JPH02295066A - Manufacture of positive active material for thermal battery and thermal battery using this material - Google Patents

Manufacture of positive active material for thermal battery and thermal battery using this material

Info

Publication number
JPH02295066A
JPH02295066A JP1115304A JP11530489A JPH02295066A JP H02295066 A JPH02295066 A JP H02295066A JP 1115304 A JP1115304 A JP 1115304A JP 11530489 A JP11530489 A JP 11530489A JP H02295066 A JPH02295066 A JP H02295066A
Authority
JP
Japan
Prior art keywords
iron
active material
cobalt
thermal battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1115304A
Other languages
Japanese (ja)
Other versions
JPH0782857B2 (en
Inventor
Kazunori Haraguchi
和典 原口
Hirosuke Yamazaki
博資 山崎
Masanori Fujimoto
冨士本 真紀
Akinori Awano
粟野 彰規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1115304A priority Critical patent/JPH0782857B2/en
Publication of JPH02295066A publication Critical patent/JPH02295066A/en
Publication of JPH0782857B2 publication Critical patent/JPH0782857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To easily obtain a composite compound of iron disulfide and cobalt sulfide by mixing iron powder, metallic cobalt powder, and sulfur, heating them for synthesis, and crushing the synthesized product. CONSTITUTION:Iron powder or iron powder at least whose surface is iron oxide or iron hydroxide, metallic cobalt powder, and sulfur are mixed, then the mixture is heated at 350-500 deg.C for synthesis, then the synthesized product is crushed to obtain a positive active material. The content of cobalt in the positive active material is 5-20wt%. Since when iron is converted into iron sulfide, cobalt is also converted into cobalt sulfide at the same time, a composite compound of iron disulfide and cobalt sulfide in which cobalt is built in the crystal lattice of iron disulfide is prepared.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リヂウム/二硫化鉄系熱電池の正極活物質の
利用率の向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improving the utilization rate of a positive electrode active material in a lithium/iron disulfide thermal battery.

従来の技術 熱電池は常温では不活性であるが、高温に過熱すると活
性になり、外部へ電力を供給し得るようになる電池で貯
蔵形電池の一種である。従って、5〜10年あるいはそ
れ以上の貯蔵後においても、製造直後と何ら電池特性が
変わらない特長を利用して、緊急用電源に用いられてい
る。
BACKGROUND TECHNOLOGY A thermal battery is inactive at room temperature, but becomes active when heated to a high temperature and can supply power to the outside, and is a type of storage battery. Therefore, even after storage for 5 to 10 years or more, the battery characteristics remain unchanged from those immediately after manufacture, which is why they are used as an emergency power source.

また、高温で作動させるために、電極反応が進みやず《
分極も少ないので、大電流放電性に優れている。さらに
、使用希望時には外部より起動信号を入れると、瞬時に
電力を取り出せる等の特長を有する。
In addition, since the operation is performed at high temperatures, the electrode reaction does not proceed.
Since there is little polarization, it has excellent large current discharge properties. Furthermore, when you wish to use it, you can instantly extract power by inputting a start signal from the outside.

しかし、リチウム/二硫化鉄系熱電池の正極活物質とし
て用いる二硫化鉄は未だ利用率が悪いため、電池として
出力すべき放電電気容量よりも、多量の正極活物質を充
填しなくてはならず、正極層が厚くなって電池の体積や
重量が増加してしまい、小型,計量化が難しくなるとい
う短所を有していた。
However, iron disulfide, which is used as a positive electrode active material in lithium/iron disulfide thermal batteries, still has a poor utilization rate, so it is necessary to fill a larger amount of positive electrode active material than the discharge capacity that the battery should output. First, the positive electrode layer becomes thicker, increasing the volume and weight of the battery, making it difficult to downsize and weigh.

この課題を克服するために従来用いられて来た技術は、
熱電池とは異なるが、二硫化鉄を正極に用いた高温二次
電池において、米国特許第3992222号で示される
ような添加剤を加える方法であった。この方法は、二硫
化鉄にC o S , C o S2C03S4および
Co2s3等のコバルト硫化物を添加するもので、二硫
化鉄単独で用いる場合よりも利用率が向上ずるというも
のである。
The techniques traditionally used to overcome this problem are:
Although different from a thermal battery, this was a method of adding additives as shown in US Pat. No. 3,992,222 to a high-temperature secondary battery using iron disulfide as a positive electrode. In this method, cobalt sulfides such as CoS, CoS2C03S4, and Co2s3 are added to iron disulfide, and the utilization rate is improved compared to when iron disulfide is used alone.

