った。
温度の制御が可能な2枚の熱板で素電池を挟んで試験用セルを構成した。そして、試験用セルを定電流放電(終止電圧:0.4V)し、素電池の放電電圧を調べた。
放電試験は、熱板により、電解質にLiCl−KClを用いた熱電池の平均的な動作温度である550℃に素電池を加熱して行った。そして、放電開始から10秒経過した時点の電圧を放電電圧とした。電流密度は0.5、1.0、1.5、および2.0A/cm2とした。
上記放電試験の結果を表1〜6に示す。
[Evaluation]
The following evaluation was performed about the unit cell produced above.
A test cell was constructed by sandwiching a unit cell between two hot plates capable of controlling the temperature. Then, the test cell was subjected to constant current discharge (end voltage: 0.4 V), and the discharge voltage of the unit cell was examined.
The discharge test was performed by heating the unit cell to 550 ° C., which is an average operating temperature of a thermal cell using LiCl—KCl as an electrolyte, with a hot plate. The voltage at the time when 10 seconds had elapsed from the start of discharge was taken as the discharge voltage. The current density was 0.5, 1.0, 1.5, and 2.0 A / cm 2 .
The results of the discharge test are shown in Tables 1-6.

Figure 2006236993
Figure 2006236993

正極活物質にTiSxを用いた実施例1〜7の素電池では、電流密度0.5〜2A/cm2の放電時の電圧が2Vを超えており、比較例1〜4の素電池と比べて放電電圧が増大した。
これは、チタン含有硫化物である実施例1〜7の正極活物質が、二硫化鉄を含む比較例1〜4の正極活物質よりも高い反応性を有するとともに、平衡電位が高く、放電時の過電圧が小さいためであると考えられる。
TiSxにおいて、x<1.5または2.75<xである実施例2および7の素電池では、正極活物質が単一相でないため、放電電圧が若干低下した。このことから、xは1.5〜2.75であるのが好ましいことがわかった。
In the unit cells of Examples 1 to 7 using TiS x as the positive electrode active material, the voltage at the time of discharging with a current density of 0.5 to 2 A / cm 2 exceeded 2 V, and the unit cells of Comparative Examples 1 to 4 Compared with the discharge voltage increased.
This is because the positive electrode active materials of Examples 1 to 7, which are titanium-containing sulfides, have higher reactivity than the positive electrode active materials of Comparative Examples 1 to 4 containing iron disulfide, and have a high equilibrium potential. This is considered to be because the overvoltage of is small.
In the unit cells of Examples 2 and 7 in which Ti <x> x <1.5 or 2.75 <x in TiS x , the discharge voltage was slightly lowered because the positive electrode active material was not a single phase. From this, it was found that x is preferably 1.5 to 2.75.

Ti1-ααxにおいて、αが0〜0.95、xが1.5〜2.75、および元素MがCr、Mn、Co、Ni、Cu、Zn、Ge、Zr、Nb、Mo、Ag、Cd、Sn、またはWの正極活物質を用いた素電池では、電流密度0.5〜2A/cm2の放電時の電圧が2Vを超えており、放電電圧が大幅に増大した。
その中でも、元素MがCoである実施例16〜25の素電池は、放電電圧が大きく、優れた高負荷放電特性を示した。これは、CoがTiの固相内に均一に拡散しやすく、結晶の均質性が向上して元素Mの置換による効果が発揮されやすくなったためであると考えられる。
In Ti 1-α M α S x , α is 0 to 0.95, x is 1.5 to 2.75, and element M is Cr, Mn, Co, Ni, Cu, Zn, Ge, Zr, Nb, In the unit cell using the positive electrode active material of Mo, Ag, Cd, Sn, or W, the voltage at the time of discharge with a current density of 0.5 to 2 A / cm 2 exceeded 2 V, and the discharge voltage was greatly increased. .
Among these, the unit cells of Examples 16 to 25, in which the element M is Co, had a large discharge voltage and exhibited excellent high load discharge characteristics. This is presumably because Co is easily diffused uniformly in the solid phase of Ti, the crystal homogeneity is improved, and the effect of substitution of the element M is easily exhibited.

