KR101464509B1 - Manufacturing method for lithium rechargeable cathod active material, lithium rechargeable cathod active material made by the same - Google Patents

Manufacturing method for lithium rechargeable cathod active material, lithium rechargeable cathod active material made by the same Download PDF

Info

Publication number
KR101464509B1
KR101464509B1 KR1020120156268A KR20120156268A KR101464509B1 KR 101464509 B1 KR101464509 B1 KR 101464509B1 KR 1020120156268 A KR1020120156268 A KR 1020120156268A KR 20120156268 A KR20120156268 A KR 20120156268A KR 101464509 B1 KR101464509 B1 KR 101464509B1
Authority
KR
South Korea
Prior art keywords
active material
oxide
olivine
cathode active
black
Prior art date
Application number
KR1020120156268A
Other languages
Korean (ko)
Other versions
KR20140087208A (en
Inventor
김직수
김현태
윤진경
최문호
전석용
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Priority to KR1020120156268A priority Critical patent/KR101464509B1/en
Priority to PCT/KR2013/012296 priority patent/WO2014104810A1/en
Publication of KR20140087208A publication Critical patent/KR20140087208A/en
Application granted granted Critical
Publication of KR101464509B1 publication Critical patent/KR101464509B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질에 관한 것으로서, 더욱 상세하게는 Co 및/또는 Mn 포함하는 Li-Ni 산화물의 표면에 상기 올리빈형 복합 산화물 및 상기 도전성 카본이 도포되어 있는 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질에 관한 것이다.
본 발명에 의한 양극활물질의 제조 방법에 의하여 제조된 양극활물질은 상기 Co 및/또는 Mn 포함하는 Li-Ni 산화물의 표면을 올리빈형 복합 산화물 및 도전성 카본으로 코팅함으로써 표면에서의 부반응을 저해하여 높은 에너지 밀도 및 고용량을 나타낼뿐만 아니라, 안전성 및 수명 특성이 향상된 양극활물질을 제공할 수 있다.
The present invention relates to a method for producing a cathode active material and a cathode active material produced thereby, and more particularly, to a method for producing a cathode active material, A cathode active material, and a cathode active material produced thereby.
The cathode active material produced by the method for producing a cathode active material according to the present invention is coated with the olivine-type composite oxide and the conductive carbon on the surface of the Li-Ni oxide containing Co and / or Mn to inhibit side reactions on the surface, Density and high capacity, as well as improved safety and lifetime characteristics of the cathode active material.

Description

리튬이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지용 양극활물질{MANUFACTURING METHOD FOR LITHIUM RECHARGEABLE CATHOD ACTIVE MATERIAL, LITHIUM RECHARGEABLE CATHOD ACTIVE MATERIAL MADE BY THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery produced thereby,

본 발명은 리튬이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 Co 및/또는 Mn 포함하는 Li-Ni 산화물의 표면에 올리빈형 복합 산화물 및 도전성 카본이 도포되어 있는 리튬이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지용 양극활물질에 관한 것이다.
The present invention relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery produced thereby. More particularly, the present invention relates to a method for producing a cathode active material for a lithium secondary battery, And a cathode active material for a lithium secondary battery produced by the method.

전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션/디인터칼레이션될 때의 화학전위(chemical potential)의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다.Cells generate electricity by using materials that can electrochemically react to the positive and negative electrodes. A representative example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when the lithium ions are intercalated / deintercalated in the positive electrode and the negative electrode.

상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.The lithium secondary battery is manufactured by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolytic solution or a polymer electrolyte between the positive electrode and the negative electrode.

리튬이차전지는 1991년 소니(sony)가 처음으로 상용화한 이래 전지의 구조를 비롯하여 부품 및 소재개발을 바탕으로 지속적인 발전을 거듭하여 그 성능이 매년 10% 이상의 빠른 속도록 향상되어 왔고, 최근 정보통신기기의 급속한 발달과 더불어 리튬이차전지 시장도 빠른 속도록 증가하고 있으며, 현대인의 생활에서는 없어서는 안 될 중요한 부품이 되었다. Since lithium-ion battery was commercialized by Sony for the first time in 1991, its performance has been continuously improved by more than 10% every year based on battery structure, component and material development, Along with the rapid development of equipment, the lithium secondary battery market is rapidly increasing, and it has become an indispensable part in modern life.

리튬이차전지의 구동전압, 성능 등 다양한 특성들은 구성요소 중 양극재에 의해 가장 많은 영향을 받는다. 따라서 리튬이차전지 분야에서 새로운 양극재를 개발하려는 다양한 시도들이 진행되어 왔다.Various characteristics such as the driving voltage and performance of the lithium secondary battery are most affected by the cathode material among the components. Therefore, various attempts have been made to develop new cathode materials in the field of lithium secondary batteries.