発明が解決しようとする課題 しかし、上記の米国特許第3992222号に開示され
た手法は、高温二次電池に対して適用されたものであり
、たとえ類似の電極材料を用いているとはいえ、一次電
池である熱電池に対してこの手法を採用しても、ほとん
どその効果を発揮しないという課題があった。この原因
は、二硫化鉄とコバルト硫化物との単純な混合物では、
両者が独立した硫化物として存在し、複合化合物として
の新たな特性を発揮しないためと考えられる。すなわち
、上記米国特許で開示されているような一次電池の場合
は、数回の充放電を繰り返すことにより、電気化学的に
二硫化鉄とコバル1・硫化物とが徐々に複合化合物化す
ると考えられるが、一次電池である熱電池の場合には、
一度限りの放電のためにこのような効果が得られず、利
用率の向」−につながらないものと考えられる。
Problems to be Solved by the Invention However, the method disclosed in the above-mentioned US Pat. No. 3,992,222 is applied to high-temperature secondary batteries, and even though similar electrode materials are used, Even if this method was applied to thermal batteries, which are primary batteries, there was a problem in that it was hardly effective. The reason for this is that in a simple mixture of iron disulfide and cobalt sulfide,
This is thought to be because both exist as independent sulfides and do not exhibit new properties as a composite compound. In other words, in the case of a primary battery as disclosed in the above US patent, iron disulfide and cobal-1 sulfide are thought to gradually become a composite compound electrochemically by repeating charging and discharging several times. However, in the case of a thermal battery, which is a primary battery,
It is thought that such an effect cannot be obtained because the discharge occurs only once, and that it does not lead to an improvement in the utilization rate.

本発明は、上記のような従来の課題を解消し7、より利
用率の高い正極活物質を作る製造法を提案するとともに
その正極活物質を用いた高性能な熱電池を提供すること
を目的とする。
The purpose of the present invention is to solve the above-mentioned conventional problems7, propose a manufacturing method for producing a positive electrode active material with a higher utilization rate, and provide a high-performance thermal battery using the positive electrode active material. shall be.

課題を解決するための手段 この課題を解決するため本発明は、以下に示す手段によ
りあらかじめ二硫化鉄とコバルI・硫化物との複合化合
物を作るものである。
Means for Solving the Problem In order to solve this problem, the present invention involves preparing a composite compound of iron disulfide and cobal I sulfide in advance by the following means.

すなわち、出発物質として鉄粉もしくは少なくとも表面
が鉄酸化物または水酸化鉄である鉄粉と、金属コハル1
・粉末と、硫黄を用いてこれら三者を混合する工程と、
その混合物を350゜C〜500℃の温度にて加熱合成
する工程き、合成物を粉砕する工程を経て正極活物質と
する製造法てあって、得られる正極活物質中のコバルト
含有比を5〜20重量%とするものである。
That is, iron powder or iron powder whose surface is at least iron oxide or iron hydroxide as a starting material, and metal cohar 1
- A process of mixing powder and these three using sulfur,
There is a manufacturing method in which the mixture is synthesized by heating at a temperature of 350°C to 500°C, and a positive electrode active material is obtained through a step of pulverizing the composite, and the cobalt content ratio in the obtained positive electrode active material is reduced to 5. ~20% by weight.

そして、上記のようにして合成された正極活物質に電解
質およびバインダーを混合して正極合剤とし、負極のリ
チウムもし《はリヂウム合金と、電解質を保持さぜたバ
インダーの粉末からなる電解質層と組み合わせて素電池
を成型して、これと発熱剤とを組み合わせることでリチ
ウム/二硫化鉄系熱電池を構成する。
Then, the positive electrode active material synthesized as described above is mixed with an electrolyte and a binder to form a positive electrode mixture, and an electrolyte layer consisting of lithium (or lithium alloy) and binder powder holding an electrolyte is formed as a negative electrode. A unit cell is formed by combining them, and a lithium/iron disulfide thermal battery is constructed by combining this with a heat generating agent.