Ti1-ααxにおいて、αが0.98である正極活物質を用いた素電池では、電流密度0.5および1.0A/cm2の放電時において、比較例1〜4よりも大きな電圧が得られた。
しかし、αが0.98である正極活物質を用いた素電池では、特に電流密度1.5〜2.0/cm2の大電流放電時において、αが0.95である正極活物質を用いた素電池よりも放電電圧が低下した。これは、元素Mの置換量αが0.95を超えると、放電電圧の増大などの元素Mの置換による効果が大きくなりすぎ、それ以上にTiによる反応性向上の効果が相対的に小さくなったためと考えられる。このことから、元素Mの置換量αは0.95以下であるのが好ましいことがわかった。
In the unit cell using a positive electrode active material having an α of 0.98 in Ti 1-α M α S x , compared with Comparative Examples 1 to 4 when discharging at a current density of 0.5 and 1.0 A / cm 2. Even a large voltage was obtained.
However, in a unit cell using a positive electrode active material having an α of 0.98, a positive electrode active material having an α of 0.95 is used particularly during a large current discharge with a current density of 1.5 to 2.0 / cm 2. The discharge voltage was lower than that of the unit cell used. This is because if the substitution amount α of the element M exceeds 0.95, the effect of the substitution of the element M such as an increase of the discharge voltage becomes too large, and the effect of improving the reactivity by Ti becomes relatively smaller than that. It is thought that it was because of. From this, it was found that the substitution amount α of the element M is preferably 0.95 or less.

《実施例70〜74》
Ti1-ααxにおいて、元素M、α、xを表7に示すように変えて、実施例2と同様の方法により正極活物質を得た。このとき、表7に示すように2種類の元素M(原子比1:1)を組み合わせて用いた。例えば、元素MにCoとCrとを用いた実施例70の正極活物質の組成はTi0.5Co0.25Cr0.252である。
これらの正極活物質を用いて実施例1と同様の方法により素電池を作製し、上記と同様の放電試験を行った。その結果を表7に示す。
<< Examples 70 to 74 >>
A positive electrode active material was obtained in the same manner as in Example 2 except that the elements M, α, and x in Ti 1-α M α S x were changed as shown in Table 7. At this time, as shown in Table 7, two kinds of elements M (atomic ratio 1: 1) were used in combination. For example, the composition of the positive electrode active material of Example 70 using Co and Cr as the element M is Ti 0.5 Co 0.25 Cr 0.25 S 2 .
Using these positive electrode active materials, a unit cell was produced in the same manner as in Example 1, and a discharge test similar to the above was performed. The results are shown in Table 7.

Figure 2006236993
Figure 2006236993

表7より、2種類の元素Mを組み合わせて用いた場合でも、いずれの放電条件においても、比較例1〜4の素電池よりも高い電圧が得られ、電流密度0.5〜2A/cm2での放電時の電圧が2Vを超えており、放電電圧が大幅に増大した。
なお、本実施例で示した元素Mの組み合わせ以外に、Cr、Mn、Co、Ni、Cu、Zn、Ge、Zr、Nb、Mo、Ag、Cd、Sn、およびWの元素を2種以上組み合わせた場合でも、本実施例と同様の効果が得られる。
From Table 7, even when two kinds of elements M are used in combination, a voltage higher than that of the unit cells of Comparative Examples 1 to 4 can be obtained under any discharge condition, and a current density of 0.5 to 2 A / cm 2. The voltage at the time of discharging was over 2V, and the discharging voltage was greatly increased.
In addition to the combination of the element M shown in this embodiment, two or more elements of Cr, Mn, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ag, Cd, Sn, and W are combined. Even in this case, the same effect as the present embodiment can be obtained.

