JPS6155224B2 - - Google Patents

Info

Publication number
JPS6155224B2
JPS6155224B2 JP11195078A JP11195078A JPS6155224B2 JP S6155224 B2 JPS6155224 B2 JP S6155224B2 JP 11195078 A JP11195078 A JP 11195078A JP 11195078 A JP11195078 A JP 11195078A JP S6155224 B2 JPS6155224 B2 JP S6155224B2
Authority
JP
Japan
Prior art keywords
powder
heat
battery
heating
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11195078A
Other languages
Japanese (ja)
Other versions
JPS5539132A (en
Inventor
Hirosuke Yamazaki
Teruo Yamane
Mitsuhiro Nakanishi
Yasuyuki Kumano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11195078A priority Critical patent/JPS5539132A/en
Publication of JPS5539132A publication Critical patent/JPS5539132A/en
Publication of JPS6155224B2 publication Critical patent/JPS6155224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【発明の詳細な説明】 本発明は加熱剤を内蔵する熱電池の作動時間の
延長を目的とし、さらに詳しくは素電池と発熱剤
の積層体からなる発電主要部の両端に配置した保
温層の保温効果を改善して上記目的を達成しよう
とするものである。
Detailed Description of the Invention The present invention aims to extend the operating time of a thermal battery containing a heating agent, and more specifically, the present invention aims to extend the operating time of a thermal battery containing a heating agent. This aims to achieve the above objective by improving the heat retention effect.

熱電池は、常温では固体であるが、高温に加熱
すると液体になる溶融塩を電解質とする電池で、
その代表的な電解質としては、LiCl−KCl共融混
合塩(LiCl43重量%、KCl57重量%、融点352
℃)やLiBr−KBr共融混合塩LiBr52重量%、
KBr48重量%、融点330℃)がある。熱電池で
は、これらの電解質を、実用上無水状態で用いる
ため、負極材料としてマグネシウム、カルシウム
などの高負極電位の金属を使用できる長所があ
る。また高率放電特性がよい、5年以上の長期の
保存に耐える、広い環境温度で使用できる等々短
時間で大電流を得る場合に有利な電池である。
A thermal battery is a battery that uses molten salt as an electrolyte, which is solid at room temperature but becomes liquid when heated to high temperatures.
A typical electrolyte is LiCl-KCl eutectic mixed salt (43% by weight of LiCl, 57% by weight of KCl, melting point: 352% by weight)
°C) and LiBr-KBr eutectic mixed salt LiBr52% by weight,
KBr48% by weight, melting point 330℃). In thermal batteries, these electrolytes are practically used in an anhydrous state, so they have the advantage of being able to use metals with a high negative electrode potential, such as magnesium and calcium, as negative electrode materials. In addition, it is a battery that has good high-rate discharge characteristics, can withstand long-term storage of 5 years or more, can be used in a wide range of environmental temperatures, and is advantageous when obtaining a large current in a short period of time.

従来の代表的な素電池構成は、負極の金属カル
シウム板、電解質のLiCl−KCl共融塩、減極剤の
クロム酸カルシウム、正極集電板の鉄、ニツケル
からなつている。一方加熱剤の代表例としては、
金属粉末と酸化剤の粉末混合物が用いられ、いわ
ゆるテルミツト反応が利用される。その代表的な
ものにはZr−BaCrO4,Zr−PbCrP4−KMnO4
どがあり、発熱量、燃焼特性、ガス発生量など総
合的に検討して選択される。
A typical conventional cell structure consists of a metallic calcium plate as a negative electrode, a LiCl-KCl eutectic salt as an electrolyte, calcium chromate as a depolarizer, and iron and nickel as a positive current collector plate. On the other hand, typical examples of heating agents include:
A powder mixture of metal powder and oxidizing agent is used, and a so-called thermite reaction is utilized. Typical examples include Zr-BaCrO 4 and Zr-PbCrP 4 -KMnO 4 , which are selected after comprehensive consideration of calorific value, combustion characteristics, gas generation amount, etc.

これらの素電池と加熱剤は交互に任意の数を積
層して、任意の電圧を得ることができるが、前述
の様に熱電池は加熱剤の燃焼熱によつて、素電池
の電解質が溶融状態になつている時のみ、電力を
供給出来る電池のため、積層体の活性温度をいか
に長く維持するかが、作動時間の長、短を決定づ
ける非常に重要な要因である。特に放熱面積の広
い積層体両端部の素電池は中央部の他素電池に比
べ著しく冷却速度が早いので、両端部の素電池の
保温能力を向上させることが必要である。
Any number of these unit cells and heating agents can be stacked alternately to obtain any voltage, but as mentioned above, in thermal batteries, the electrolyte of the unit cell melts due to the combustion heat of the heating agent. Since the battery can only supply power when the battery is in the active state, how long the activation temperature of the stack is maintained is a very important factor that determines the length of the operating time. In particular, since the unit cells at both ends of the laminate, which have a large heat dissipation area, cool down much faster than the other units at the center, it is necessary to improve the heat retention ability of the unit cells at both ends.