作用 この製造法を用いれば、鉄が硫化物化する際に同時にコ
バルトも硫化物化するために、二硫化鉄の結晶格子内に
コバルトが組み込まれた二硫化鉄とコバルト硫化物との
複合化合物を作ることができるものである。また、この
製造法によって作られた正極活物質を用いた熱電池では
、放電開始時からすでに二硫化鉄とコバルト硫化物が複
合化合物となっているため正極の利用率向上に寄与する
ものである。
Function: Using this manufacturing method, cobalt is also sulfidized when iron is sulfidized, so a composite compound of iron disulfide and cobalt sulfide is created in which cobalt is incorporated into the crystal lattice of iron disulfide. It is something that can be done. In addition, in a thermal battery using a cathode active material made by this manufacturing method, iron disulfide and cobalt sulfide are already a composite compound from the start of discharge, which contributes to improving the utilization rate of the cathode. .

実施例 以下、本発明の実施例を図表を用いて説明する。Example Examples of the present invention will be described below using diagrams.

第1表は本発明の実施例および比較例にお(jる原料を
示し、また、第1図は本実施例の製造工程を示している
Table 1 shows raw materials used in Examples and Comparative Examples of the present invention, and FIG. 1 shows the manufacturing process of the Examples.

実施例1は、純鉄粉と金属コバル1・と硫黄を出発物質
として用いた場合である。鉄粉と金属コハルトは、粒径
350メッシュ以下の粉末を用い、各原料の混合比は合
成する正極活物質中のコバルト含有量が所定の重量%に
なり、かつ、鉄もコバルトも二硫化物となるように設定
した。例えば、コバルトを10重量%含有する正極活物
質を製造する場合には、鉄粉を36.8重量%、金属コ
ハル1・を10重量%、そして硫黄を53.2重量%と
する混合比を設定する。この時の硫黄の量は、鉄とコバ
ル1・が二硫化物となるために必要な量としている。本
実施例では、一回の混合重量を500gとし、それぞれ
秤取された原料を磁性のボールミル混合機にて1時間混
合した。その後、混合物を磁性のルツボに入れて蓋をし
、さらに蓋付きの鉄製の容器にいれて電気炉により45
0℃で3時間加熱合成を行った。加熱合成温度としては
、270°Cから690℃まで可能ではあるが、350
℃未満ては硫化反応の進行が遅く、500℃を越える温
度では生成した二硫化鉄が分解し始めるのて・、工業的
には3 5 0 ’C〜5 0 0 0Cの範囲が好ま
しい。
Example 1 is a case where pure iron powder, metal Kobal 1, and sulfur were used as starting materials. The iron powder and metal cohalt are powders with a particle size of 350 mesh or less, and the mixing ratio of each raw material is such that the cobalt content in the cathode active material to be synthesized is a predetermined weight %, and both iron and cobalt are disulfide. It was set so that For example, when producing a positive electrode active material containing 10% by weight of cobalt, the mixing ratio is 36.8% by weight of iron powder, 10% by weight of metal Kohar 1, and 53.2% by weight of sulfur. Set. The amount of sulfur at this time is the amount necessary for iron and Kobal 1 to become disulfide. In this example, the weight of each mixture was 500 g, and the weighed raw materials were mixed for 1 hour using a magnetic ball mill mixer. After that, the mixture was placed in a magnetic crucible and covered, and then placed in an iron container with a lid and heated in an electric furnace for 45 minutes.
Thermal synthesis was performed at 0°C for 3 hours. The heating synthesis temperature is possible from 270°C to 690°C, but 350°C is possible.
If the temperature is lower than 500°C, the sulfurization reaction will proceed slowly, and if the temperature exceeds 500°C, the produced iron disulfide will begin to decompose. Therefore, from an industrial perspective, a range of 350'C to 5000C is preferable.

合成物は冷却した後、磁性の乳鉢に入れ粉砕し200メ
ッシュ以下の粒度とした。また、今回の実施例では前記
の加熱合成工程と粉砕工程を3回繰り返して行い、最終
の合成物を正極活物質とした。1回の加熱合成でも硫化
物化は可能であるが、より高品位な硫化物、すなわちよ
り二硫化物化させるためには、複数回の加熱合成工程と
粉砕工程を繰り返すことが好ましい。
After cooling, the composite was placed in a magnetic mortar and ground to a particle size of 200 mesh or less. Furthermore, in this example, the above heating synthesis step and pulverization step were repeated three times, and the final composite was used as a positive electrode active material. Although sulfidization is possible with one heat synthesis, in order to produce a higher-grade sulfide, that is, more disulfide, it is preferable to repeat the heat synthesis step and the pulverization step multiple times.

