JPH0441468B2 - - Google Patents

Info

Publication number
JPH0441468B2
JPH0441468B2 JP57189835A JP18983582A JPH0441468B2 JP H0441468 B2 JPH0441468 B2 JP H0441468B2 JP 57189835 A JP57189835 A JP 57189835A JP 18983582 A JP18983582 A JP 18983582A JP H0441468 B2 JPH0441468 B2 JP H0441468B2
Authority
JP
Japan
Prior art keywords
zinc powder
zinc
surface area
battery
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57189835A
Other languages
Japanese (ja)
Other versions
JPS5978455A (en
Inventor
Akio Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57189835A priority Critical patent/JPS5978455A/en
Publication of JPS5978455A publication Critical patent/JPS5978455A/en
Publication of JPH0441468B2 publication Critical patent/JPH0441468B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、亜鉛を負極活物質として用いる電池
の製造方法の改良に係り、特に低温重負荷特性の
向上をはかることを目的とする。 たとえばアルカリ電池では、放電進行に伴つて
亜鉛が不動態化して放電利用率が低下するのを防
止するため、ポリアクリル酸ナトリウムやカルボ
キシメチルロースなどのゲル化剤でゲル状化した
り、亜鉛の粒子表面を水銀でアマルガム化するな
どの手段が講じられているが、低温重負荷特性に
関しては必ずしも充分に満足しうるほどにいたつ
ていない。 本発明は、そのような事情に鑑み、溶融亜鉛を
水中に噴射することによつて、球状でかつ表面に
微細な凹凸を多数形成した表面積が0.80〜1.35
m2/gの亜鉛粉末を製造し、この亜鉛粉末を負極
活物質として用いることによつて、負極亜鉛の反
応表面積を増大させ、低温重負荷特性が優れ、し
かも放電容量のバラツキが少ない電池が得られる
ようにしたものである。 本発明において、負極活物質として用いる亜鉛
粉末は、上記のように溶融亜鉛を水中に噴射する
ことによつて製造されるものであり、球状でかつ
表面に微細な凹凸が多数形成されていて、表面積
が0.80〜1.35m2/gである。 この亜鉛粉末は、従来一般に使用されてきた亜
鉛粉末が粒径100〜200μmで表面積が0.42〜0.50
m2/gであるのに対し、同程度の粒径で上記のよ
うに0.80〜1.35m2/gという大きな表面積を有し
ている。 本発明において、負極活物質として用いる亜鉛
粉末の表面積を特に0.80〜1.35m2/gに特定して
いるのは、表面積が0.08m2/gより小さくなると
低温重負荷特性を充分に向上させることができ
ず、また表面積が1.35m2/gより大きくなると流
動性が悪くなり放電容量にバラツキが生じるから
である。 なお、本発明において用いる上記特定の亜鉛粉
末も、使用に際しては従来の亜鉛粉末と同様に水
銀でアマルガム化されるが、アマルガム化は亜鉛
粉末の表面形状にそつてほぼ均一な厚さで行なわ
れるので、亜鉛粉末表面の凹凸はアマルガム化に
よつて損なわれることはない。 つぎの第1表は本発明の電池と従来電池の20℃
および−20℃における閉路電圧と放電持続時間を
示すものである。電池は両者ともJIS C8511の
SR44タイプの酸化銀電池であり、放電持続時間
の測定は負荷25Ωで2秒間放電し、1秒間休止す
る、いわゆるパルス放電で終止電圧0.75Vまで放
電させることにより行なわれた。 本発明の電池には、負極活物質として溶融亜鉛
を水中に噴射することによつて製造した球状でか
つ表面に微細な凹凸を多数形成した表面が1.10
m2/gの亜鉛粉末が用いられ、従来電池には粒径
が150μmで表面積が0.45m2/gの通常の亜鉛粉末
が用いられている。 なお、亜鉛粉末は両者ともアマルガム化率9重
量%のアマルガム化され、かつポリアクリル酸ナ
トリウムによりアルカリ電解液と共にゲル状にさ
れている。そして両者とも亜鉛粉末の使用量はア
マルガム化亜鉛の形で250mgである。
The present invention relates to an improvement in a method for manufacturing a battery using zinc as a negative electrode active material, and particularly aims to improve low-temperature heavy load characteristics. For example, in alkaline batteries, in order to prevent zinc from becoming passivated as discharge progresses and reducing the discharge utilization rate, zinc particles are gelled with gelling agents such as sodium polyacrylate or carboxymethylulose, or zinc particles are used. Although measures such as amalgamating the surface with mercury have been taken, the low-temperature heavy load characteristics have not necessarily been sufficiently achieved. In view of such circumstances, the present invention was developed by injecting molten zinc into water to create a spherical structure with a surface area of 0.80 to 1.35 with many fine irregularities formed on the surface.
By producing zinc powder of m 2 /g and using this zinc powder as the negative electrode active material, the reaction surface area of the negative electrode zinc is increased, and a battery with excellent low-temperature heavy load characteristics and less variation in discharge capacity can be created. It was made so that it could be obtained. In the present invention, the zinc powder used as the negative electrode active material is produced by injecting molten zinc into water as described above, and is spherical and has many fine irregularities formed on its surface. The surface area is 0.80 to 1.35 m 2 /g. This zinc powder has a particle size of 100 to 200 μm and a surface area of 0.42 to 0.50.
m 2 /g, but as mentioned above, it has a large surface area of 0.80 to 1.35 m 2 /g with the same particle size. In the present invention, the surface area of the zinc powder used as the negative electrode active material is specifically specified to be 0.80 to 1.35 m 2 /g because the low-temperature heavy load characteristics are sufficiently improved when the surface area is smaller than 0.08 m 2 /g. If the surface area is larger than 1.35 m 2 /g, the fluidity will deteriorate and the discharge capacity will vary. In addition, the above-mentioned specific zinc powder used in the present invention is also amalgamated with mercury in the same way as conventional zinc powder, but the amalgamation is carried out to a substantially uniform thickness along the surface shape of the zinc powder. Therefore, the irregularities on the surface of the zinc powder are not damaged by amalgamation. The following Table 1 shows the temperature at 20°C for the battery of the present invention and the conventional battery.
and shows the closed circuit voltage and discharge duration at -20°C. Both batteries are JIS C8511.
This is an SR44 type silver oxide battery, and the discharge duration was measured by discharging to a final voltage of 0.75V with a so-called pulse discharge, in which the battery was discharged for 2 seconds under a load of 25Ω, and then paused for 1 second. The battery of the present invention has a spherical surface manufactured by injecting molten zinc into water as a negative electrode active material, and has a surface with many fine irregularities of 1.10 mm.
m 2 /g of zinc powder is used, and conventional batteries use regular zinc powder with a particle size of 150 μm and a surface area of 0.45 m 2 /g. Both zinc powders were amalgamated with an amalgamation rate of 9% by weight, and made into a gel together with an alkaline electrolyte using sodium polyacrylate. In both cases, the amount of zinc powder used is 250 mg in the form of amalgamated zinc.

