JP2751389B2 - Method for producing positive electrode mixture for thermal battery and thermal battery using the same - Google Patents

Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Info

Publication number
JP2751389B2
JP2751389B2 JP1118936A JP11893689A JP2751389B2 JP 2751389 B2 JP2751389 B2 JP 2751389B2 JP 1118936 A JP1118936 A JP 1118936A JP 11893689 A JP11893689 A JP 11893689A JP 2751389 B2 JP2751389 B2 JP 2751389B2
Authority
JP
Japan
Prior art keywords
positive electrode
thermal battery
electrode mixture
battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1118936A
Other languages
Japanese (ja)
Other versions
JPH02299162A (en
Inventor
彰規 粟野
博資 山崎
和典 原口
真紀 冨士本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1118936A priority Critical patent/JP2751389B2/en
Publication of JPH02299162A publication Critical patent/JPH02299162A/en
Application granted granted Critical
Publication of JP2751389B2 publication Critical patent/JP2751389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム/二硫化鉄系熱電池に関し、詳しく
は高率放電時の正極内部抵抗を小さくして、電池作動電
圧と持続時間の向上を図ったものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium / iron disulfide-based thermal battery, and more particularly, to reducing the internal resistance of a positive electrode during high-rate discharge to improve battery operating voltage and duration. It is a thing.

従来の技術 熱電池は常温で不活性であるが、高温に加熱すると活
性となり、外部へ電力を供給し得るようになる電池で貯
蔵形電池の一種である。従って、5〜10年あるいはそれ
以上の貯蔵後においても製造直後と何ら電池特性が変わ
らないので緊急用電源に利用されている。また、高温で
作動させるために電極反応が進み易く、分極も少ないの
で、大電流放電性に優れ、さらに使用希望時には起動信
号を入れると瞬時に電力を取出せる等の特徴を有する。
2. Description of the Related Art A thermal battery is inactive at room temperature, but becomes active when heated to a high temperature, and is a type of storage battery that can supply power to the outside. Therefore, even after storage for 5 to 10 years or more, the battery characteristics are not changed from that immediately after production, so that it is used as an emergency power supply. In addition, since the electrode is operated at a high temperature, the electrode reaction is easy to proceed and the polarization is small, so that it is excellent in large current discharge property, and furthermore, when a use signal is desired, power can be instantaneously taken out by inputting a start signal.

しかし近年では、ますます大きな出力電流値が望まれ
てきており、高率放電時には負極で生成されたリチウム
イオンの正極への拡散速度が律速となり、正極合剤中で
消費されるリチウムイオンが不足となる。その結果、素
電池の内部抵抗が増大して、電池作動電圧を低下させる
という短所を有している。
However, in recent years, increasingly large output current values have been desired, and the diffusion rate of lithium ions generated at the negative electrode to the positive electrode during high-rate discharge is rate-limiting, resulting in a shortage of lithium ions consumed in the positive electrode mixture. Becomes As a result, there is a disadvantage that the internal resistance of the unit cell increases and the operating voltage of the cell decreases.

この課題を克服するために従来から進められて来た研
究は、 1)正極合剤中に含まれる塩化カリウムと塩化リチウム
の共融塩の組成を、塩化リチウム側へずらして過剰と
し、正極合剤中のリチウムイオンを、増加させる方法。
In order to overcome this problem, researches that have been pursued in the past include the following: 1) The composition of the eutectic salt of potassium chloride and lithium chloride contained in the positive electrode mixture was shifted to the lithium chloride side to make it excessive, and A method for increasing lithium ions in an agent.

2)正極合剤に酸化リチウムを添加し、正極中のリチウ
ムイオンを増加させる方法があった。
2) There is a method in which lithium oxide is added to the positive electrode mixture to increase lithium ions in the positive electrode.

発明が解決しようとする課題 上記1)は、溶融塩中の塩化リチウムが増加し、従っ
てリチウムイオンも増加するが、溶融塩の融点が高くな
り、放電する場合電池の作動温度を高くする必要があ
る。このため規定電圧に到達する時間、いわゆる立上り
時間が遅れるという欠点がでてくる。さらに積層電池と
した場合、発熱剤の増加,保温層の増加が必要となるた
め、電池が大型化してしまう。また2)は酸化リチウム
の溶融塩に対する溶解度が小さいために所望とするリチ
ウムイオン量の増加とならないので、添加効果が小さ
い。
Problems 1 to be Solved by the Invention According to the above 1), lithium chloride in the molten salt increases, and thus lithium ions also increase. However, the melting point of the molten salt increases, and it is necessary to increase the operating temperature of the battery when discharging. is there. For this reason, there is a disadvantage that the time required to reach the specified voltage, that is, the rise time is delayed. Further, in the case of a stacked battery, the number of heat generating agents and the number of heat retaining layers need to be increased, so that the size of the battery is increased. In the case of 2), since the solubility of lithium oxide in the molten salt is small, the desired amount of lithium ions is not increased, and thus the effect of addition is small.