実施例2は、鉄粉の表面が鉄酸化物となっていること以
外は、その他の原料および製造工程は実施例1と同様で
ある。また、実施例3は鉄粉の表面が水酸化鉄である鉄
粉を原料とした場合である。実施例2および3に用いた
少なくともその表面が鉄酸化物もしくは水酸化鉄てある
鉄粉は、特開昭58−115031号公報に開示されて
いる手法により作られたものである。
In Example 2, other raw materials and manufacturing steps are the same as in Example 1, except that the surface of the iron powder is made of iron oxide. Further, Example 3 is a case where iron powder whose surface is iron hydroxide is used as a raw material. The iron powder used in Examples 2 and 3, at least the surface of which is made of iron oxide or iron hydroxide, was made by the method disclosed in Japanese Patent Application Laid-Open No. 115031/1983.

これに対して比較例1および2は、製造工程は実施例1
と同してあるが、原料が異なるものである。比較例]の
場合、純鉄粉と、あらかしめ硫化物化した二硫化コバル
l・の粉末とを原料に用いたものであり、比較例2は、
鉄もコバル1・もあらかしめ二硫化物としたものを出発
物質に用いている場合である。また、比較例3は、米国
特許第3992222号に示された方法で、二硫化鉄と
コバルトを単に混合して正極活物質としたものである。
On the other hand, in Comparative Examples 1 and 2, the manufacturing process was the same as in Example 1.
It is the same as , but the raw materials are different. In the case of Comparative Example], pure iron powder and powder of cobal disulfide which had been sulfidized were used as raw materials, and in Comparative Example 2,
This is the case where both iron and Kobal 1 are used as starting materials in the form of disulfides. Further, in Comparative Example 3, iron disulfide and cobalt were simply mixed to form a positive electrode active material using the method shown in US Pat. No. 3,992,222.

(  以  下  余  白  ) 第1表 第2図は、実施例と比較例の代表例として、実施例1と
比較例3により合成されたコバルト含有率10重量%の
正極活物質のX線回折図を示しており、(a)が実施例
1 、(b)が比較例3のものである。比較例3のX線
回折図(b)には、図中Δ印で示ず明らかにCOS2の
ものと固定できるピークと、FeS2の回折ピーク(○
印)が存在しており、両者の結晶構造がそれぞれ単独で
存在していることが判る。このことは比較例1および2
においても、多少CoS2のピークが小さくはなるが同
様であった。それに対して実施例1のX線回折図(a)
では、比較例3と同量のコバルト硫化物が含まれている
にもかかわらず、CoS2に関する明瞭なピークは見ら
れず、FeS2のそれぞれのピークの低角側が多少ブロ
ードになっている特徴がある。すなわち、実施例1の場
合には、二硫仕鉄の結晶構造の中の一部の鉄原子が、コ
バルト原子と置換した複合化合物を構成していると考え
られる。そして、実施例2および3においても同様の結
果が得られた。
(Margin below) Table 1, Figure 2 is an X-ray diffraction diagram of the positive electrode active material with a cobalt content of 10% by weight synthesized in Example 1 and Comparative Example 3, as a representative example of Examples and Comparative Examples. , (a) is that of Example 1, and (b) is that of Comparative Example 3. In the X-ray diffraction diagram (b) of Comparative Example 3, there is a peak not marked with Δ in the diagram that can clearly be fixed as that of COS2, and a diffraction peak of FeS2 (○
mark) exists, indicating that both crystal structures exist independently. This is true for Comparative Examples 1 and 2.
The results were similar even though the CoS2 peak was somewhat smaller. In contrast, the X-ray diffraction diagram of Example 1 (a)
Although the sample contains the same amount of cobalt sulfide as Comparative Example 3, no clear peak for CoS2 is observed, and the low-angle side of each peak for FeS2 is somewhat broad. . That is, in the case of Example 1, it is considered that some iron atoms in the crystal structure of iron disulfide constitute a composite compound in which cobalt atoms are substituted. Similar results were obtained in Examples 2 and 3 as well.