리튬이차전지용 양극 활물질로 현재까지 가장 널리 사용되는 재료로는 리튬 코발트 산화물(LiCoO2)이다. 1991년 (주)소니에너지텍 사에서 음극으로 하드카본, 전해액으로 카보네이트계 유기용매와 리튬염, 그리고 양극으로 리튬 코발트 산화물을 조합하여 만든 리튬이온전지가 탄생된 이후 지금까지 리튬 코발트 산화물은 양극재료로서 널리 사용되고 있다. 리튬 코발트 산화물이 이차전지에서 요구되는 여러 가지 특성, 즉 고전압, 고용량, 고율 특성, 사이클 특성, 충방전 가역성, 전압 평탄성 등을 만족시키기 때문이다. 하지만, 리튬 코발트 산화물의 주재료인 코발트 금속은 다른 전이금속과 비교하여 고비용에 따른 경제성과 매장량에 따른 자원의 제한성, 그리고 환경오염에 따른 환경규제의 문제 등을 가지고 있다. 또한 이론 용량은 274mAh/g이지만, 실제 용량은 150mAh/g(구조적인 비가역적 상전이 현상에 의한 리튬 탈리의 요인 때문)에 머물고 있다. 따라서, 상기와 같은 리튬 코발트 산화물을 대체할 수 있는 양극 활물질에 관하여 많은 연구가 진행 중이다.Lithium cobalt oxide (LiCoO2) is the most widely used material to date as a cathode active material for lithium secondary batteries. Since the birth of a lithium-ion battery made by Sony Energytech Co., Ltd. in 1991 as a cathode made of a combination of hard carbon, a carbonate-based organic solvent and a lithium salt as an electrolyte, and lithium cobalt oxide as an anode, lithium cobalt oxide has been used as a cathode material . This is because the lithium cobalt oxide satisfies various characteristics required in the secondary battery, namely, high voltage, high capacity, high rate characteristics, cycle characteristics, charge / discharge reversibility, voltage flatness and the like. However, compared to other transition metals, cobalt metal, which is the main material of lithium cobalt oxide, has economic cost due to high cost, resource limitation due to reserves, and environmental regulation due to environmental pollution. In addition, the theoretical capacity is 274 mAh / g, but the actual capacity is 150 mAh / g (due to the lithium desorption caused by the structural irreversible phase transition phenomenon). Therefore, much research is underway on the cathode active material that can replace the lithium cobalt oxide as described above.

코발트의 자원 문제를 회피하는 동시에, 더 큰 고용량을 목표로 하는 관점으로부터, 리튬니켈산화물(예를 들면 LiNiO2)을 실용화하는 시도가 이루어지고 있다. 니켈은 자원이 풍부하고, 저비용화가 용이하며, 고용량화에도 적합하다. 다만, LiNiO2는, 고용량을 갖지만, 결정의 열적 안정성이 낮고, 사이클 특성이나 고온 보존 특성에 개선의 여지가 있다.Attempts have been made to put lithium nickel oxide (for example, LiNiO2) into practical use from the viewpoint of avoiding a resource problem of cobalt and aiming at a larger capacity. Nickel is abundant in resources, is easy to reduce in cost, and is suitable for high capacity. However, LiNiO2 has a high capacity, but has low thermal stability of crystals, and there is room for improvement in cycle characteristics and high-temperature storage characteristics.

일본 특개 2004-111076호 공보에는, 사이클 특성이나 고온 보존 특성을 개량하는 관점으로부터, 일반식 LixNi1 -y-zCoyMnzAaO2(식 중, A는, Fe, V, Cr, Mn, Ti, Mg, Al, B 및 Ca로 이루어진 군으로부터 선택되는 적어도 1종, 0.05≤x≤1.10, 0.10≤y+z≤0.70, 0.05≤z≤0.40, 0≤a≤0.1)로 표시되고, 전자전도도가 10-4≤σ≤10-1S/㎝인 양극 활물질이 제안되어 있다. 그러나, 사이클 특성과 고온 보존 특성의 개선 효과를 얻을 수 있는 조성의 활물질은, 용량이 작아지기 때문에 실용적이지 않다는 문제점이 있었다.Japanese Unexamined Patent Application Publication No. 2004-111076 discloses a method for producing a zirconium compound represented by the general formula Li x Ni 1 -yz Co y Mn z A a O 2 wherein A is Fe, V, Cr, At least one selected from the group consisting of Mn, Ti, Mg, Al, B and Ca, 0.05? X? 1.10, 0.10? Y + z? 0.70, 0.05? Z? 0.40, , And an electronic conductivity of 10 < -4 > / = 10 < -1 > S / cm. However, there is a problem in that the active material having a composition capable of improving the cycle characteristics and the high-temperature storage characteristics is not practical because the capacity is reduced.

올리빈형 복합 산화물(LiFePO4)은 저비용의 경제성, 올리빈(olivine) 구조에 따른 우수한 안전성 특히 고온 안정성이 우수한 재료로서 리튬 전이금속 인산화물의 대표적인 예이다. 올리빈형 복합 산화물의 이론용량은 170mAh/g이며, 합성조건에 따라서는 이론용량에 가까운 150∼160mAh/g의 값을 얻을 수 있으며, 3.2∼3.4V 구간의 전압 평탄성이 아주 우수한 재료로서, 리튬 코발트 산화물을 대체할 가능성이 가장 높은 후보 물질로 꼽히는 물질이다. 하지만, 낮은 전압과 활물질 자체의 전기전도성이 작아 고율 특성이 떨어지는 단점을 가지고 있다. 이를 극복하기 위해 합성 시 다량의 도전재를 첨가하거나, 전극 제조 시 도전재 양을 증가시키는 방법 등이 있으나, 부피에너지 밀도를 감소시키는 결과를 초래하고 있다.
The olivine-type complex oxide (LiFePO4) is a typical example of a lithium transition metal phosphate as a material having low cost economics and superior safety due to an olivine structure, particularly excellent in high-temperature stability. The theoretical capacity of the olivine-type complex oxide is 170 mAh / g. According to the synthesis conditions, a value close to the theoretical capacity of 150-160 mAh / g can be obtained and a material having excellent voltage flatness in the range of 3.2-3.4 V, It is the candidate material that has the highest potential to replace oxides. However, it has disadvantages that the low voltage and the electric conductivity of the active material itself are small and the high-rate characteristics are degraded. In order to overcome this problem, there is a method of adding a large amount of conductive material during the synthesis or increasing the amount of the conductive material in the electrode production, but this results in a reduction in the volume energy density.