本発明は、上記のような従来の課題を解消するため、
塩化リチウムの添加方法に着目して、高率放電時の正極
の内部抵抗を小さくし、作動電圧を向上させたリチウム
/二硫化鉄系熱電池を実現させることを目的とする。
The present invention solves the above-mentioned conventional problems,
Focusing on the method of adding lithium chloride, an object of the present invention is to realize a lithium / iron disulfide-based thermal battery in which the internal resistance of the positive electrode during high-rate discharge is reduced and the operating voltage is improved.

課題を解決するための手段 この課題を解決するために本発明は、未処理の二硫化
鉄と塩化カリウム−塩化リチウム溶融塩電解質と塩化リ
チウムをそれぞれ粉体で、また、必要に応じて電解質を
含有した無機バインダーを加えて混合攪拌する工程と、
この合剤をアルゴン,窒素またはこの混合ガスを流通さ
せた高温炉中で加熱処理する工程と、同炉内で冷却する
工程と、乾燥雰囲気中で処理済み正極合剤を粉砕する工
程を経て正極合剤粉末を製造するものである。
Means for Solving the Problems In order to solve this problem, the present invention provides an untreated iron disulfide, a potassium chloride-lithium chloride molten salt electrolyte, and lithium chloride in powder form, respectively. A step of mixing and stirring the added inorganic binder,
The mixture is heated in a high-temperature furnace through which argon, nitrogen, or a mixture of these gases flows, cooled in the furnace, and crushed in a dry atmosphere. This is to produce a mixture powder.

そして、負極にリチウムまたはリチウム合金を使用
し、電解質層に塩化カリウム−塩化リチウム溶融塩電解
質を保持させた酸化マグネシウム(MgO)の粉末成型体
を用い、正極層に前記の正極合剤を粉末成型層とした3
層からなる素電池と、テルミット反内を利用した発熱剤
とを組合せLi/FeS2系熱電池を構成する。
Then, using a lithium or lithium alloy for the negative electrode, a powder molded body of magnesium oxide (MgO) holding a potassium chloride-lithium chloride molten salt electrolyte for the electrolyte layer, and powder molding the positive electrode mixture for the positive electrode layer Layer 3
A unit cell having a layer, constituting the combined Li / FeS 2 system thermal battery and a heating agent utilizing thermite Han'nai.

作用 この製造法と熱電池を用いれば、従来のようなハイレ
ート負荷時の電池内部抵抗の増大は抑制され、作動電圧
も向上する。すなわちハイレート負荷時に正極内でリチ
ウムイオンが多量に消費されるが、本発明によれば正極
合剤内には塩化リチウムが添加されているため従来の電
池に比べリチウムイオン量が多く、正極反応に対するリ
チウムイオンの供給が円滑に行なわれる。
Effect By using this manufacturing method and the thermal battery, the increase in the internal resistance of the battery at the time of a high-rate load as in the related art is suppressed, and the operating voltage is also improved. That is, a large amount of lithium ions are consumed in the positive electrode during high-rate loading. However, according to the present invention, since lithium chloride is added in the positive electrode mixture, the amount of lithium ions is larger than that of a conventional battery, and Supply of lithium ions is performed smoothly.

以上のように、製造容易で、電池内部抵抗が小さいた
め高い作動電圧を得る熱電池が提供できる。
As described above, it is possible to provide a thermal battery which is easy to manufacture and has a high operating voltage due to a small internal resistance of the battery.

実施例 以下に、本発明の実施例を第1図,第2図および第3
図を用いて説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to the drawings.

