JP2000215891A - Manufacture of lithium secondary battery positive electrode material - Google Patents

Manufacture of lithium secondary battery positive electrode material

Info

Publication number
JP2000215891A
JP2000215891A JP11016525A JP1652599A JP2000215891A JP 2000215891 A JP2000215891 A JP 2000215891A JP 11016525 A JP11016525 A JP 11016525A JP 1652599 A JP1652599 A JP 1652599A JP 2000215891 A JP2000215891 A JP 2000215891A
Authority
JP
Japan
Prior art keywords
compound
secondary battery
positive electrode
electrode material
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11016525A
Other languages
Japanese (ja)
Inventor
Koichi Numata
幸一 沼田
Shintaro Ishida
新太郎 石田
Tsuneyoshi Kamata
恒好 鎌田
Munetoshi Yamaguchi
宗利 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP11016525A priority Critical patent/JP2000215891A/en
Publication of JP2000215891A publication Critical patent/JP2000215891A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a high capacity and a good high-temperature characteristic 6 by adding at least one kind of Na and K compounds and at least one kind of Al, Co, Cr, Ni, Fe, Mg compounds to a Mn compound and a Li compound, mixing them, and baking the mixture in a specific temperature range. SOLUTION: A mixture containing a Mn compound and a Li compound as main components, at least one kind of Na, K compounds as a first additive component and at least one kind of Al, Co, Cr, Ni, Fe, Mg compounds as a second additive component is baked in the range of 850-1100 deg.C to obtain a Li secondary battery positive electrode material. The additive quantity of the first additive component such as the Na compound is desirably set to 0.05-2 wt.% according to the relation between the discharge capacity and capacity maintenance factor. The additive quantity of the second additive component such as the Al compound is desirably set to 0.05-6 wt.% according to the relation between the discharge capacity and capacity maintenance factor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
で代表される非水電解液二次電池に用いられるLi二次
電池正極材料に関する。
The present invention relates to a positive electrode material for a Li secondary battery used for a non-aqueous electrolyte secondary battery represented by a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、AV機器或いはパソコン等の電子
機器のポータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
ー密度を有する二次電池への要求が高い。このような要
求に対して、非水系二次電池、特にリチウム二次電池
(以下「Li二次電池」という)は、とりわけ高電圧,
高エネルギー密度を有する電池としての期待が大きい。
これらの要求を満足するリチウム二次電池用の正極材料
としてリチウムをインターカレーション,デインターカ
レーションすることのできるLiCoO2 ,LiNiO
2 或いはこれらの酸化物に遷移金属元素を一部置換した
複合酸化物等の層状化合物の研究が盛んに行われてい
る。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly advanced, and there has been a demand for small, lightweight, high energy density secondary batteries as power sources for driving these devices. high. In response to such demands, non-aqueous secondary batteries, particularly lithium secondary batteries (hereinafter referred to as “Li secondary batteries”), have high voltage,
Expectations are high for batteries with high energy density.
LiCoO 2 and LiNiO capable of intercalating and de-intercalating lithium as a positive electrode material for a lithium secondary battery satisfying these requirements.
2. Description of the Related Art Layered compounds such as composite oxides in which a transition metal element is partially substituted for these oxides or these oxides have been actively studied.