従来の保温層については種々提案され、また改
善されているが、基本的かつ共通的考え方はQ=
C・M・tの関係にのつとつて構成されている。
すなわち熱量Qは比熱Cと重量Mと温度tの積に
比例することを応用し、いかに効率よくQを大き
くして冷却速度をゆるめるかであつた。このた
め、Li2SO4−NaCl蓄熱材を用いたCに関する提
案、鋼などの金属板を用いたMに関する提案など
があり、またtは加熱剤の使用量で任意に設定で
きるので、これらの組み合わせを上手に利用すれ
ばよい。
Various proposals have been made and improvements have been made to the conventional thermal insulation layer, but the basic and common idea is that Q=
It is constructed based on the relationship of C・M・t.
That is, by applying the fact that the amount of heat Q is proportional to the product of specific heat C, weight M, and temperature t, the problem was how to efficiently increase Q and slow down the cooling rate. For this reason, there are proposals for C using Li 2 SO 4 -NaCl heat storage material, and proposals for M using metal plates such as steel, and since t can be set arbitrarily depending on the amount of heating agent used, these Just make good use of the combination.

しかしながら、従来の考え方はあくまでも加熱
剤で保温材料をある設定温度まで加熱上昇させ、
自然冷却にまかせる方式であり、本発明で提案す
る保温層そのものが発熱する考えではなかつた。
However, the conventional way of thinking is to use a heating agent to heat the insulation material to a certain set temperature.
This method relies on natural cooling, and the heat insulating layer itself proposed by the present invention was not designed to generate heat.

従来の欠点はQを大きくとらねばならないため
に保温層の占める体積が必然的に大きくなつた
り、重くなつたり、小型、軽量化の1つのネツク
になつている。また前述の金属板を用いたものに
あつては、振動、衝撃などの環境状態において、
しばしば加熱剤が脱落して不作動になることもあ
つた。
The disadvantage of the conventional method is that since the Q must be large, the volume occupied by the heat insulating layer becomes large and the heat insulating layer becomes heavy, which is one of the obstacles to making the device smaller and lighter. In addition, in the case of the above-mentioned metal plate, under environmental conditions such as vibration and shock,
Often the heating agent would fall out and the system would become inoperable.

本発明は、素電池と加熱剤とを交互に積層した
発電主要部を有する熱電池において、発電主要部
の端部に設ける保温層の構成材料として、たとえ
ばMg(マグネシウム)、Ca(カルシウム)およ
びこれらの合金粉末と、硝酸塩、過塩素塩又はク
ロム酸塩から選ばれた酸化剤粉末と、塩化リチウ
ム−塩化カリウム溶融塩を代表とする各種溶融塩
と無機質バインダーとの混合成形体を用い、前記
保温層として電池作動時には積極的に自己発熱を
開始するように構成したものである。
The present invention provides a thermal battery having a power generation main part in which unit cells and a heating agent are alternately laminated, and which uses Mg (magnesium), Ca (calcium), and Using a mixed molded body of these alloy powders, an oxidizing agent powder selected from nitrates, perchlorates, or chromates, various molten salts typified by lithium chloride-potassium chloride molten salt, and an inorganic binder, The heat insulating layer is configured to actively start generating heat when the battery is in operation.

以下本発明をその代表的実施例により詳述す
る。
The present invention will be explained in detail below with reference to representative examples thereof.