본 발명은 상기와 같은 종래 양극활물질들의 문제점을 해결하여 부피 에너지 밀도가 증가되면서도 전기전도성 및 고율 특성이 개선된 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질을 제공하는 것을 목적으로 한다.
It is another object of the present invention to provide a method for preparing a cathode active material having improved electrical conductivity and high rate characteristics while increasing bulk energy density by solving the problems of the conventional cathode active materials as described above and a cathode active material produced thereby.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

Co 및/또는 Mn 포함하는 Li-Ni 산화물, 올리빈형 복합 산화물 및 도전성 카본의 혼합물을 준비하는 제 1 단계; A first step of preparing a mixture of Li-Ni oxide, olivine-type complex oxide and conductive carbon containing Co and / or Mn;

상기 제 1 단계의 혼합물을 500 내지 4000 rpm 에서 1분 내지 5분 동안 제1 교반하는 제 2 단계; 및 A first step of first stirring the mixture of the first step at 500 to 4000 rpm for 1 minute to 5 minutes; And

상기 제 2 단계의 혼합물을 9000 rpm 이상에서 10분 내지 80분 동안 교반하는 제 3 단계;로 이루어지는 양극활물질의 제조 방법을 제공한다.
And a third step of stirring the mixture of the second step at 9000 rpm or more for 10 minutes to 80 minutes.

본 발명의 양극활물질의 제조 방법에 있어서, 상기 Co 및 Mn 포함하는 Li-Ni 산화물은 아래 화학식 1으로 표시되는 것을 특징으로 한다. In the method for producing a positive electrode active material according to the present invention, the Li-Ni oxide containing Co and Mn is represented by the following chemical formula (1).

[화학식 1] Li[LixMnaNibCoc]O2 [Formula 1] Li [Li x Mn a Ni b Co c ] O 2

(상기 식에서 -0.03≤x≤0.15, 0.5≤a≤0.9, 0.05≤b≤0.3, 0.05≤c≤0.35, a+b+c=1 임)(In the above formula -0.03? X? 0.15, 0.5? A? 0.9, 0.05? B? 0.3, 0.05? C? 0.35, a + b + c =

본 발명의 양극활물질의 제조 방법에 있어서, 상기 Co 및/또는 Mn 포함하는 Li-Ni 산화물의 평균 입경(D50)은 5 ~ 15 ㎛인 것을 특징으로 한다. In the method for producing a positive electrode active material according to the present invention, the average particle diameter (D50) of the Li-Ni oxide containing Co and / or Mn is 5 to 15 mu m.

본 발명의 양극활물질의 제조 방법에 있어서, 상기 올리빈형 복합 산화물은 아래 화학식 2로 표시되는 것을 특징으로 한다. In the method for producing a cathode active material of the present invention, the olivine-type complex oxide is represented by the following chemical formula (2).

[화학식 2]LixMyM'zXO4 - wAw ???????? Li x M y M ' z XO 4 - w A w

(상기 화학식 2에서, M 및 M'는 철(Fe), 알루미늄(Al), 붕소(B), 코발트(Co), 크롬(Cr), 구리(Cu), 갈륨(Ga), 게르마늄(Ge), 하프늄(Hf), 마그네슘(Mg), 망간(Mn), 몰리브데늄(Mo), 나이오븀(Nb), 니켈(Ni), 주석(Sn), 티타늄(Ti), 바나듐(V), 아연(Zn), 지르코늄(Zr) 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고, X는 인(P), 비소(As), 비스무트(Bi), 몰리브데늄(Mo), 안티모니(Sb) 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고, A는 불소(F), 황(S) 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고, 0<x≤1.3이고, 0<y≤1이고, 0<z≤1이고, 0<x+y+z≤2이고, 0≤w≤0.5이다.)Wherein M and M 'are at least one element selected from the group consisting of Fe, Al, Boron, Co, Cr, Cu, Ga, , Hafnium (Hf), magnesium (Mg), manganese (Mn), molybdenum (Mo), niobium (Nb), nickel (Ni), tin (Sn), titanium (Ti), vanadium (P), arsenic (As), bismuth (Bi), molybdenum (Mo), antimony (Sb), and zirconium (Zr) And A is an element selected from the group consisting of fluorine (F), sulfur (S) and combinations thereof, 0 <x? 1.3, 0 <y? 1 0 < z < = 1, 0 &lt; x + y + z?

본 발명의 양극활물질의 제조 방법에 있어서, 상기 올리빈형 복합 산화물은 LiFePO4 표시되는 리튬 철 인산화물인 것을 특징으로 한다. In the method for producing a cathode active material according to the present invention, the olivine-type complex oxide is lithium iron phosphate represented by LiFePO 4.

본 발명의 양극활물질의 제조 방법에 있어서, 상기 올리빈형 복합 산화물은 평균입경이 0.01 내지 0.8 ㎛인 것을 특징으로 한다. 상기 올리빈형 복합 산화물의 직경이 상기 범위 이상일 경우 상기 Li-Ni 산화물 표면에 코팅 작업이 어렵고 용량 특성을 저하시키게 된다. In the method for producing a cathode active material of the present invention, the olivine-type complex oxide has an average particle diameter of 0.01 to 0.8 탆. When the diameter of the olivine-type composite oxide is in the above range, the coating operation is difficult on the surface of the Li-Ni oxide and the capacity characteristics are lowered.