【0003】また、層状構造を持たないが、LiCoO
2 等と同様な4V級の高電圧を有する安価な材料とし
て、Li−Mn複合酸化物であるLiMn2 4 や、ま
た電圧は約3Vと若干低いLiMnO2 の開発も進めら
れている。
[0003] Further, although having no layered structure, LiCoO
As an inexpensive material having a high voltage of 4V class similar to 2 or the like, development of LiMn 2 O 4 which is a Li—Mn composite oxide and LiMnO 2 having a slightly lower voltage of about 3 V are also in progress.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
Li−Mn複合酸化物をリチウム二次電池用の正極材料
として用いた場合において、従来のLiCoO2 ,Li
NiO2 を正極材料として用いた場合と比較して高温電
池特性に劣るという問題があった。この対策として、M
nの一部をLiで置換したり、遷移元素で置換するとい
う方法も試みれらたが、ある程度の改善は得られるもの
の未だ充分ではない。また、電池容量も小さいという問
題がある。
However, when these Li-Mn composite oxides are used as a cathode material for a lithium secondary battery, conventional LiCoO 2 , Li
There is a problem that the high-temperature battery characteristics are inferior to the case where NiO 2 is used as the cathode material. As a measure against this, M
Attempts have been made to replace part of n with Li or with a transition element, but some improvements have been obtained but are still not sufficient. There is also a problem that the battery capacity is small.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する[請
求項1]のLi二次電池正極材料の製造方法の発明は、
Mn化合物とLi化合物とに、Na,K化合物の少なく
とも一種と、Al,Co,Cr,Ni,Fe,Mg化合
物の少なくとも一種とを加えて混合し、該混合物を85
0℃〜1100℃の範囲で焼成を行うことを特徴とす
る。
Means for Solving the Problems The invention of a method for producing a positive electrode material for a Li secondary battery according to claim 1 which solves the above-mentioned problems,
At least one of Na and K compounds and at least one of Al, Co, Cr, Ni, Fe and Mg compounds are added to and mixed with the Mn compound and the Li compound.
The sintering is performed in a range of 0 ° C. to 1100 ° C.

【0006】[請求項2]のLi二次電池正極材料の発
明は、請求項1の方法により製造してなることを特徴と
する。
A second aspect of the invention for a positive electrode material for a Li secondary battery is characterized by being manufactured by the method of the first aspect.

【0007】[請求項3]のLi二次電池の発明は、請
求項2のLi二次電池正極材料を用いてなることを特徴
とする。
According to a third aspect of the present invention, there is provided a Li secondary battery comprising the Li secondary battery positive electrode material according to the second aspect.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0009】本発明のLi二次電池正極材料の製造方法
の発明は、Mn化合物とLi化合物とに、Na,K化合
物の少なくとも一種と、Al,Co,Cr,Ni,F
e,Mg化合物の少なくとも一種とを加えて混合し、該
混合物を850℃〜1100℃の範囲で焼成を行うもの
である。すなわち、Mn化合物とLi化合物とを主成分
とし、さらに、Na,K化合物の少なくとも一種を第1
添加成分とし、Al,Co,Cr,Ni,Fe,Mg化
合物の少なくとも一種を第2添加成分とした混合物を8
50℃〜1100℃の範囲で焼成することにより、Li
二次電池正極材料を提供するものである。ここで、上記
Na化合物等の第1添加成分の添加量としては、放電容
量及び容量維持率との関係から0.05〜2重量%とする
のが好ましい。ここで、上記Al化合物等の第2添加成
分の添加量としては、放電容量及び容量維持率との関係
から0.05〜6重量%とするのが好ましい。
The invention of the method for producing a cathode material for a Li secondary battery according to the present invention is characterized in that a Mn compound and a Li compound, at least one of Na and K compounds, and Al, Co, Cr, Ni, F
e and at least one of the Mg compounds are added and mixed, and the mixture is fired at a temperature in the range of 850 ° C to 1100 ° C. That is, a main component is a Mn compound and a Li compound, and at least one of Na and K compounds is a first compound.
A mixture containing at least one of Al, Co, Cr, Ni, Fe, and Mg compounds as a second additive component as an additive component was added to the mixture.
By firing in the range of 50 ° C. to 1100 ° C., Li
It is intended to provide a secondary battery positive electrode material. Here, the addition amount of the first addition component such as the above Na compound is preferably 0.05 to 2% by weight in view of the relationship between the discharge capacity and the capacity retention rate. Here, the addition amount of the second addition component such as the Al compound is preferably 0.05 to 6% by weight in view of the relationship between the discharge capacity and the capacity retention rate.

【0010】ここで、第1段階の焼成温度の範囲を85
0℃〜1100℃とするのは、後述する実施例に示すよ
うに、850℃未満であると、Mn化合物とLi化合物
と第1添加成分及び第2添加成分の反応が充分でなく、
60℃での容量維持率が低いからであり、一方、110
0℃を超えて焼成すると、Liの昇華が起こり、20℃
及び60℃での電池特性が悪くなり、共に好ましくない
からである。
[0010] Here, the range of the firing temperature in the first stage is 85
When the temperature is set to 0 ° C. to 1100 ° C., as shown in Examples described below, if the temperature is lower than 850 ° C., the reaction between the Mn compound, the Li compound, the first additive component and the second additive component is not sufficient,
This is because the capacity retention at 60 ° C. is low.
When calcined above 0 ° C., sublimation of Li occurs, and
And the battery characteristics at 60 ° C. are deteriorated, which are both undesirable.