第1図は正極合剤の製造工程図を示す。図においてFe
S2粉末を66重量%(以下同じ)、塩化リチウム−塩化カ
リウム(LiCl−KCl)溶融塩電解質(Eで表示)粉末12
%、LiCl−KCl溶融塩電解質を二酸化ケイ素(SiO2)バ
インダーに保持させた粉末(EBで表示)7%、LiClの10
0メッシュパス粉末15%をそれぞれ秤取する。LiClの添
加量は、添加したLiClの一部が溶融塩にとけて、その融
点が600℃でもLiClの固体が存在する量で、5%〜20%
とする。第1図においては、これら4種全てをボールミ
ル容器に入れて密封し、回転させ均一混合粉末を得る。
これを、パイレックスガラス容器に移し、不活性ガス例
えばアルゴンガスが流れるフローティング式電気炉中に
入れる。アルゴンガスは、前述の合剤1kg当り5〜50/
minのガス流量で流し続ける。5/min以下では空気の
流入による酸化が起り、50/min以上では不経済であ
る。電気炉を昇温し、電解質の融点以上とし、500℃上
限が特性上好ましいので370〜500℃間で1時間保持す
る。その後、アルゴンガスを流し続けながら冷却し、10
0℃以下で容器を引出し、乾燥雰囲気中に移す。この状
態で乳鉢等で粉砕し50〜250メッシュに整粒して正極合
剤とする。尚ここではEBを用いたがE比率を若干増量し
てバインダーを除去してもよく、またアルゴンガスの替
りに窒素ガス(N2)又はArとN2の混合ガスを流してもよ
い。
FIG. 1 shows a manufacturing process diagram of the positive electrode mixture. In the figure, Fe
66% by weight of S 2 powder (the same applies hereinafter), lithium chloride-potassium chloride (LiCl-KCl) molten salt electrolyte (denoted by E) powder 12
%, A powder in which a LiCl-KCl molten salt electrolyte is held in a silicon dioxide (SiO 2 ) binder (indicated by EB) 7%, LiCl 10
Weigh out 15% of 0 mesh pass powder. The amount of LiCl added is such that a part of the added LiCl is dissolved in the molten salt and the LiCl solid is present even at a melting point of 600 ° C., and is 5% to 20%.
And In FIG. 1, all these four types are put in a ball mill container, sealed, and rotated to obtain a uniform mixed powder.
This is transferred to a Pyrex glass container and placed in a floating electric furnace through which an inert gas such as an argon gas flows. Argon gas is 5-50 / kg / kg of the aforementioned mixture.
Keep flowing at min gas flow. At 5 / min or less, oxidation occurs due to inflow of air, and at 50 / min or more, it is uneconomical. The temperature of the electric furnace is raised to a temperature equal to or higher than the melting point of the electrolyte. Then, cooling while continuing to flow argon gas, 10
Withdraw the container below 0 ° C and transfer to a dry atmosphere. In this state, the mixture is pulverized in a mortar or the like and sized to 50 to 250 mesh to obtain a positive electrode mixture. Although EB is used here, the binder may be removed by slightly increasing the E ratio, or nitrogen gas (N 2 ) or a mixed gas of Ar and N 2 may be flowed instead of argon gas.

第2図は、本発明の正極合剤層を用いた素電池の断面
図を示す。
FIG. 2 is a cross-sectional view of a unit cell using the positive electrode mixture layer of the present invention.

図中、1は正極合剤層であり、放電電気量と利用率の
関係に応じて適量が決定され、規定量秤取して金型内に
入れ、低圧の予備成型ののち、LiCl−KCl50%を含浸処
理したMgOバインダーからなる電解質粉末を定量秤取し
て重ねて入れ、高圧成型を行なって電解質層2を形成す
ると共に、二層一体ペレットを得る。3は負極カップ、
4は負極カップ3の内面に配置した純リチウムと鉄粉の
一体混合層もしくはリチウム・アルミニウム合金とEと
からなる負極活物質層で、この2つを合せ負極5と呼
び、前記ペレットと組合せて素電池とする。
In the figure, 1 is a positive electrode mixture layer, an appropriate amount is determined according to the relationship between the amount of discharge electricity and the utilization rate, a prescribed amount is weighed and placed in a mold, and after low-pressure preliminary molding, LiCl-KCl50 % Of an electrolyte powder made of a MgO binder impregnated and weighed and stacked, and then subjected to high-pressure molding to form an electrolyte layer 2 and obtain a two-layer integrated pellet. 3 is a negative electrode cup,
Reference numeral 4 denotes a negative active material layer composed of an integral mixed layer of pure lithium and iron powder or a lithium-aluminum alloy and E, which is disposed on the inner surface of the negative electrode cup 3. A unit cell.