以上の様な本発明により、合成された正極活物質を用い
て第3図に示すような断面の素電池を構成し、さらに第
4図のような積層形熱電池を試作した。
Using the positive electrode active material synthesized according to the present invention as described above, a unit cell having a cross section as shown in FIG. 3 was constructed, and a laminated thermal battery as shown in FIG. 4 was also prototyped.

第3図の素電池4は、本実施例による正極活物質とKC
e−LiCe溶融塩電解質と電解質を保持するためのS
i02バインダーとの混合物からなる正極層1と、負極
活物質のリチウムを鉄粉によって固定化した負極層2、
およびKCQ−LiCe溶融塩をMgOバインダーに保
持させた粉体の成型層からなる電解質層3の一体成型体
として構成されている。このように構成された素電池4
を用いて、第4図に示す積層形熱電池を試作した。素電
池4は過塩素酸カリウムと鉄粉の混合物の成型体である
発熱剤5と交互に積層されている。発熱剤5は、外部か
ら点火電流を点火器用端子10へ入力すると点火器9が
火災を発して着火、燃焼を開始する。この燃焼熱て素電
池4が加熱され、素電池内の電解質を溶融して発電する
。そして、電池出力はプラス出力端子11とマイリース
出力端子12から取りだされる。素電池4と発熱剤5の
積層体の周囲は、放熱を制御するため断熱材6て被われ
ている。これらの構成物は、すべて金属製の外装ケース
7に挿入され外装蓋8を圧人後、両者はTIG溶接によ
って密封されている。
The unit cell 4 in FIG. 3 includes the positive electrode active material and KC
e-LiCe molten salt electrolyte and S for holding the electrolyte
A positive electrode layer 1 made of a mixture with an i02 binder, a negative electrode layer 2 in which lithium as a negative electrode active material is immobilized with iron powder,
The electrolyte layer 3 is composed of a molded layer of powder in which KCQ-LiCe molten salt is held in an MgO binder. Unit cell 4 configured in this way
Using this, a laminated thermal battery shown in FIG. 4 was prototyped. The unit cells 4 are alternately laminated with exothermic agents 5 which are molded mixtures of potassium perchlorate and iron powder. When the exothermic agent 5 receives an ignition current from the outside to the igniter terminal 10, the igniter 9 starts a fire and starts igniting and burning. This combustion heats the unit cell 4, melts the electrolyte within the unit cell, and generates electricity. Then, the battery output is taken out from the positive output terminal 11 and the mileage output terminal 12. The periphery of the laminate of the unit cell 4 and exothermic agent 5 is covered with a heat insulating material 6 to control heat radiation. These components are all inserted into a metal exterior case 7, and after the exterior lid 8 is pressed, both are sealed by TIG welding.

以上のように構成した積層形熱電池により正極活物質の
評価を行った。第5図は、実施例1においてコバルl・
含有量を変化させて製造した正極活物質を用いて前述の
積層形熱電池を試作し、電流密度5 0 0 m A 
/ cutの定電流放電を行った1時の11:.極活物
質の利用率を求めた結果である。正極活物質中のコバル
l・含有率は利用率に影響を与えており、特にコバルト
含有率が5〜20重量%の範囲では、利用率が45%以
」−となり、電池の小型軽量化の点から工業的価値が大
きい領域といえる。
The positive electrode active material was evaluated using the stacked thermal battery configured as described above. FIG. 5 shows Kobal l・
The above-mentioned laminated thermal battery was prototyped using cathode active materials manufactured with varying contents, and the current density was 500 mA.
/ cut constant current discharge at 1:11:. This is the result of determining the utilization rate of the polar active material. The cobalt content in the positive electrode active material affects the utilization rate, and in particular, when the cobalt content is in the range of 5 to 20% by weight, the utilization rate becomes 45% or more, making it difficult to make batteries smaller and lighter. From this point of view, it can be said that this is an area with great industrial value.