【0011】また、非水電解液二次電池であるLi二次
電池の発明は、上記Li二次電池用正極材料を正極活物
質として用いてなるものである。なお、本発明における
Li二次電池の負極には、金属リチウム又はリチウムを
吸蔵放出可能な物質を用いれば何等限定されるものでは
なく、電解質についても、例えばカーボネート類,スル
ホラン類,ラクトン類,エーテル類の有機溶媒中にリチ
ウム塩を溶解したものや、リチウムイオン導電性の固体
電解質を用いることができ、本発明において何等制限さ
れるものではない。
Further, the invention of a Li secondary battery which is a non-aqueous electrolyte secondary battery uses the above-mentioned positive electrode material for a Li secondary battery as a positive electrode active material. The negative electrode of the Li secondary battery according to the present invention is not particularly limited as long as metallic lithium or a substance capable of inserting and extracting lithium is used. For the electrolyte, for example, carbonates, sulfolane, lactone, ether A solution in which a lithium salt is dissolved in a kind of organic solvent or a solid electrolyte having lithium ion conductivity can be used, and is not limited in the present invention.

【0012】[0012]

【実施例】以下、本発明の効果を示す実施例を説明する
が、本発明はこれに限定されるものではない。
EXAMPLES Examples showing the effects of the present invention will be described below, but the present invention is not limited to these examples.

【0013】(実施例1)Li:Na:Al:Mn=1.
00:0.03:0.05:1.92となるように二酸化マン
ガン(96.0g)と炭酸リチウム(21.2g)と炭酸ナ
トリウム(1.4g)と水酸化アルミニウム(2.1g)を
秤量し、ボールミルで混合後、電気炉中で900℃で焼
成し、解砕してLi−Na−Al−Mn複合酸化物を生
成した。この得られた複合水酸化物を正極活物質として
コイン電池を作成し、放電試験を行った。試験内容とし
ては、20℃における初期放電容量(mAh/g)及び
20℃における15サイクル時での容量維持率(%)、
並びに60℃における15サイクル時での容量維持率
(%)及び60℃における3日間充電保存時の容量回復
率(%)を測定した。
(Example 1) Li: Na: Al: Mn = 1.
Manganese dioxide (96.0 g), lithium carbonate (21.2 g), sodium carbonate (1.4 g), and aluminum hydroxide (2.1 g) were added so that the ratio became 00: 0.03: 0.05: 1.92. After weighing and mixing in a ball mill, the mixture was baked at 900 ° C. in an electric furnace and crushed to produce a Li—Na—Al—Mn composite oxide. A coin battery was prepared using the obtained composite hydroxide as a positive electrode active material, and a discharge test was performed. The test contents include an initial discharge capacity (mAh / g) at 20 ° C. and a capacity retention rate (%) at 15 cycles at 20 ° C.
The capacity retention rate (%) after 15 cycles at 60 ° C. and the capacity recovery rate (%) after 3 days of charge storage at 60 ° C. were measured.

【0014】(実施例2)焼成温度を850℃とした以
外は、実施例1と同様に操作した。
Example 2 The operation was performed in the same manner as in Example 1 except that the firing temperature was 850 ° C.

【0015】(実施例3)焼成温度を1100℃とした
以外は、実施例1と同様に操作した。
Example 3 The same operation as in Example 1 was carried out except that the firing temperature was 1100 ° C.

【0016】(実施例4)炭酸ナトリウム(1.4g)を
炭酸カリウム(1.9g)とした以外は、実施例1と同様
に操作した。
Example 4 The same operation as in Example 1 was carried out except that potassium carbonate (1.9 g) was used instead of sodium carbonate (1.4 g).

【0017】(実施例5)水酸化アルミニウム(2.1
g)を炭酸コバルト(3.3g)とした以外は、実施例1
と同様に操作した。
Example 5 Aluminum hydroxide (2.1)
g) was changed to cobalt carbonate (3.3 g).
The same operation was performed.