《実施例75〜91》
上述した図1と同じ構造の熱電池を作製した。なお、熱電池の作製は、全て露点−45℃以下の乾燥空気中で水分の影響を極力排除した環境下で行った。
素電池7と発熱剤5とを交互に積み重ね発電部を構成した。このとき、素電池7を13個用いた。発熱剤5には、FeとKClO4との混合物を用い、電池作動中の平均温度が550℃となるように混合比を調整した。
<< Examples 75 to 91 >>
A thermal battery having the same structure as that shown in FIG. 1 was prepared. The thermal batteries were all manufactured in a dry air having a dew point of −45 ° C. or less in an environment in which the influence of moisture was eliminated as much as possible.
The power generation unit is configured by alternately stacking the unit cells 7 and the heat generating agent 5. At this time, 13 unit cells 7 were used. As the exothermic agent 5, a mixture of Fe and KClO 4 was used, and the mixing ratio was adjusted so that the average temperature during battery operation was 550 ° C.

発電部の上部に着火パッド4を配し、その周囲を導火帯6で覆った。着火パッド4および導火帯6には、Zr、BaCrO4、およびガラス繊維の混合物を用いた。
点火栓3の点火剤には、硝酸カリウム、硫黄、および炭素を重量比75:10:15の割合で混合したものを用いた。断熱材9aおよび9bには、シリカとアルミナを主成分とするセラミック繊維材料を用いた。このようにして、作動温度が550℃の熱電池を作製した。
The ignition pad 4 was arranged on the upper part of the power generation unit, and the surrounding area was covered with a igniting zone 6. A mixture of Zr, BaCrO 4 , and glass fiber was used for the ignition pad 4 and the igniting zone 6.
As an igniter for the spark plug 3, a mixture of potassium nitrate, sulfur, and carbon at a weight ratio of 75:10:15 was used. As the heat insulating materials 9a and 9b, ceramic fiber materials mainly composed of silica and alumina were used. In this way, a thermal battery having an operating temperature of 550 ° C. was produced.

そして、上記熱電池の作製時において、実施例1、3、6、9、13、20、27、31、35、39、43、47、51、55、59、63および67の素電池(Ti1-ααxにおいて、αが0または0.5、xが2、およびMが、Cr、Mn、Co、Ni、Cu、Zn、Ge、Zr、Nb、Mo、Ag、Cd、Sn、またはWである。)を用いて、それぞれ実施例75〜91の熱電池を作製した。 At the time of producing the thermal battery, the unit cells (Ti, In 1-α M α S x , α is 0 or 0.5, x is 2, and M is Cr, Mn, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ag, Cd, Sn Or W.) was used to manufacture thermal batteries of Examples 75 to 91, respectively.

上記で得られた熱電池について以下の放電試験を行った。点火端子に接続された電源より高電圧を印加し、点火栓を発火させ熱電池を活性化させた。そして、熱電池を0.5A/cm2(終止電圧:7.8V)または2A/cm2(終止電圧:6.5V)の電流密度で放電し、放電開始から10秒経過した時点の電圧(放電電圧)を調べた。その結果、素電池13個分に相当する高い放電電圧が得られることが分かった。
上記実施例では、正極中のLiCl−KClの含有量を約31重量%、シリカ粉末の含有量を約2重量%としたが、これらの含有量に特に制限は無く、正極の強度や性能に応じて必要量を適宜添加すればよい。
The following discharge test was done about the thermal battery obtained above. A high voltage was applied from the power source connected to the ignition terminal, the ignition plug was ignited, and the thermal battery was activated. The thermal battery was discharged at a current density of 0.5 A / cm 2 (end voltage: 7.8 V) or 2 A / cm 2 (end voltage: 6.5 V), and the voltage at the time when 10 seconds had elapsed from the start of discharge ( The discharge voltage) was examined. As a result, it was found that a high discharge voltage corresponding to 13 unit cells was obtained.
In the above example, the content of LiCl—KCl in the positive electrode was about 31% by weight and the content of silica powder was about 2% by weight. However, these contents are not particularly limited, and the strength and performance of the positive electrode are affected. The necessary amount may be added as appropriate.