第3図は、第1図の製造法による正極合剤を用いて構
成された第2図の素電池で組立てられた積層型熱電池の
縦断面図である。
FIG. 3 is a longitudinal sectional view of a laminated thermal battery assembled with the unit cells of FIG. 2 constituted by using the positive electrode mixture according to the manufacturing method of FIG.

図中、6は第2図の素電池で必要数を直列に積層構成
することで、容易に所望の電圧が得られ、過塩素酸カリ
ウムと鉄粉との均一混合物からなる発熱剤7と交互に積
層する。8,9は、前記積層体の上・下部に配置した蓄熱
剤層であり、例えば硫酸リチウムと塩化ナトリウムの混
合塩とSiO2バインダーからなる層で、495℃で凝固潜熱
を発生して前記積層体の温度を長時間保持させる。これ
は電池の長寿命化に不可欠の蓄熱剤である。10は点火器
でそのリード線は一対の起動用端子11に接続され、この
端子よりパルス電流を通電すると、火炎を発してヒート
パッド12を燃焼させ、その火炎は導火帯13に燃焼伝ぱさ
せる。14,15は正,負極出力端子で積層体の最上部と最
下部から取出した内部リード線16,17と接続する。18は
断熱層でMin−Kと呼ばれる高性能の無機質断熱材を用
いてスタックを包囲した。19は電池蓋、20は電池ケース
でいずれもステンレス鋼からなり、それらの嵌合部を溶
接密封する。
In the drawing, reference numeral 6 denotes a unit cell shown in FIG. 2 in which a required number is easily laminated in series to easily obtain a desired voltage, and alternately with a heating agent 7 composed of a uniform mixture of potassium perchlorate and iron powder. To be laminated. Reference numerals 8 and 9 denote heat storage agent layers disposed above and below the laminate, for example, a layer composed of a mixed salt of lithium sulfate and sodium chloride and a SiO 2 binder, which generate latent heat of solidification at 495 ° C. Maintain body temperature for a long time. This is a heat storage agent indispensable for extending the life of the battery. Reference numeral 10 denotes an igniter whose lead wire is connected to a pair of starting terminals 11. When a pulse current is supplied from this terminal, a flame is emitted and the heat pad 12 is burned, and the flame is transmitted to the squib 13. . The positive and negative output terminals 14 and 15 are connected to the internal lead wires 16 and 17 taken out from the top and bottom of the laminate. Numeral 18 denotes a heat insulating layer, which surrounded the stack by using a high-performance inorganic heat insulating material called Min-K. Reference numeral 19 denotes a battery cover, and reference numeral 20 denotes a battery case, both of which are made of stainless steel, and their fitting portions are welded and sealed.

本発明を用いた積層型熱電池は、一対の起動用端子11
からパルス電流を通電することより、点火器10,ヒート
パッド12,導火帯13,発熱剤7の順に燃焼し、素電池6を
加熱して起動する。素電池は約500℃に昇温し、LiCl−K
Cl電解質が溶融すると、本発明の正極合剤層は放電を開
始して、高率放電時にも作動電圧の高い出力電圧を供給
する。
The stacked thermal battery according to the present invention has a pair of starting terminals 11.
When the pulse current is applied from the above, the igniter 10, the heat pad 12, the squib 13, and the exothermic agent 7 are burned in this order, and the unit cell 6 is heated and started. The cell temperature rises to about 500 ° C, and the LiCl-K
When the Cl electrolyte is melted, the positive electrode mixture layer of the present invention starts discharging and supplies an output voltage having a high operating voltage even during high-rate discharging.

次に本実施例の効果を調べた結果を述べる。第4図は
素電池の直径45mm,電池外径49mm,電池高さ35mmの電池形
状における1000mA/cm2電流密度の放電試験結果を示す。
素電池直列数は15,平均作動電圧2V/セルである。
Next, the result of examining the effect of the present embodiment will be described. FIG. 4 shows a discharge test result of a current density of 1000 mA / cm 2 in a battery shape of a unit cell having a diameter of 45 mm, a battery outer diameter of 49 mm, and a battery height of 35 mm.
The number of unit cells in series is 15, average operating voltage 2V / cell.