【0018】(実施例6)水酸化アルミニウム(2.1
g)を酸化クロム(2.2g)とした以外は、実施例1と
同様に操作した。
Example 6 Aluminum hydroxide (2.1)
The same operation as in Example 1 was carried out except that g) was changed to chromium oxide (2.2 g).

【0019】(実施例7)水酸化アルミニウム(2.1
g)を水酸化ニッケル(2.5g)とした以外は、実施例
1と同様に操作した。
Example 7 Aluminum hydroxide (2.1)
The same operation as in Example 1 was carried out except that g) was changed to nickel hydroxide (2.5 g).

【0020】(実施例8)水酸化アルミニウム(2.1
g)を酸化第一鉄(2.2g)とした以外は、実施例1と
同様に操作した。
Example 8 Aluminum hydroxide (2.1)
The same operation as in Example 1 was performed except that g) was changed to ferrous oxide (2.2 g).

【0021】(実施例9)水酸化アルミニウム(2.1
g)を酸化マグネシウム(1.1g)とした以外は、実施
例1と同様に操作した。
Example 9 Aluminum hydroxide (2.1)
The same operation as in Example 1 was carried out except that g) was changed to magnesium oxide (1.1 g).

【0022】(比較例1)第1回目の焼成を800℃と
した以外は、実施例1と同様に操作した。
Comparative Example 1 The same operation as in Example 1 was performed except that the first baking was performed at 800 ° C.

【0023】(比較例2)第1回目の焼成を1200℃
とした以外は、実施例1と同様に操作した。
(Comparative Example 2) The first baking was performed at 1200 ° C.
The same operation as in Example 1 was performed, except that

【0024】(比較例3)Li:Na:Mn=1.00:
0.03:1.97となるように二酸化マンガン(98.5
g)と炭酸リチウム(21.2g)と炭酸ナトリウム(1.
4g)を秤量し、ボールミルで混合後、電気炉中で90
0℃で焼成し、解砕してLi−Na−Mn複合酸化物を
生成した。試験方法は、実施例1と同様に行った。
Comparative Example 3 Li: Na: Mn = 1.00:
Manganese dioxide (98.5) to give 0.03: 1.97.
g), lithium carbonate (21.2 g) and sodium carbonate (1.
4g) was weighed and mixed in a ball mill, and then mixed in an electric furnace.
It was baked at 0 ° C. and crushed to produce a Li—Na—Mn composite oxide. The test method was the same as in Example 1.

【0025】(比較例4)Li:Al:Mn=1.00:
0.05:1.95となるように二酸化マンガン(97.5
g)と炭酸リチウム(21.2g)と水酸化アルミニウム
(2.1g)を秤量し、ボールミルで混合後、電気炉中で
900℃で焼成し、解砕してLi−Mn−Al複合酸化
物を生成した。試験方法は、実施例1と同様に行った。
Comparative Example 4 Li: Al: Mn = 1.00:
Manganese dioxide (97.5) to give 0.05: 1.95.
g), lithium carbonate (21.2 g), and aluminum hydroxide (2.1 g) were weighed, mixed in a ball mill, calcined in an electric furnace at 900 ° C., and crushed to obtain a Li—Mn—Al composite oxide. Generated. The test method was the same as in Example 1.

【0026】以上実施例1乃至実施例9の結果並びに比
較例1乃至比較例4の結果を、下記「表1」に各々示
す。
The results of Examples 1 to 9 and the results of Comparative Examples 1 to 4 are shown in Table 1 below.

【0027】[0027]

【表1】 [Table 1]

【0028】上記表より、本実施例にかかるものは、2
0℃での放電容量及び容量維持率、60℃での容量維持
率及び充電保存後の容量回復率が共に好ましく、駆動用
電源としての好ましい二次電池特性を有することが、確
認できた。
From the above table, according to the present embodiment, 2
It was confirmed that the discharge capacity and the capacity retention rate at 0 ° C., the capacity retention rate at 60 ° C., and the capacity recovery rate after charge storage were all favorable, and that the battery had favorable secondary battery characteristics as a power supply for driving.