第1図は積層形熱電池の断面図である。図中1
は素電池であり代表例を前述した。2は加熱剤で
同じく代表例を前述した。3は点火具で起動端子
4a,4bからパルス電流を加えると火炎を発
し、火道5を通つて加熱剤2にそれぞれ着火させ
る役目を有している。6は本発明の保温層用発熱
体で、保温層の中心的構成品であり、金属粉末と
してマグネシウム粉末100〜42メツシユ(0.149mm
〜0.35mmの大きさの粒子)と、酸化剤として硝酸
カリウム(KNO3)粉末と、塩化カリウム−塩化
リチウム共融塩と、無機質バインダーとしてシリ
カ粉末(SiO2)を35:20:30:15(重量%)の混
合組成に調合し、ボールミル混合機で均一になる
よう約1時間回転する。混合終了後取出し、金型
に所定量(30mm素電池用としては約1.2g用い
る)を秤取し、1トン/cm2で加圧成形して、金型
から取出す。発熱量の調節はマグネシウム粉末の
混合比又は酸化剤KNO3の混合比によつてある程
度任意に調節ができるので大変便利である。この
場合、100メツシユ以下の微粉末のマグネシウム
を用いると単位時間当りの発熱量は多いが、あま
りにも短時間に発熱反応が終了してしまうので、
前述のような適当な大きさの粒状のものを用いる
方が好ましい。発熱体6の発熱反応はその両面に
配置された加熱剤2によつて加熱されると、溶融
塩が溶けて酸化剤のKNO3が活性化し、マグネシ
ウム粉末と次のような生成熱の反応を行なう。
FIG. 1 is a sectional view of a stacked thermal battery. 1 in the diagram
is a unit cell, and a representative example was mentioned above. Reference numeral 2 is a heating agent, and a typical example thereof was also described above. Reference numeral 3 denotes an igniter which emits a flame when a pulse current is applied from starting terminals 4a and 4b, and has the role of igniting the heating agent 2 through the fire channel 5. 6 is a heating element for a heat insulation layer of the present invention, which is a central component of the heat insulation layer, and contains magnesium powder of 100 to 42 mesh (0.149 mm) as a metal powder.
~0.35 mm size particles), potassium nitrate (KNO 3 ) powder as an oxidizing agent, potassium chloride-lithium chloride eutectic salt, and silica powder (SiO 2 ) as an inorganic binder in a 35:20:30:15 mixture ( % by weight) and rotated in a ball mill mixer for about 1 hour to make it uniform. After mixing, the mixture is taken out, a predetermined amount (approximately 1.2 g is used for a 30 mm battery) is weighed out into a mold, pressure-molded at 1 ton/cm 2 , and taken out from the mold. It is very convenient to adjust the calorific value to some extent by adjusting the mixing ratio of the magnesium powder or the mixing ratio of the oxidizing agent KNO 3 . In this case, if fine powder magnesium of 100 meshes or less is used, the calorific value per unit time is large, but the exothermic reaction ends in a too short time.
It is preferable to use particles of appropriate size as described above. When the exothermic reaction of the heating element 6 is heated by the heating agent 2 placed on both sides of the heating element 6, the molten salt melts and the oxidizing agent KNO 3 is activated, causing the following reaction of heat of formation with the magnesium powder. Let's do it.

Mg+KNO3 →MgO+KNO2+(−ΔHf゜) (ここで−ΔHf゜は標準生成エンタルピーで
−601.70ΔHf゜/Kjmol-1である。) この反応は溶融塩が溶けている間は酸化剤が順
次拡散していくので続行し、従つて積層体端部素
電池1′は保温される。
Mg + KNO 3 → MgO + KNO 2 + (-ΔH f゜) (Here, -ΔH f゜ is the standard enthalpy of formation, which is -601.70ΔH f゜/Kjmol -1 .) This reaction continues while the molten salt is dissolved. continues to diffuse sequentially, and the stacked end unit cell 1' is therefore kept warm.

7は発熱体6の外部に設けた耐熱断熱材であ
る。8a,8bは出力端子、9はガラス密封端子
を有する外装蓋、10は外装ケースで外装蓋9と
の嵌合部を溶接で完全密閉とする。11は積層体
の保温と電池外部の熱的損傷を防止するための断
熱層である。
7 is a heat-resistant heat insulating material provided outside the heating element 6. 8a and 8b are output terminals, 9 is an exterior lid having a glass-sealed terminal, and 10 is an exterior case whose fitting portion with the exterior lid 9 is completely sealed by welding. Reference numeral 11 denotes a heat insulating layer for keeping the laminate warm and preventing thermal damage to the outside of the battery.

第2図は保温層の部分拡大図を示している。図
中、1は素電池、2は加熱剤である。21は0.1
mm厚さの鉄板、22はマグネシウム粒子、23は
酸化剤であり、酸化剤と溶融塩と無機質バインダ
ーの混合物であつて、前述の様に加圧成型でペレ
ツト状に加工される。
FIG. 2 shows a partially enlarged view of the heat insulating layer. In the figure, 1 is a unit cell, and 2 is a heating agent. 21 is 0.1
mm thick iron plate, 22 is magnesium particles, 23 is an oxidizing agent, which is a mixture of the oxidizing agent, molten salt, and an inorganic binder, and is processed into pellets by pressure molding as described above.