【表】 第1表に示すように、本発明の電池は従来電池
より低温重負荷特性が優れている。 つぎに、亜鉛粉末の表面積の相違に基づく放電
特性の相違について説明する。 第2表に本発明の電池(亜鉛粉末の表面積=
1.10m2/g)、対照品1(亜鉛粉末の表面積=0.67
m2/g)および対照品2の閉路電圧を調べた結果
を示す。また、第3表に本発明の電池および対照
品1〜2の放電持続時間ならびにそのバラツキを
調べた結果を示す。 なお、本発明の電池、対照品1〜2の詳細は次
の通りである。 本発明の電池は、前記したように、負極活物質
として溶融亜鉛を水中に、噴射することによつて
製造した球状でかつ表面に微細な凹凸を多数形成
した表面が1.10m2/gの亜鉛粉末を用いたもので
あり、対照品1は上記と同様に製造した亜鉛粉末
であるが、表面積が0.67m2/gと本発明のものよ
り表面積が小さい亜鉛粉末を負極活物質として用
いた電池である。また、対照品2は上記と同様に
製造した亜鉛粉末であるが、表面積が1.48m2/g
と本発明のものより表面積が大きい亜鉛粉末を負
極活物質として用いた電池である。 上記以外の構成は第1表に関連して説明したも
のと同様であり、閉路電圧および放電持続時間の
測定方法なども前記の場合と同様である。
[Table] As shown in Table 1, the battery of the present invention has better low-temperature heavy load characteristics than the conventional battery. Next, differences in discharge characteristics based on differences in surface area of zinc powder will be explained. Table 2 shows the battery of the present invention (surface area of zinc powder =
1.10m 2 /g), control product 1 (surface area of zinc powder = 0.67
m 2 /g) and the closed circuit voltage of Control Product 2 are shown. Furthermore, Table 3 shows the results of examining the discharge durations and variations thereof for the batteries of the present invention and comparative products 1 and 2. The details of the battery of the present invention and comparative products 1 and 2 are as follows. As described above, the battery of the present invention uses 1.10 m 2 /g of zinc as a negative electrode active material, which is manufactured by spraying molten zinc into water and has a spherical shape and a surface with many fine irregularities. Comparative product 1 is a battery using zinc powder produced in the same manner as above, but with a surface area of 0.67 m 2 /g, which is smaller than that of the present invention, as a negative electrode active material. It is. Control product 2 is zinc powder produced in the same manner as above, but with a surface area of 1.48 m 2 /g.
This is a battery using zinc powder, which has a larger surface area than that of the present invention, as a negative electrode active material. The configuration other than the above is the same as that described in connection with Table 1, and the methods for measuring the closed circuit voltage and discharge duration are also the same as in the above case.