본 발명의 양극활물질의 제조 방법에 있어서, 상기 제 1 단계에서 상기 올리빈형 복합 산화물은 상기 Co 및/또는 Mn 포함하는 Li-Ni 산화물 100 중량부당 5 내지 20 중량부의 비율로 혼합하는 것을 특징으로 한다. In the method for producing a cathode active material according to the present invention, the olivine-type complex oxide is mixed in a ratio of 5 to 20 parts by weight per 100 parts by weight of the Li-Ni oxide containing Co and / or Mn .

본 발명의 양극활물질의 제조 방법에 있어서, 상기 도전성 카본은 천연 흑연, 인조 흑연, 카본블랙, 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 및 탄소 섬유로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 한다. In the method for producing a cathode active material according to the present invention, the conductive carbon may be at least one selected from the group consisting of natural graphite, artificial graphite, carbon black, denka black, acetylene black, Ketjen black, channel black, furnace black, lamp black, And at least one selected from the group consisting of

본 발명의 양극활물질의 제조 방법에 있어서, 상기 도전성 카본은 상기 Co 및/또는 Mn 포함하는 Li-Ni 산화물 100 중량부당 0.5 내지 5 중량부의 비율로 혼합하는 것을 특징으로 한다. 상기 도전성 카본이 상기 범위 이상으로 혼합될 경우 상기 Li-Ni 산화물 표면에 코팅시키기 위해 작업 시간이 길어지게 되고 그에 따라 오히려 양극활물질의 표면을 마모시키는 문제점이 발생하게 되며, 상기 범위 이하로 혼합될 경우 도전성과 율특성이 모두 나빠지게 된다. In the method for producing a positive electrode active material according to the present invention, the conductive carbon is mixed at a ratio of 0.5 to 5 parts by weight per 100 parts by weight of the Li-Ni oxide containing Co and / or Mn. When the conductive carbon is mixed in the above range, the working time for coating the surface of the Li-Ni oxide becomes long, which results in a problem that the surface of the cathode active material is worn. Both the conductivity and the rate characteristics are deteriorated.

본 발명의 양극활물질의 제조 방법에 있어서, 상기 도전성 카본은 입경이 0.01 내지 0.5 ㎛인 것을 특징으로 한다. In the method for producing a positive electrode active material of the present invention, the conductive carbon has a particle diameter of 0.01 to 0.5 탆.

본 발명의 제조 방법은 Co 및/또는 Mn 포함하는 Li-Ni 산화물, 올리빈형 복합 산화물 및 도전성 카본의 혼합물을 준비한 후, 상기 혼합물을 500 내지 4000 rpm 에서 1분 내지 5분 동안 제1 교반하고 이후 다시 9000 rpm 이상에서 10분 내지 80분 동안 제 2 교반하는 것을 특징으로 한다. The preparation method of the present invention is characterized in that after preparing a mixture of Li-Ni oxide, olivine-type complex oxide and conductive carbon containing Co and / or Mn, the mixture is first stirred at 500 to 4000 rpm for 1 minute to 5 minutes, And then the second stirring is performed at 9000 rpm or more for 10 minutes to 80 minutes.

상기 Co 및/또는 Mn 포함하는 Li-Ni 산화물, 올리빈형 복합 산화물 및 도전성 카본의 혼합물을 500 내지 4000 rpm 에서 1분 내지 5분 동안 제1 교반함으로써 코팅시 걸리는 시간을 감소시키고 효율을 높이며, 올리빈형 복합 산화물 및 도전성 카본 자체가 뭉치는 현상을 방지하게 된다. 상기 제 2 교반에서는 9000 rpm 이상에서 10분 내지 80분 동안 교반함으로써 단순 혼합이 아니라 에너지를 인가하여 상기 Li-Ni 산화물, 올리빈형 복합 산화물 및 도전성 카본이 단순히 혼합되는 것이 아니라 물리화학적 결합을 형성하도록 한다. The first mixture of the Li-Ni oxide, the olivine-type complex oxide and the conductive carbon containing Co and / or Mn is stirred at 500 to 4000 rpm for 1 minute to 5 minutes to reduce the time taken for coating, The hollow composite oxide and the conductive carbon itself are prevented from aggregating. In the second agitation, the mixture is stirred at 9000 rpm or more for 10 minutes to 80 minutes to apply the energy, not the simple mixing, so that the Li-Ni oxide, the olivine-type complex oxide and the conductive carbon are mixed, do.

본 발명에 의한 혼합은 일반적인 혼합기를 사용하는 것이 가능하다. The mixing according to the present invention can use a general mixer.

본 발명은 또한, 본 발명의 양극활물질의 제조 방법에 의하여 제조된 양극활물질을 제공한다. The present invention also provides a cathode active material produced by the method for producing a cathode active material of the present invention.

본 발명의 양극활물질은 상기 Co 및/또는 Mn 포함하는 Li-Ni 산화물의 표면에 상기 올리빈형 복합 산화물 및 상기 도전성 카본이 도포되어 있는 것을 특징으로 한다.
The positive electrode active material of the present invention is characterized in that the olivine-type composite oxide and the conductive carbon are coated on the surface of the Li-Ni oxide containing Co and / or Mn.

본 발명에 의한 양극활물질의 제조 방법에 의하여 제조된 양극활물질은 상기 Co 및/또는 Mn 포함하는 Li-Ni 산화물의 표면을 올리빈형 복합 산화물 및 도전성 카본으로 코팅함으로써 표면에서의 부반응을 저해하여 높은 에너지 밀도 및 고용량을 나타낼 뿐만 아니라, 안전성 및 수명 특성이 향상된 양극활물질을 제공할 수 있다.
The cathode active material produced by the method for producing a cathode active material according to the present invention is coated with the olivine-type composite oxide and the conductive carbon on the surface of the Li-Ni oxide containing Co and / or Mn to inhibit side reactions on the surface, Density and high capacity, as well as improved safety and lifetime characteristics of the cathode active material.