次に、本実施例の効果を比較例と比へて述へる。第6図
は、コハルト含有率を10重量%とした本実施例により
製造された正極活物質を用いた積層形熱電池と、同様の
コバル1・含有量の比較例の積層形熱電池の放電電圧曲
線である。図中AB,Cの曲線はそれぞれ本発明による
実施例1,2,3のものであり、いずれも放電電圧ば平
J■であり、かつ、終止電圧20Vまての持続時間も長
いことが判る。これに対し図中D,E,Fて示される比
較例の1.2.3の放電電圧曲線は、いずれも本発明に
よる実施例のような電圧の平坦性が見られず、持続時間
も著しく短い。
Next, the effects of this example will be described in comparison with a comparative example. Figure 6 shows the discharge of a laminated thermal battery using the positive electrode active material manufactured according to this example with a cobalt content of 10% by weight, and a laminated thermal battery of a comparative example with a similar cobal 1 content. This is a voltage curve. Curves AB and C in the figure are for Examples 1, 2, and 3 according to the present invention, and it can be seen that in all cases, the discharge voltage is average J■, and the duration until the final voltage is 20V is long. . On the other hand, the discharge voltage curves of Comparative Examples 1, 2, and 3 indicated by D, E, and F in the figure do not show the flatness of the voltage as in the example according to the present invention, and the duration is also remarkable. short.

発明の効果 以上の説明から明らかなように、単に二硫化鉄にコバル
ト硫化物を添加したり、あらかしめ硫化物化したものを
原料として製造された正極活物質は、二硫化鉄とコバル
ト硫化物の複合化合物でないため、一次電池である熱電
池においては正極利用率の向上や電圧の平坦性を得るこ
とはてきない。しかし本発明によれば、二硫化鉄とコバ
ルト硫化物の複合化合物を容易に作れ、これを用いた電
池は電圧の平坦性が向上するとともに正極活物質の利用
率を改善でき、従って小型で軽量な高性能熱電池を提供
することができるという効果が得られる。
Effects of the Invention As is clear from the above explanation, the positive electrode active material manufactured using iron disulfide with cobalt sulfide or sulfidized iron disulfide as a raw material is a mixture of iron disulfide and cobalt sulfide. Since it is not a composite compound, it is not possible to improve the positive electrode utilization rate or obtain voltage flatness in thermal batteries, which are primary batteries. However, according to the present invention, a composite compound of iron disulfide and cobalt sulfide can be easily made, and batteries using this can improve the flatness of the voltage and the utilization rate of the positive electrode active material, and are therefore small and lightweight. The effect is that a high-performance thermal battery can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における製造工程図、第2図a
,bは実施例によって製造された正極活物質のX線回折
図および比較例のX線回折図、第3図は本発明による素
電池の断面図、第4−図は同素電池を用いて構成された
積層形熱電池の縦断面図、第5図は本発明の実施例によ
る正極活物質のコバルト含有量と正極利用率との関係を
示す図、第6図は実施例と比較例の放電電圧曲線図であ
る。 ]・・・・・・正極層、2・・・・・・負極層、3・・
・・・・電解質層、4・・・・・・素電池、5・・・・
・・発熱剤。
Figure 1 is a manufacturing process diagram in an embodiment of the present invention, Figure 2a
,b is an X-ray diffraction diagram of the positive electrode active material manufactured according to the example and an X-ray diffraction diagram of the comparative example, FIG. 3 is a cross-sectional view of the unit cell according to the present invention, and FIG. FIG. 5 is a longitudinal cross-sectional view of the constructed stacked thermal battery, FIG. 5 is a diagram showing the relationship between the cobalt content of the positive electrode active material and the positive electrode utilization rate according to the example of the present invention, and FIG. It is a discharge voltage curve diagram. ]...Positive electrode layer, 2...Negative electrode layer, 3...
...Electrolyte layer, 4...Battery, 5...
...Exothermic agent.

Claims (3)

【特許請求の範囲】[Claims] (1)鉄粉もしくは少なくとも表面が鉄酸化物または水
酸化鉄である鉄粉と、金属コバルト粉末と硫黄を出発物
質としてこれらを混合する工程と、その混合物を350
℃〜500℃の温度下で加熱合成する工程と、その後合
成物を粉砕する工程とからなり、前記合成物中のコバル
ト含有比が5〜20重量%である熱電池用正極活物質の
製造法。
(1) A step of mixing iron powder or iron powder whose surface is at least iron oxide or iron hydroxide, metal cobalt powder and sulfur as starting materials, and mixing the mixture with 350%
A method for producing a positive electrode active material for a thermal battery, which comprises a step of heating synthesis at a temperature of ℃ to 500℃, and a step of pulverizing the composite after that, and the cobalt content ratio in the composite is 5 to 20% by weight. .
(2)加熱合成工程と合成物の粉砕工程とを複数回繰り
返し行う特許請求の範囲第1項記載の熱電池用正極活物
質の製造法。
(2) The method for producing a positive electrode active material for a thermal battery according to claim 1, wherein the heating synthesis step and the composite crushing step are repeated multiple times.
(3)特許請求の範囲第1項の熱電池用正極活物質を用
いた熱電池。
(3) A thermal battery using the positive electrode active material for a thermal battery according to claim 1.
JP1115304A 1989-05-09 1989-05-09 Method for producing positive electrode active material for thermal battery and thermal battery using the same Expired - Fee Related JPH0782857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115304A JPH0782857B2 (en) 1989-05-09 1989-05-09 Method for producing positive electrode active material for thermal battery and thermal battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115304A JPH0782857B2 (en) 1989-05-09 1989-05-09 Method for producing positive electrode active material for thermal battery and thermal battery using the same