以上の基本構成は従来例とほゞ同じであるが、
積層体用保温層に加熱剤の熱を蓄熱する従来構造
と異なり、加熱剤の熱を受けることにより自発的
に発熱する層を設けているところに特徴がある。
The above basic configuration is almost the same as the conventional example, but
Unlike the conventional structure in which the heat of the heating agent is stored in the heat insulating layer for the laminate, this structure is characterized by the provision of a layer that spontaneously generates heat by receiving the heat of the heating agent.

上記実施例は熱電池の貯蔵中において何ら反応
しないが、一旦電池が活性状態になると発熱体6
が発熱反応を開始し、積層体の保温を始めるもの
である。
Although the above embodiment does not react in any way during storage of the thermal battery, once the battery is activated, the heating element 6
starts an exothermic reaction and begins to keep the laminate warm.

以上の様に発熱体6に用いる溶融塩は素電池内
部に用いる電解質と同じものでもよく、またそれ
よりも低融点溶融塩も使用できるので、広い温度
範囲に渡つて保温能力を発揮することになり、従
つて電池寿命も延長される。
As mentioned above, the molten salt used for the heating element 6 may be the same as the electrolyte used inside the unit cell, or a molten salt with a lower melting point can also be used, so it can exhibit heat retention ability over a wide temperature range. Therefore, the battery life is also extended.

第3図は−40℃おいて12セル直列構成で発熱体
6を備えない従来例Aと、実施例の本発明の電池
Bを400mA/cm3という高率放電した場合の電圧
カープである。従来例Aは20秒時点まではBとほ
とんど差はないが、20秒以後は積層体端部の素電
池の放熱が大きいので温度低下が厳しく、この
為、電解質の固体化によつて不働態化し、積層素
電池全体が不活性となるが、本発明の電池Bの場
合は、前述のように発熱体6が電池作動中発熱し
ているため、急激な温度低下が防止され、従つて
電圧低下も緩慢となる。
FIG. 3 shows voltage curves when a conventional example A with a 12-cell series configuration and no heating element 6 and a battery B of the present invention according to an example were discharged at a high rate of 400 mA/cm 3 at -40°C. Conventional example A has almost no difference from B until 20 seconds, but after 20 seconds, the temperature drops severely because the heat dissipation from the unit cells at the end of the stack is large, and for this reason, the electrolyte becomes passive due to solidification. However, in the case of battery B of the present invention, since the heating element 6 generates heat during battery operation as described above, a rapid temperature drop is prevented, and the voltage decreases. The decline will also be slow.

前記の実施例ではマグネシウム粉末を用いた例
を述べたが、カルシウム粒子を用いると反応が活
発化し、標準生成エンタルピーは635.09ΔHf
゜/KJmol-1とやや高い値を示す。合金例では
Mg2Ca(カルシウム混合比45重量%融点714℃)
の粒子を用い、同様に実験用試料を作つて確認し
たが、ややカルシウムに近い発熱を発生した。
In the above example, an example using magnesium powder was described, but when calcium particles are used, the reaction becomes active, and the standard enthalpy of formation is 635.09ΔH f
It shows a slightly high value of ゜/KJmol -1 . In the alloy example
Mg 2 Ca (calcium mixing ratio 45% by weight, melting point 714℃)
A similar experimental sample was made and confirmed using particles of , but it generated heat somewhat similar to that of calcium.

酸化剤では前記の硝酸カリウムの他に過塩素酸
カリウム(KClO4)やクロム酸カリウムを確認し
たが、同様な効果を示したものの硝酸カリウムが
最も発熱反応が順調に進行した。溶融塩について
も臭化カリウム−臭化リチウム混合塩(KBr52重
量%、LiBr48重量%、融点330℃)を調べたとこ
ろ、塩化カリウム−塩化リチウムにやや劣るもの
の実用的には問題ないことを確認した。
In addition to the above-mentioned potassium nitrate, potassium perchlorate (KClO 4 ) and potassium chromate were confirmed as oxidizing agents, and although they showed similar effects, the exothermic reaction proceeded most smoothly with potassium nitrate. As for the molten salt, we investigated a mixed salt of potassium bromide and lithium bromide (KBr52% by weight, LiBr48% by weight, melting point 330℃), and found that although it was slightly inferior to potassium chloride-lithium chloride, it was not a problem for practical use. .