本発明の熱電池は、誘導機器などの各種防衛機器の電源や緊急用電源として好適に用いられる。   The thermal battery of the present invention is suitably used as a power source for various defense devices such as induction devices and an emergency power source.

本発明の一実施の形態に係る熱電池の一部を切り欠いて断面とした斜視図である。It is the perspective view which made a part of the thermal battery which concerns on one embodiment of this invention notched, and was made into the cross section. 図1の熱電池に用いられる素電池の分解断面図である。It is a disassembled sectional view of the unit cell used for the thermal battery of FIG.

符号の説明Explanation of symbols

1 外装ケース
2 点火端子
3 点火栓
4 着火パッド
5 発熱剤
6 導火帯
7 素電池
8 負極リード板
9a、9b 断熱材
10a 正極端子
10b 負極端子
11 電池蓋
12 負極
13 正極
14 電解質
15 負極合剤層
16 集電体


DESCRIPTION OF SYMBOLS 1 Exterior case 2 Ignition terminal 3 Spark plug 4 Ignition pad 5 Heating agent 6 Heating zone 7 Unit cell 8 Negative electrode lead plate 9a, 9b Thermal insulation material 10a Positive electrode terminal 10b Negative electrode terminal 11 Battery cover 12 Negative electrode 13 Positive electrode 14 Electrolyte 15 Negative electrode mixture Layer 16 Current collector


Claims (2)

正極、負極、および前記正極と前記負極との間に配された電解質からなる素電池を複数個備えた熱電池であって、
前記電解質は前記熱電池の作動温度で溶融する塩を含み、前記正極は活物質としてチタン含有硫化物を含む熱電池。
A thermal battery comprising a plurality of unit cells made of a positive electrode, a negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode,
The electrolyte includes a salt that melts at an operating temperature of the thermal battery, and the positive electrode includes a titanium-containing sulfide as an active material.
前記チタン含有硫化物は、一般式:Ti1-ααx(式中、Mは、Cr、Mn、Co、Ni、Cu、Zn、Ge、Zr、Nb、Mo、Ag、Cd、Sn、およびWからなる群より選ばれた少なくとも一種であり、αおよびxは、それぞれ0≦α≦0.95および1.5≦x≦2.75を満たす。)で表される化合物である請求項1記載の熱電池。


The titanium-containing sulfide has a general formula: Ti 1-α M α S x (where M is Cr, Mn, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ag, Cd, Sn) And at least one selected from the group consisting of W and α and x satisfy the following conditions: 0 ≦ α ≦ 0.95 and 1.5 ≦ x ≦ 2.75) Item 2. The thermal battery according to item 1.


JP2006018732A 2005-01-31 2006-01-27 Thermal battery Active JP5006548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018732A JP5006548B2 (en) 2005-01-31 2006-01-27 Thermal battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005022428 2005-01-31
JP2005022428 2005-01-31
JP2006018732A JP5006548B2 (en) 2005-01-31 2006-01-27 Thermal battery

Publications (2)

Publication Number Publication Date
JP2006236993A true JP2006236993A (en) 2006-09-07
JP5006548B2 JP5006548B2 (en) 2012-08-22

Family

ID=37056789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018732A Active JP5006548B2 (en) 2005-01-31 2006-01-27 Thermal battery

Country Status (1)