図中Aは本発明の実施例による放電カーブを示し、Li
Clの添加比率15%である。Bは従来例1を示し、塩化リ
チウム無添加の正極合剤を用いた電池である。Cは従来
例2を示し、酸化リチウム添加による正極合剤を用いた
電池である。初期の電池作動電圧を拡大して比べると電
池Bは平均作動電圧27.6Vを示し、電池Aの27.9Vよりも
0.3V低いものである。又電池Cは、作動電圧が平坦なも
のであるが、電圧レベルが26.9VとAよりも1V低いもの
である。
A in the figure shows a discharge curve according to the embodiment of the present invention,
The addition ratio of Cl is 15%. B shows Conventional Example 1 and is a battery using a positive electrode mixture without addition of lithium chloride. C shows Conventional Example 2 and is a battery using a positive electrode mixture obtained by adding lithium oxide. Battery B shows an average operating voltage of 27.6 V when compared with the initial battery operating voltage, which is 27.9 V higher than that of Battery A.
0.3V lower. The battery C has a flat operating voltage, but has a voltage level of 26.9 V, which is 1 V lower than that of the battery A.

本発明Aは、放電電流密度500mA/cm2以上で、27.9Vと
高い電池作動電圧を示し、素電池内部抵抗の小さなもの
が得られるという効果を発揮していた。
The present invention A exhibited a battery operating voltage as high as 27.9 V at a discharge current density of 500 mA / cm 2 or more, and exhibited an effect that a battery having a small internal resistance was obtained.

発明の効果 以上の説明から明らかなように、塩化リチウムを、粉
末で混合した後、アルゴンガス,窒素ガス又は、これら
の混合ガスを流通させた高温炉中で加熱処理後、同炉内
で冷却し、そののち乾燥雰囲気で粉砕する各工程を経た
正極合剤粉末を素電池の正極合剤層に成型して使用し、
これと発熱剤と組合せた本発明の積層型電池は、高率放
電において、電池作動電圧が高くなり、内部抵抗は小さ
くなる。
Effect of the Invention As is clear from the above description, after mixing lithium chloride with powder, heat treatment is performed in a high-temperature furnace in which argon gas, nitrogen gas, or a mixture of these gases is circulated, and then cooled in the furnace. Then, the positive electrode mixture powder that has passed through each step of pulverizing in a dry atmosphere is molded into a positive electrode mixture layer of a unit cell and used,
The stacked battery of the present invention in which this is combined with an exothermic agent has a high battery operating voltage and a low internal resistance at high rate discharge.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例における正極合剤の製造工程
図、第2図は同合剤を成型して正極合剤層を構成した素
電池の断面図、第3図は第2図の素電池を直列構成した
積層型熱電池の断面図、第4図は本発明の実施例および
従来例の放電カーブの比較図である。 1……正極合剤層、2……電解質層、5……負極、6…
…素電池、7……発熱剤。
FIG. 1 is a manufacturing process diagram of a positive electrode mixture according to an embodiment of the present invention, FIG. 2 is a sectional view of a unit cell in which the mixture is molded to form a positive electrode mixture layer, and FIG. FIG. 4 is a cross-sectional view of a stacked thermal battery in which unit cells are configured in series, and FIG. 4 is a comparison diagram of the discharge curves of the embodiment of the present invention and the conventional example. 1 ... positive electrode mixture layer, 2 ... electrolyte layer, 5 ... negative electrode, 6 ...
... unit cell, 7 ... heating agent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨士本 真紀 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭59−173972(JP,A) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Maki Fujimoto 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-59-173972 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムまたはリチウム合金からなる負
極、塩化カリウム−塩化リチウム溶融塩からなる電解質
層、二硫化鉄からなる正極を有する熱電池において、二
硫化鉄と溶融塩と塩化リチウムを少なくとも含む正極合
剤を均質に混合攪拌する工程と、アルゴン,窒素または
この混合ガスを流通させた高温炉中で加熱処理する工程
と、同炉内で冷却する工程とを経た後、乾燥雰囲気中で
粉砕する工程とからなる熱電池用正極合剤の製造法。
1. A thermal battery having a negative electrode made of lithium or a lithium alloy, an electrolyte layer made of a molten salt of potassium chloride and lithium chloride, and a positive electrode made of iron disulfide, wherein the positive electrode contains at least iron disulfide, a molten salt and lithium chloride. After a process of mixing and stirring the mixture homogeneously, a process of performing a heat treatment in a high-temperature furnace through which argon, nitrogen, or a mixed gas is circulated, and a process of cooling in the furnace, pulverization is performed in a dry atmosphere. A method for producing a positive electrode mixture for a thermal battery, comprising the steps of:
【請求項2】塩化リチウム添加量が二硫化鉄に対して5
重量%以上15重量%以下の範囲である特許請求の範囲第
1項記載の熱電池用正極合剤の製造法。
2. The amount of lithium chloride added is 5 to iron disulfide.
2. The method for producing a positive electrode mixture for a thermal battery according to claim 1, wherein the amount is in the range of not less than 15% by weight and not more than 15% by weight.
【請求項3】流通ガス量が、正極合剤の仕込み量1kgに
対して5〜50/minの流量である特許請求の範囲第1項
記載の熱電池用正極合剤の製造法。
3. The method for producing a positive electrode mixture for a thermal battery according to claim 1, wherein the amount of flowing gas is 5 to 50 / min with respect to 1 kg of the charged amount of the positive electrode mixture.
【請求項4】熱処理温度が370〜500℃の範囲である特許
請求の範囲第1項記載の熱電池用正極合剤の製造法。
4. The method of claim 1, wherein the heat treatment temperature is in the range of 370 to 500 ° C.
【請求項5】特許請求の範囲第1項記載の熱電池用正極
合剤粉末からなる正極合剤層を素電池に用いた熱電池。
5. A thermal battery using a positive electrode mixture layer comprising the positive electrode mixture powder for a thermal battery according to claim 1 as a unit cell.
JP1118936A 1989-05-12 1989-05-12 Method for producing positive electrode mixture for thermal battery and thermal battery using the same Expired - Lifetime JP2751389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118936A JP2751389B2 (en) 1989-05-12 1989-05-12 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118936A JP2751389B2 (en) 1989-05-12 1989-05-12 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Publications (2)