上記の様に本発明によれば、自発的に発熱する
保温層によつて、作動時間の延長が可能となり、
長時間形熱電池の技術が一歩前進するとともに、
その効果は絶大である。
As described above, according to the present invention, the operating time can be extended by the heat-retaining layer that spontaneously generates heat.
As long-term thermal battery technology takes a step forward,
The effect is tremendous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた積層形熱電池
の縦断面図、第2図は保温層の構成例を示す縦断
面図、第3図は放電電圧特性を比較した図であ
る。 1……素電池、2……加熱剤、6……発熱体、
22……還元性金属粉末、23……酸化層。
FIG. 1 is a longitudinal sectional view of a laminated thermal battery used in an example of the present invention, FIG. 2 is a longitudinal sectional view showing an example of the structure of a heat insulating layer, and FIG. 3 is a diagram comparing discharge voltage characteristics. 1...Battery, 2...Heating agent, 6...Heating element,
22... Reducing metal powder, 23... Oxidized layer.

Claims (1)

【特許請求の範囲】 1 素電池と加熱剤とを交互に積層した発電主要
部の端部に保温層を有し、前記保温層には少なく
とも還元性金属粉末と、酸化材粉末と、溶融塩粉
末と、無機質バインダーとの混合成形体で構成さ
れる発熱体を設け、前記発熱体が加熱剤によつて
加熱された時に発熱反応を開始するように構成し
たことを特徴とする熱電池。 2 還元性金属粉末はMg,Caあるいはこれらの
合金粉末であり、酸化材粉末は硝酸塩もしくはク
ロム酸塩であることを特徴とする特許請求の範囲
第1項記載の熱電池。 3 溶融塩粉末は共融塩であることを特徴とする
特許請求の範囲第2項記載の熱電池。
[Scope of Claims] 1. A heat insulating layer is provided at the end of the main power generation section in which unit cells and heating agents are alternately laminated, and the heat insulating layer contains at least reducing metal powder, oxidizing material powder, and molten salt. 1. A thermal battery comprising: a heating element made of a mixed molded body of powder and an inorganic binder; and configured to start an exothermic reaction when the heating element is heated by a heating agent. 2. The thermal battery according to claim 1, wherein the reducing metal powder is Mg, Ca or an alloy powder thereof, and the oxidizing material powder is a nitrate or chromate. 3. The thermal battery according to claim 2, wherein the molten salt powder is a eutectic salt.
JP11195078A 1978-09-11 1978-09-11 Thermal battery Granted JPS5539132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11195078A JPS5539132A (en) 1978-09-11 1978-09-11 Thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11195078A JPS5539132A (en) 1978-09-11 1978-09-11 Thermal battery

Publications (2)

Publication Number Publication Date
JPS5539132A JPS5539132A (en) 1980-03-18
JPS6155224B2 true JPS6155224B2 (en) 1986-11-26

Family

ID=14574205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11195078A Granted JPS5539132A (en) 1978-09-11 1978-09-11 Thermal battery

Country Status (1)

Country Link
JP (1) JPS5539132A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815072B2 (en) * 1984-11-30 1996-02-14 日本電池株式会社 Method for manufacturing thermal battery electrodes
JPH0815073B2 (en) * 1984-11-30 1996-02-14 日本電池株式会社 Method for manufacturing thermal battery electrodes
JP4788073B2 (en) * 2001-06-29 2011-10-05 朝日ウッドテック株式会社 Construction method of wooden flooring
CN113328109B (en) * 2021-05-25 2022-08-23 中国工程物理研究院电子工程研究所 Heat slow-release element with laminated structure and application thereof in thermal battery

Also Published As

Publication number Publication date
JPS5539132A (en) 1980-03-18

Similar Documents

Publication Publication Date Title
US3725132A (en) Solid state thermally active battery
US4044192A (en) Thermal batteries
JP3777582B2 (en) Thermal battery
JPS6155224B2 (en)
JP2751389B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2006236993A (en) Thermal cell
JP2563386B2 (en) Method for manufacturing negative electrode for thermal battery
JPH084006B2 (en) Thermal battery
JP2653065B2 (en) Stacked thermal battery
JPH097594A (en) Thermal battery
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2979207B2 (en) Method of manufacturing negative electrode for thermal battery and laminated thermal battery using the negative electrode
JP2751388B2 (en) Thermal battery
JP2847982B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JPH05101831A (en) Thermal battery
JPS60230362A (en) Thermal battery
JP3418994B2 (en) Thermal battery
JP4381092B2 (en) Thermal battery
US5114432A (en) Electrode for use in a high temperature rechargeable molten salt battery and method of making said electrode
JPH02295066A (en) Manufacture of positive active material for thermal battery and thermal battery using this material
JP2815354B2 (en) Stacked thermal battery
JP2600752B2 (en) Thermal battery
JPS6057185B2 (en) thermal battery
JPH0740488B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same