【表】【table】

【表】 κ:平均値
σ:標準偏差
第2〜3表に示す結果から明らかなように、亜
鉛粉末の表面積が小さくなると低温重負荷特性が
低下し、また表面積が大きくなると放電容量のバ
ラツキが大きくなる。
[Table] κ: Average value σ: Standard deviation As is clear from the results shown in Tables 2 and 3, the smaller the surface area of zinc powder, the lower the low-temperature heavy load characteristics, and the larger the surface area, the less variation in discharge capacity. growing.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融亜鉛を水中に噴射することによつて、球
状でかつ表面に微細な凹凸を多数形成した表面積
が0.80〜1.35m2/gの亜鉛粉末を製造し、この亜
鉛粉末を負極活物質として用いることを特徴とす
る電池の製造方法。
1. By spraying molten zinc into water, a spherical zinc powder with a surface area of 0.80 to 1.35 m 2 /g with many fine irregularities formed on the surface is produced, and this zinc powder is used as a negative electrode active material. A method for manufacturing a battery, characterized by:
JP57189835A 1982-10-27 1982-10-27 Battery Granted JPS5978455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189835A JPS5978455A (en) 1982-10-27 1982-10-27 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189835A JPS5978455A (en) 1982-10-27 1982-10-27 Battery

Publications (2)

Publication Number Publication Date
JPS5978455A JPS5978455A (en) 1984-05-07
JPH0441468B2 true JPH0441468B2 (en) 1992-07-08

Family

ID=16248001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189835A Granted JPS5978455A (en) 1982-10-27 1982-10-27 Battery

Country Status (1)

Country Link
JP (1) JPS5978455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565222B2 (en) * 2003-02-20 2010-10-20 Dowaエレクトロニクス株式会社 Zinc alloy powder for alkaline battery and alkaline battery using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632890A (en) * 1985-06-28 1986-12-30 Duracell Inc. Anode metal treatment and use of said anode in cell
US7947393B2 (en) * 2003-11-14 2011-05-24 Eveready Battery Company, Inc. Alkaline electrochemical cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117869A (en) * 1979-03-02 1980-09-10 Toshiba Battery Co Ltd Alkali cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117869A (en) * 1979-03-02 1980-09-10 Toshiba Battery Co Ltd Alkali cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565222B2 (en) * 2003-02-20 2010-10-20 Dowaエレクトロニクス株式会社 Zinc alloy powder for alkaline battery and alkaline battery using the same

Also Published As

Publication number Publication date
JPS5978455A (en) 1984-05-07

Similar Documents

Publication Publication Date Title
JPS6113561A (en) Method of geling cathode of alkaline battery and cathode blend
JP3215446B2 (en) Zinc alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JPH1040903A (en) Alkaline primary battery and manufacture thereof
JP3215447B2 (en) Zinc alkaline battery
JPH0441468B2 (en)
JPH0326905B2 (en)
JPS6337568A (en) Alkaline cell
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JPS59173961A (en) Organic electrolyte secondary battery
KR100337807B1 (en) Process of the preparation of lead powder for use in a lead storage battery by cementation reaction
JP2770360B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JP2847791B2 (en) Manufacturing method of nickel cadmium storage battery
JP2800214B2 (en) Manufacturing method of nickel cadmium storage battery
JPH05225988A (en) Alkaline battery
JPH0265056A (en) Nonaqueous secondary battery
JPH01232660A (en) Negative electrode for nonaqueous secondary battery and manufacture of the same
JPS5968177A (en) Solid electrolyte battery
JPS63308869A (en) Nonaqueous electrolytic solution battery
JPH0666143B2 (en) Heating agent for thermal batteries
JPH0740488B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JPH06124706A (en) Sealed nickel-zinc storage battery
JPS60146456A (en) Zinc alkaline battery