도 1은 본 발명의 실시예 및 비교예에서 제조된 양극활물질에 대한 SEM 사진을 측정한 결과를 나타내었다.
도 2 및 도 3에 본 발명의 실시예 및 비교예에서 제조된 양극활물질을 포함하는 테스트셀의 수명 특성을 측정한 결과를 나타내었다.
도 4 및 도 5에 본 발명의 실시예 및 비교예에서 제조된 양극활물질을 포함하는 테스트셀에 대한 DSC 분석 결과를 나타내었다.
FIG. 1 shows SEM photographs of the cathode active materials prepared in Examples and Comparative Examples of the present invention.
FIG. 2 and FIG. 3 show the results of measuring the lifetime characteristics of the test cell including the cathode active material prepared in Examples and Comparative Examples of the present invention.
FIG. 4 and FIG. 5 show DSC analysis results of the test cell including the cathode active material prepared in Examples and Comparative Examples of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1> 1>

Co 및/또는 Mn 포함하는 Li-Ni 산화물로서 평균 입경 D50 이 10 ㎛ 인 Li[Ni0.5Co0.2Mn0.3]O2 을 100 중량부, 올리빈형 복합 산화물로서 LiFePO4 5 중량부 및 도전성 카본으로서 denka black 을 1.0 중량부를 혼합하였다. 100 parts by weight of Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 having an average particle diameter D 50 of 10 μm as the Li-Ni oxide containing Co and / or Mn, 5 parts by weight of LiFePO 4 as the olivine- 1.0 part by weight of black were mixed.

상기 혼합물을 1000 rpm 에서 2분간 교반 후, 3000 rpm 에서 3분간 교반하였다. 이후 Nippon & Cokes Eng.사의 MP Mixer 건식 코팅기에 상기 혼합물을 넣고 10000 rpm 에서 10분간 교반하여 양극활물질을 제조하였다.
The mixture was stirred at 1000 rpm for 2 minutes and then at 3000 rpm for 3 minutes. Then, the mixture was placed in a MP Mixer dry coater of Nippon & Cokes Eng., And stirred at 10,000 rpm for 10 minutes to prepare a cathode active material.

<< 실시예Example 2 내지 7> 2 to 7>

상기 Li[Ni0 .5Co0 .2Mn0 .3]O2 을 100 중량부당 혼합되는 LiFePO4 중량부 및 denka black 중량부를 아래 표 1에서와 같이 하고, 1000 rpm 에서 2분간 교반 후, 3000 rpm 에서 3분간 교반한 후, 10000 rpm 에서 교반 시간을 아래 표 1에서와 같이 조절하여 실시예 2 내지 7 의 양극활물질을 제조하였다.
The Li [Ni 0 .5 Co 0 .2 Mn 0 .3] LiFePO 4 , as shown in parts by weight, and denka black parts by weight Table 1 below are mixed per 100 parts by weight of the O 2 and, after stirring for 2 minutes at 1000 rpm, 3000 rpm for 3 minutes, and stirred at 10000 rpm was adjusted as shown in Table 1 below to prepare the cathode active materials of Examples 2 to 7.

LiFePO4 중량부LiFePO 4 parts by weight denka black 중량부denka black weight 10000 rpm 에서 교반 시간(분)10000 rpm stirring time (minute) 실시예 1Example 1 55 1.01.0 1010 실시예 2Example 2 88 1.01.0 3030 실시예 3Example 3 1010 1.01.0 3030 실시예 4Example 4 1313 1.01.0 6060 실시예 5Example 5 1010 00 1010 실시예 6Example 6 1010 2.02.0 6060 실시예 7Example 7 1010 3.03.0 6060 비교예 Comparative Example --

<< 비교예Comparative Example >>

비교예로서 Co 및/또는 Mn 포함하는 Li-Ni 산화물로서 평균 입경 D50 이 10 ㎛ 인 Li[Ni0 .5Co0 .2Mn0 .3]O2 만을 사용하였다.
Comparative Example as was used only Co and / or a Li-average particle diameter D50 is 10 ㎛ as Li-Ni oxide containing Mn [Ni 0 .5 Co 0 .2 Mn 0 .3] O 2.

<< 실험예Experimental Example > > SEMSEM 사진 특성 Photo characteristics

상기 실시예 1 내지 7 및 비교예에서 제조된 양극활물질에 대한 SEM 사진을 측정하고 그 결과를 도 1에 나타내었다.
SEM photographs of the cathode active materials prepared in Examples 1 to 7 and Comparative Examples were measured and the results are shown in FIG.

<테스트 셀의 제작 ><Fabrication of Test Cell>

이와 같이 제조된 상기 실시예 1 내지 7 및 비교예의 양극활물질, 결합제로서 폴리비닐리덴플루오라이드(PVDF), 도전재로서 슈퍼 P(Super P)를, 중량비로 96 : 2 : 2 으로 용매(N-메틸피롤리돈)와 함께 혼합하여 양극 활물질조성물 슬러리를 제조하고, 이 슬러리를 테이프 형태로 캐스팅하여 극판을 제조하였다.(PVDF) as a binder and Super P (Super P) as a conductive material in a weight ratio of 96: 2: 2 to a solvent (N- Methyl pyrrolidone) to prepare a positive electrode active material composition slurry, and the slurry was cast in the form of a tape to prepare an electrode plate.