Country Link
JP (1) JP5006548B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540387A (en) * 2007-09-28 2010-12-24 エバレデイ バツテリ カンパニー インコーポレーテツド Process for producing synthetic pyrite
CN102148379A (en) * 2010-02-10 2011-08-10 上海空间电源研究所 Pile of high voltage thermal battery
JP2014093210A (en) * 2012-11-05 2014-05-19 National Institute Of Advanced Industrial & Technology Positive electrode active material for lithium secondary battery
WO2015049986A1 (en) * 2013-10-04 2015-04-09 独立行政法人産業技術総合研究所 Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide
CN114725376A (en) * 2022-04-21 2022-07-08 中国工程物理研究院电子工程研究所 Thermal battery cathode material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280070A (en) * 1991-03-07 1992-10-06 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for thermal battery, and thermal battery using same
JPH07335229A (en) * 1994-06-09 1995-12-22 Matsushita Electric Ind Co Ltd Thermal cell
JPH097612A (en) * 1995-06-22 1997-01-10 Matsushita Electric Ind Co Ltd Thermal battery
JP2004055465A (en) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd Thermal battery
JP2004079279A (en) * 2002-08-13 2004-03-11 Matsushita Electric Ind Co Ltd Thermal battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280070A (en) * 1991-03-07 1992-10-06 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for thermal battery, and thermal battery using same
JPH07335229A (en) * 1994-06-09 1995-12-22 Matsushita Electric Ind Co Ltd Thermal cell
JPH097612A (en) * 1995-06-22 1997-01-10 Matsushita Electric Ind Co Ltd Thermal battery
JP2004055465A (en) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd Thermal battery
JP2004079279A (en) * 2002-08-13 2004-03-11 Matsushita Electric Ind Co Ltd Thermal battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540387A (en) * 2007-09-28 2010-12-24 エバレデイ バツテリ カンパニー インコーポレーテツド Process for producing synthetic pyrite
KR101556804B1 (en) 2007-09-28 2015-10-01 에버레디 배터리 컴퍼니, 인크. Processes for producing synthetic pyrite
CN102148379A (en) * 2010-02-10 2011-08-10 上海空间电源研究所 Pile of high voltage thermal battery
JP2014093210A (en) * 2012-11-05 2014-05-19 National Institute Of Advanced Industrial & Technology Positive electrode active material for lithium secondary battery
WO2015049986A1 (en) * 2013-10-04 2015-04-09 独立行政法人産業技術総合研究所 Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide
KR20160065931A (en) * 2013-10-04 2016-06-09 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide
JPWO2015049986A1 (en) * 2013-10-04 2017-03-09 国立研究開発法人産業技術総合研究所 Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide
EP3053883A4 (en) * 2013-10-04 2017-07-19 National Institute Of Advanced Industrial Science And Technology Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide
US10269465B2 (en) 2013-10-04 2019-04-23 National Institute Of Advanced Industrial Science And Technology Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide
KR102203952B1 (en) 2013-10-04 2021-01-18 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide
CN114725376A (en) * 2022-04-21 2022-07-08 中国工程物理研究院电子工程研究所 Thermal battery cathode material and preparation method and application thereof
CN114725376B (en) * 2022-04-21 2023-04-25 中国工程物理研究院电子工程研究所 Thermal battery cathode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5006548B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5580457B2 (en) Molten salt and thermal battery
JP5006548B2 (en) Thermal battery
US8088508B2 (en) Thermal battery
JP5522927B2 (en) Thermal battery electrode and thermal battery including the same
US5770329A (en) Thermal battery and improved cell therefor
JP2006236990A (en) Thermal cell
US20070105011A1 (en) Thermal battery
JP5362273B2 (en) Molten salt and thermal battery
US20060166097A1 (en) Thermal battery
JPH06275314A (en) Lithium secondary battery
JP2010015947A (en) Thermal battery, and electrolyte layer used for the same
JP5143399B2 (en) Thermal battery
JPH08138725A (en) All solid lithium battery
JP2751388B2 (en) Thermal battery
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP4381092B2 (en) Thermal battery
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
KR101643804B1 (en) Lithium secondary battery with improved yields
JP2847982B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JPH02295066A (en) Manufacture of positive active material for thermal battery and thermal battery using this material
JPH097594A (en) Thermal battery
JPH05242896A (en) Positive electrode active material for thermal cell, manufacture thereof and thermal cell using it
JP2002117896A (en) Flat lithium secondary battery
JPH02284359A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JPH04280072A (en) Manufacture of positive electrode active material for thermal battery, and thermal battery using same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5006548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150