【0029】[0029]

【発明の効果】以上のように、本発明によれば、得られ
たLi二次電池正極材料を正極活物質として使用するこ
とにより、高容量で且つ高温特性が良好であり、駆動用
電源として好ましい二次電池特性を提供することができ
る。
As described above, according to the present invention, by using the obtained lithium secondary battery positive electrode material as a positive electrode active material, a high capacity and good high-temperature characteristics are obtained, and as a driving power source, Preferred secondary battery characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA00 AA02 BA01 BA03 BB05 BD01 5H014 AA01 BB01 BB06 EE10 HH08 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA00 AA02 BA01 BA03 BB05 BD01 5H014 AA01 BB01 BB06 EE10 HH08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mn化合物とLi化合物とに、Na,K
化合物の少なくとも一種と、Al,Co,Cr,Ni,
Fe,Mg化合物の少なくとも一種とを加えて混合し、
該混合物を850℃〜1100℃の範囲で焼成を行うこ
とを特徴とするLi二次電池正極材料の製造方法。
1. An Mn compound and a Li compound each containing Na, K
At least one compound, Al, Co, Cr, Ni,
At least one of Fe and Mg compounds is added and mixed,
A method for producing a positive electrode material for a Li secondary battery, comprising firing the mixture at a temperature in the range of 850C to 1100C.
【請求項2】 請求項1の方法により製造してなること
を特徴とするLi二次電池正極材料。
2. A positive electrode material for a Li secondary battery, manufactured by the method according to claim 1.
【請求項3】 請求項2のLi二次電池正極材料を用い
てなることを特徴とするLi二次電池。
3. A Li secondary battery comprising the Li secondary battery positive electrode material according to claim 2.
JP11016525A 1999-01-26 1999-01-26 Manufacture of lithium secondary battery positive electrode material Withdrawn JP2000215891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11016525A JP2000215891A (en) 1999-01-26 1999-01-26 Manufacture of lithium secondary battery positive electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11016525A JP2000215891A (en) 1999-01-26 1999-01-26 Manufacture of lithium secondary battery positive electrode material

Publications (1)

Publication Number Publication Date
JP2000215891A true JP2000215891A (en) 2000-08-04

Family

ID=11918703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11016525A Withdrawn JP2000215891A (en) 1999-01-26 1999-01-26 Manufacture of lithium secondary battery positive electrode material

Country Status (1)

Country Link
JP (1) JP2000215891A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265863A (en) * 2003-02-12 2004-09-24 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2015530966A (en) * 2013-07-26 2015-10-29 エルジー・ケム・リミテッド Polycrystalline lithium manganese oxide particles, method for producing the same, and positive electrode active material including the same
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265863A (en) * 2003-02-12 2004-09-24 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP4549689B2 (en) * 2003-02-12 2010-09-22 パナソニック株式会社 Lithium ion secondary battery
JP2015530966A (en) * 2013-07-26 2015-10-29 エルジー・ケム・リミテッド Polycrystalline lithium manganese oxide particles, method for producing the same, and positive electrode active material including the same
US9905840B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
US10236499B2 (en) 2013-07-26 2019-03-19 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same

Similar Documents

Publication Publication Date Title
JP3142522B2 (en) Lithium secondary battery
CN102754255B (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8012625B2 (en) Non-aqueous electrolyte secondary cell
JP3372204B2 (en) Method for producing Li-Mn composite oxide
JP2002289261A (en) Non-aqueous electrolyte secondary battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2000331682A (en) Positive electrode material for lithium secondary battery and battery using the same
JP4270645B2 (en) Nonaqueous electrolyte secondary battery positive electrode material and nonaqueous electrolyte secondary battery using the same
JP2006252940A (en) Lithium secondary battery and manufacturing method of lithium manganate
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2002270181A (en) Non-aqueous electrolyte battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP2000215891A (en) Manufacture of lithium secondary battery positive electrode material
JP2004235166A (en) Lithium secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP2000294237A (en) Positive electrode material for lithium secondary battery and its manufacture
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JP3399863B2 (en) Method for producing Li secondary battery positive electrode material
JPH11157841A (en) Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator
JP2000294241A (en) Positive electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
KR101464509B1 (en) Manufacturing method for lithium rechargeable cathod active material, lithium rechargeable cathod active material made by the same
JP3695365B2 (en) Cathode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404