이 극판에 대한 대극으로서 Li-호일을 사용하고, EC/DMC/EMC/FB=3/3/3/1 인 혼합물 및 LiPF6를 포함하는 전해액을 사용하여 코인 셀 타입의 반쪽 전지를 제조하였다.
A coin-cell type half-cell was manufactured using Li-foil as a counter electrode to this electrode plate, and a mixture of EC / DMC / EMC / FB = 3/3/3/1 and an electrolyte containing LiPF6.

<< 실험예Experimental Example > > 율특성Rate characteristic 평가 evaluation

율(C-rate)특성을 평가하기 위하여 전기화학 분석장치(Toyo사 Toscat3000U, Japan)를 이용하여 상온(30℃), 3.0~4.3V의 전위영역, 다양한 전류밀도 조건에서 충, 방전 실험을 하여 사이클에 따른 용량 변화를 아래 표 2 및 표 3 에 나타내었다.Charge and discharge experiments were carried out at room temperature (30 ° C), potential range of 3.0 to 4.3 V, and various current density conditions using an electrochemical analyzer (Toyo Toscat 3000 U, Japan) in order to evaluate the C- The change in the capacity according to the cycle is shown in Table 2 and Table 3 below.

Figure 112012109007778-pat00001
Figure 112012109007778-pat00001

Figure 112012109007778-pat00002
Figure 112012109007778-pat00002

상기 표 2에서 도전성 카본으로서 DENKA BLACK 이 첨가량이 일정할 때 리튬철인산화물이 10 중량부 혼합되는 경우 율특성이 우수하게 나타났으며, 상기 표 3에서 리튬철인산화물의 첨가량이 일정할 때 도전성 카본으로서 DENKA BLACK 이 첨가되는 양에 따라서 율특성이 크게 차이가 나타나지 않았다.
In Table 2, when the addition amount of DENKA BLACK as the conductive carbon was constant, 10 parts by weight of lithium iron oxide was mixed, and the rate characteristics were excellent. When the amount of lithium iron oxide added was constant in Table 3, The rate characteristics were not significantly different depending on the amount of DENKA BLACK added.

<< 실험예Experimental Example > 수명특성 평가> Evaluation of life characteristics

상기 실시예 1 내지 7 및 비교예의 양극활물질을 포함하는 테스트셀의 수명 특성을 측정하고 그 결과를 도 2 및 도 3에 나타내었다.
The life characteristics of the test cells including the cathode active materials of Examples 1 to 7 and Comparative Examples were measured and the results are shown in FIG. 2 and FIG. 3.

<< 실험예Experimental Example > > 열안정성Thermal stability 평가 evaluation

상기 실시예 1 내지 7 및 비교예의 양극활물질을 포함하는 테스트셀의 열안정성을 평가하기 위해 DSC 를 측정하고 그 결과를 도 4 및 도 5에 나타내었다. DSC was measured to evaluate the thermal stability of the test cell comprising the cathode active materials of Examples 1 to 7 and Comparative Examples, and the results are shown in FIGS. 4 and 5. FIG.

본 발명에 따라 제조된 활물질의 열적안정성을 다음과 같은 방법으로 평가하였다. 실시예 1 내지 7 및 비교예에 따라 제조된 코인 전지를 상기 4.5V로 충전한 다음 건조실(dry room)에서 해체하여 극판을 분리하였다. 분리된 극판에서 Al-포일위에 도포되어 있던 활물질만을 약 10mg 정도 채취하여 DSC 분석을 분리된 극판에서 Al-포일 위에 도포되어 있던 활물질만을 약 10mg 정도 채취하여 910 DSC(TA Instrument사 제품)를 이용하여 DSC 분석을 실시하였다.The thermal stability of the active material prepared according to the present invention was evaluated by the following method. The coin cells prepared according to Examples 1 to 7 and Comparative Example were charged to 4.5 V and then disassembled in a dry room to separate the electrode plates. About 10 mg of the active material coated on the Al-foil was taken from the separated electrode plate, and about 10 mg of the active material coated on the Al-foil was collected from the separated electrode plate by DSC analysis and then analyzed using 910 DSC (manufactured by TA Instrument) DSC analysis was performed.

DSC 분석은 공기 분위기하에서 100~300 ℃사이의 온도범위에서 3 ℃/min의 승온 속도로 스캐닝하여 실시하였으며, 그 결과를 도 4 및 도 5에 나타내었다. DSC analysis was performed by scanning at a heating rate of 3 DEG C / min in a temperature range of 100 to 300 DEG C in an air atmosphere, and the results are shown in FIG. 4 and FIG.

본 발명의 실시예에 따라 도전성 카본 및 리튬철인산화물로 코팅된 Li[Ni0.5Co0.2Mn0.3]O2 의 발열 피크의 면적은 코팅되지 않은 비교예의 Li[Ni0.5Co0.2Mn0.3]O2 보다 훨씬 감소하였으며 피크의 폭이 더 완만해지고 넓어졌다. The area of the exothermic peak of Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 coated with conductive carbon and lithium iron phosphate oxide according to an embodiment of the present invention, Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 , and the width of the peak became wider and wider.

이와 같은 발열량의 감소는 Li[Ni0 .5Co0 .2Mn0 .3]O2 의 표면에 코팅된 도전성 카본 및 리튬철인산화물이 전지의 사이클이 진행됨에 따라 전극 표면에서 발생하는 잔류 리튬과 전해액의 부반응을 억제하여 양극 활물질의 열적 안정성이 우수하다는 사실을 보여주는 것이다.The reduction in heat generation, such as the Li [Ni 0 .5 Co 0 .2 Mn 0 .3] residue of a conductive carbon and a lithium iron phosphate coating on the surface of the O 2 generated in the electrode surface in accordance with the cycle of the battery proceeds, lithium and The negative electrode active material has excellent thermal stability by suppressing the side reaction of the electrolyte solution.

Claims (12)

아래 화학식 1로 표시되는 Li-Ni 산화물, 올리빈형 복합 산화물 및 도전성 카본의 혼합물을 준비하는 제 1 단계;
[화학식 1] Li[LixMnaNibCoc]O2
(상기 화학식 1에서 -0.03≤x≤0.15, 0.5≤a≤0.9, 0.05≤b≤0.3, 0.05≤c≤0.35, a+b+c=1 임)
상기 제 1 단계의 혼합물을 500 내지 4000 rpm 에서 1분 내지 5분 동안 제1 교반하는 제 2 단계; 및
상기 제 2 단계의 혼합물을 9000 rpm 이상에서 10분 내지 80분 동안 제2 교반하는 제 3 단계;로 이루어지는 리튬이차전지용 양극활물질의 제조 방법.
A first step of preparing a mixture of Li-Ni oxide, olivine-type complex oxide and conductive carbon represented by the following Chemical Formula 1;
[Formula 1] Li [Li x Mn a Ni b Co c ] O 2
(In the formula 1, -0.03? X? 0.15, 0.5? A? 0.9, 0.05? B? 0.3, 0.05? C? 0.35, a + b + c =
A first step of first stirring the mixture of the first step at 500 to 4000 rpm for 1 minute to 5 minutes; And
And a second step of stirring the mixture of the second step at a temperature of 9000 rpm for 10 minutes to 80 minutes.
삭제delete 제 1 항에 있어서,
상기 Li-Ni 산화물의 평균 입경(D50)은 5 ~ 15 ㎛인 것을 특징으로 하는 리튬이차전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the Li-Ni oxide has an average particle diameter (D 50 ) of 5 to 15 탆.
제 1 항에 있어서,
상기 올리빈형 복합 산화물은 아래 화학식 2로 표시되는 것을 특징으로 하는 리튬이차전지용 양극활물질의 제조 방법.
[화학식 2] LixMyM'zXO4-wAw
(상기 화학식 2에서, M 및 M'는 철(Fe), 알루미늄(Al), 붕소(B), 코발트(Co), 크롬(Cr), 구리(Cu), 갈륨(Ga), 게르마늄(Ge), 하프늄(Hf), 마그네슘(Mg), 망간(Mn), 몰리브데늄(Mo), 나이오븀(Nb), 니켈(Ni), 주석(Sn), 티타늄(Ti), 바나듐(V), 아연(Zn), 지르코늄(Zr) 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고,
X는 인(P), 비소(As), 비스무트(Bi), 몰리브데늄(Mo), 안티모니(Sb) 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고,
A는 불소(F), 황(S) 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고,
0<x≤1.3이고, 0<y≤1이고, 0<z≤1이고, 0<x+y+z≤2이고, 0≤w≤0.5이다.)
The method according to claim 1,
Wherein the olivine-type complex oxide is represented by the following formula (2).
???????? Li x M y M ' z XO 4-w A w
Wherein M and M 'are at least one element selected from the group consisting of Fe, Al, Boron, Co, Cr, Cu, Ga, , Hafnium (Hf), magnesium (Mg), manganese (Mn), molybdenum (Mo), niobium (Nb), nickel (Ni), tin (Sn), titanium (Ti), vanadium (Zn), zirconium (Zr), and combinations thereof,
X is an element selected from the group consisting of phosphorus (P), arsenic (As), bismuth (Bi), molybdenum (Mo), antimony (Sb)
A is an element selected from the group consisting of fluorine (F), sulfur (S), and combinations thereof,
0 <x? 1.3, 0 <y? 1, 0 <z? 1, 0 <x + y + z? 2, and 0? W?
제 4 항에 있어서,
상기 올리빈형 복합 산화물은 LiFePO4 표시되는 리튬 철 인산화물인 것인 리튬 이차 전지용 리튬이차전지용 양극활물질의 제조 방법.
5. The method of claim 4,
Wherein the olivine-type complex oxide is lithium iron phosphate represented by LiFePO 4. 2. The lithium secondary battery according to claim 1,
제 1 항에 있어서,
상기 올리빈형 복합 산화물은 입경이 0.01 내지 0.8 ㎛ 인 것을 특징으로 하는 리튬이차전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the olivine-type complex oxide has a particle diameter of 0.01 to 0.8 占 퐉.
제 1 항에 있어서,
상기 제 1 단계에서 상기 올리빈형 복합 산화물은 상기 Li-Ni 산화물 100 중량부당 5 내지 20 중량부의 비율로 혼합하는 것을 특징으로 하는 리튬이차전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the olivine-type complex oxide is mixed in a ratio of 5 to 20 parts by weight per 100 parts by weight of the Li-Ni oxide in the first step.
제 1 항에 있어서,
상기 도전성 카본은 천연 흑연, 인조 흑연, 덴카블랙, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 및 탄소 섬유로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 하는 리튬이차전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the conductive carbon is at least one selected from the group consisting of natural graphite, artificial graphite, denka black, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, A method for producing a cathode active material for a secondary battery.
제 1 항에 있어서,
상기 도전성 카본은 상기 Li-Ni 산화물 100 중량부당 0.5 내지 5 중량부의 비율로 혼합하는 것을 특징으로 하는 리튬이차전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the conductive carbon is mixed at a ratio of 0.5 to 5 parts by weight per 100 parts by weight of the Li-Ni oxide.
제 1 항에 있어서,
상기 도전성 카본은 입경이 0.01 내지 0.5 ㎛인 것을 특징으로 하는 리튬이차전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the conductive carbon has a particle diameter of 0.01 to 0.5 占 퐉.
제 1 항의 제조 방법에 의하여 제조된 리튬이차전지용 양극활물질.
A cathode active material for a lithium secondary battery produced by the method of claim 1.
제 11 항에 있어서,
상기 리튬이차전지용 양극활물질은 상기 Li-Ni 산화물의 표면에 상기 올리빈형 복합 산화물 및 상기 도전성 카본이 도포되어 있는 것을 특징으로 하는 리튬이차전지용 양극활물질.
12. The method of claim 11,
Wherein the positive electrode active material for a lithium secondary battery is characterized in that the olivine-type composite oxide and the conductive carbon are coated on the surface of the Li-Ni oxide.
KR1020120156268A 2012-12-28 2012-12-28 Manufacturing method for lithium rechargeable cathod active material, lithium rechargeable cathod active material made by the same KR101464509B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120156268A KR101464509B1 (en) 2012-12-28 2012-12-28 Manufacturing method for lithium rechargeable cathod active material, lithium rechargeable cathod active material made by the same
PCT/KR2013/012296 WO2014104810A1 (en) 2012-12-28 2013-12-27 Method for producing cathode active material for lithium secondary battery, and cathode active material for lithium secondary battery produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120156268A KR101464509B1 (en) 2012-12-28 2012-12-28 Manufacturing method for lithium rechargeable cathod active material, lithium rechargeable cathod active material made by the same

Publications (2)

Publication Number Publication Date
KR20140087208A KR20140087208A (en) 2014-07-09
KR101464509B1 true KR101464509B1 (en) 2014-11-25

Family

ID=51021751

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120156268A KR101464509B1 (en) 2012-12-28 2012-12-28 Manufacturing method for lithium rechargeable cathod active material, lithium rechargeable cathod active material made by the same

Country Status (2)

Country Link
KR (1) KR101464509B1 (en)
WO (1) WO2014104810A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892488B2 (en) 2017-01-17 2021-01-12 Samsung Electronics Co., Ltd. Electrode active material, lithium secondary battery containing the electrode active material, and method of preparing the electrode active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040096743A1 (en) * 2002-08-27 2004-05-20 Izaya Okae Positive active material and non-aqueous electrolyte secondary battery
KR100889622B1 (en) * 2007-10-29 2009-03-20 대정이엠(주) Cathode active material for lithium secondary batteries with high safety and method of preparing for the same and lithium secondary batteries comprising the same
KR20110023067A (en) * 2009-08-28 2011-03-08 대정이엠(주) Cathode active materials for lithium secondary batteries, method of preparing for the same and lithium secondary batteries comprising the same
KR20120053880A (en) * 2010-11-18 2012-05-29 주식회사 엘지화학 Polar material of lithium secondary battery for a large output and lithium secondary battery comprising thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308677B1 (en) * 2011-05-31 2013-09-13 주식회사 코캄 Lithium secondary batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040096743A1 (en) * 2002-08-27 2004-05-20 Izaya Okae Positive active material and non-aqueous electrolyte secondary battery
KR100889622B1 (en) * 2007-10-29 2009-03-20 대정이엠(주) Cathode active material for lithium secondary batteries with high safety and method of preparing for the same and lithium secondary batteries comprising the same
KR20110023067A (en) * 2009-08-28 2011-03-08 대정이엠(주) Cathode active materials for lithium secondary batteries, method of preparing for the same and lithium secondary batteries comprising the same
KR20120053880A (en) * 2010-11-18 2012-05-29 주식회사 엘지화학 Polar material of lithium secondary battery for a large output and lithium secondary battery comprising thereof

Also Published As

Publication number Publication date
KR20140087208A (en) 2014-07-09
WO2014104810A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
TWI613858B (en) Bivalent metal doping for sodium manganese oxide as cathode materials for sodium ion batteries
CN102362384B (en) Nonaqueous electrolyte secondary battery
KR101475922B1 (en) Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same
EP3930051B1 (en) Positive electrode material and application thereof
JP6429172B2 (en) Positive electrode active material having excellent electrochemical performance and lithium secondary battery including the same
KR20110093610A (en) Nonaqueous electrolyte secondary battery
JP2007200865A (en) Nonaqueous electrolyte secondary battery
CN104428254A (en) Doped nickelate compounds
JP2011070789A (en) Nonaqueous electrolyte secondary battery
CN103137960A (en) Lithium ion battery positive electrode material and preparation method thereof, and lithium ion battery
Guo et al. Effects of sodium substitution on properties of LiMn2O4 cathode for lithium ion batteries
US20200388839A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
CN103782423A (en) Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
KR20120062748A (en) Non-aqueous electrolyte secondary battery
KR20070083384A (en) Cathode active material for lithium secondary battery
JP2006252940A (en) Lithium secondary battery and manufacturing method of lithium manganate
US9325009B2 (en) Cathodic active material for nonaqueous electrolyte secondary battery, cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6233828B2 (en) Negative electrode for lithium ion battery, lithium ion battery comprising the negative electrode
EP3641026A1 (en) Secondary battery
JP7142301B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JP5544981B2 (en) Method for producing electrode active material
AU2012206930A1 (en) Ion-exchange battery
KR101464509B1 (en) Manufacturing method for lithium rechargeable cathod active material, lithium rechargeable cathod active material made by the same
KR101233410B1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium battery comprising same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171016

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191004

Year of fee payment: 6