Publication Number Publication Date
JPH02299162A JPH02299162A (en) 1990-12-11
JP2751389B2 true JP2751389B2 (en) 1998-05-18

Family

ID=14748895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118936A Expired - Lifetime JP2751389B2 (en) 1989-05-12 1989-05-12 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Country Status (1)

Country Link
JP (1) JP2751389B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327542B1 (en) * 2021-08-31 2021-11-17 국방과학연구소 Cathode for thermal battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117956A1 (en) * 2009-04-06 2010-10-14 Eaglepicher Technologies, Llc Thermal battery cathode materials and batteries including same
CN106450366A (en) * 2016-10-19 2017-02-22 上海空间电源研究所 Ultra-thin unit cell for thermal battery and preparation method thereof
CN110534697B (en) * 2019-09-11 2022-03-01 中国工程物理研究院电子工程研究所 Thermal battery single battery and preparation method thereof
CN111916749B (en) * 2020-08-17 2023-03-17 贵州梅岭电源有限公司 Heating anode integrated material for thermal battery and preparation method thereof
CN113851630A (en) * 2021-10-18 2021-12-28 中国电子科技集团公司第十八研究所 Oxide composite positive electrode material for small high-voltage thermal battery and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327542B1 (en) * 2021-08-31 2021-11-17 국방과학연구소 Cathode for thermal battery

Also Published As

Publication number Publication date
JPH02299162A (en) 1990-12-11

Similar Documents

Publication Publication Date Title
US4596752A (en) Electrochemical cell structures and materials therefor
US4221849A (en) Iron-lithium anode for thermal batteries and thermal batteries made therefrom
JP3333207B2 (en) Electrochemical alkali metal battery and method for manufacturing the same
JP2751389B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2006236990A (en) Thermal cell
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2653065B2 (en) Stacked thermal battery
JPH0740489B2 (en) Thermal battery
JPH084006B2 (en) Thermal battery
JP2751388B2 (en) Thermal battery
JP2808627B2 (en) Thermal battery
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2563386B2 (en) Method for manufacturing negative electrode for thermal battery
JPH05101831A (en) Thermal battery
JPS6155224B2 (en)
JPH02295066A (en) Manufacture of positive active material for thermal battery and thermal battery using this material
JP2847982B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JPH02284360A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JP2979207B2 (en) Method of manufacturing negative electrode for thermal battery and laminated thermal battery using the negative electrode
JPH0740488B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JPS60230362A (en) Thermal battery
JPH02284359A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JPH06203844A (en) Thermo battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH01107465A (en) Manufacture of sealed alkaline secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12