Publications (2)

Publication Number Publication Date
JPH02295066A true JPH02295066A (en) 1990-12-05
JPH0782857B2 JPH0782857B2 (en) 1995-09-06

Family

ID=14659317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115304A Expired - Fee Related JPH0782857B2 (en) 1989-05-09 1989-05-09 Method for producing positive electrode active material for thermal battery and thermal battery using the same

Country Status (1)

Country Link
JP (1) JPH0782857B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564629A (en) * 2020-05-21 2020-08-21 宁波大学 Sulfur-doped Co3S4Preparation method of lithium ion battery anode material
CN113578351A (en) * 2021-08-03 2021-11-02 齐鲁工业大学 Pyrite iron disulfide/titanium dioxide composite material and preparation method and application thereof
CN116705973A (en) * 2023-07-20 2023-09-05 天津大学 Sulfide positive electrode material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950890B (en) * 2014-05-19 2015-08-19 合肥工业大学 A kind of FeS 2the preparation method of pyrite microballoon and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564629A (en) * 2020-05-21 2020-08-21 宁波大学 Sulfur-doped Co3S4Preparation method of lithium ion battery anode material
CN111564629B (en) * 2020-05-21 2022-10-21 宁波大学 Sulfur-doped Co 3 S 4 Preparation method of lithium ion battery anode material
CN113578351A (en) * 2021-08-03 2021-11-02 齐鲁工业大学 Pyrite iron disulfide/titanium dioxide composite material and preparation method and application thereof
CN113578351B (en) * 2021-08-03 2023-05-23 齐鲁工业大学 Pyrite iron disulfide/titanium dioxide composite material and preparation method and application thereof
CN116705973A (en) * 2023-07-20 2023-09-05 天津大学 Sulfide positive electrode material
CN116705973B (en) * 2023-07-20 2024-02-09 天津大学 Sulfide positive electrode material

Also Published As

Publication number Publication date
JPH0782857B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US6207327B1 (en) Totally-solid lithium secondary battery
JP4406744B2 (en) Cathode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
WO2015011937A1 (en) Sulfide-based solid electrolyte for lithium ion battery
WO2010107084A1 (en) All-solid-state lithium battery
JP3453099B2 (en) Method for producing lithium secondary battery
US4221849A (en) Iron-lithium anode for thermal batteries and thermal batteries made therefrom
JP2019040759A (en) Method for manufacturing all-solid battery
JP5710136B2 (en) All solid lithium battery
JP2017084686A (en) Electrode active material, battery and method for manufacturing electrode active material
CN103199236A (en) Doped lithium manganate precursor, modified lithium manganate positive electrode material and preparation method thereof
KR101043309B1 (en) Cathodal pellet for thermal battery, method for fablicatign the same, and thermal battery having the same
JP5006548B2 (en) Thermal battery
JPH02295066A (en) Manufacture of positive active material for thermal battery and thermal battery using this material
JPS6166369A (en) Lithium secondary battery
JP4573510B2 (en) Alkaline storage battery and battery pack
JP2751389B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JPH02284359A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2847982B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2751388B2 (en) Thermal battery
JPH04280072A (en) Manufacture of positive electrode active material for thermal battery, and thermal battery using same
JP2653065B2 (en) Stacked thermal battery
JPH05242896A (en) Positive electrode active material for thermal cell, manufacture thereof and thermal cell using it
JPH02284360A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JP2000215891A (en) Manufacture of lithium secondary battery positive electrode material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees