JPS6337568A - Alkaline cell - Google Patents

Alkaline cell

Info

Publication number
JPS6337568A
JPS6337568A JP17861686A JP17861686A JPS6337568A JP S6337568 A JPS6337568 A JP S6337568A JP 17861686 A JP17861686 A JP 17861686A JP 17861686 A JP17861686 A JP 17861686A JP S6337568 A JPS6337568 A JP S6337568A
Authority
JP
Japan
Prior art keywords
negative electrode
zinc
current collector
electrode current
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17861686A
Other languages
Japanese (ja)
Other versions
JPH0719604B2 (en
Inventor
Kenichi Shinoda
健一 篠田
Hirohiko Oota
太田 廣彦
Yoshihiro Maeda
義博 前田
Yuzo Tanaka
田中 雄三
Kiyohide Tsutsui
清英 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUKARI KANDENCHI GIJUTSU KENKYU KUMIAI
Original Assignee
ARUKARI KANDENCHI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUKARI KANDENCHI GIJUTSU KENKYU KUMIAI filed Critical ARUKARI KANDENCHI GIJUTSU KENKYU KUMIAI
Priority to JP17861686A priority Critical patent/JPH0719604B2/en
Publication of JPS6337568A publication Critical patent/JPS6337568A/en
Publication of JPH0719604B2 publication Critical patent/JPH0719604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To suppress the performance deterioration of a cell by forming a negative electrode current collector by annealing. CONSTITUTION:A cylindrical positive electrode black mix 12 mixed and molded with manganese dioxide and carbon is arranged in a bottomed cylindrical positive electrode can 10, and the inner space of a separator 14 is filled with gelatinous negative electrode zinc 16 mainly made of amalgamated granular zinc and added with an alkaline electrolyte and a gelling agent and kneaded. The upper end opening section of the positive electrode can 10 is sealed with a sealing gasket 18 and a negative electrode terminal plate 20, a bar-shaped negative electrode current collector 22 is inserted into the center of the negative electrode zinc 16, and its upper section penetrates the center of the sealing gasket 18 and is connected to the inner center section of the negative electrode terminal plate 20 by spot welding or the like. The negative electrode current collector 22 is formed by molding and annealing brass made of copper and zinc at a ratio of 65:35. Accordingly, the amount of mercury can be reduced without deteriorating the cell performance such as the discharge characteristic and leakage characteristic.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はアルカリ電池に関するもので、より具体的に
は、粒状亜鉛を負極活物質とするアルカリ電池の負極亜
鉛内の水銀の含有量の改良に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to alkaline batteries, and more specifically, improves the mercury content in the negative electrode zinc of alkaline batteries using granular zinc as the negative electrode active material. Regarding.

(従来の技術) 従来この種のアルカリ電池は、良く知られているように
、有底円筒形の正極缶内に正極合剤、セパレータ、ゲル
状の負極亜鉛が同軸上に装填されるとともに、正極缶の
開口部が封口ガスケットと負極端子板とで密封され、か
つ、負極亜鉛の中心部に挿、入された棒状の負極集電体
の上端が封口ガスケットの中心を貝通して負極端子板の
内面にスポット溶接などで接合された構造となっている
(Prior Art) As is well known, in conventional alkaline batteries of this type, a positive electrode mixture, a separator, and a gelled negative electrode zinc are coaxially loaded in a bottomed cylindrical positive electrode can. The opening of the positive electrode can is sealed with a sealing gasket and a negative terminal plate, and the upper end of a rod-shaped negative electrode current collector inserted into the center of the negative electrode zinc passes through the center of the sealing gasket and closes to the negative terminal plate. It has a structure in which it is joined to the inner surface by spot welding etc.

そして、負極の亜鉛粒子の表面はアマルガム化されてお
り、これにより亜鉛粒子の腐蝕防止、アルカリ電解液中
での水素過電圧を高め、水素ガス発生の抑制といった面
で大きな効果が得られる。
The surface of the zinc particles of the negative electrode is amalgamated, which has great effects in preventing corrosion of the zinc particles, increasing hydrogen overvoltage in an alkaline electrolyte, and suppressing hydrogen gas generation.

従って、アマルガム化した粒状亜鉛を用いることで、ア
ルカリ電池の放電性能及び貯蔵性能が大いに向上した。
Therefore, by using amalgamated granular zinc, the discharge performance and storage performance of alkaline batteries were greatly improved.

また、上記負極集電体としては、銅や真鍮あるいは亜鉛
メツキされた鉄の棒が一般的である。これらの金属はア
マルガム化されやすく、これをアマルガム化した負極亜
鉛中に挿入すると、負極集電体側へ水銀が移動し、負極
集電体と負極亜鉛との局部電池反応の形成が抑制される
Further, as the negative electrode current collector, a rod of copper, brass, or galvanized iron is generally used. These metals are easily amalgamated, and when they are inserted into amalgamated negative electrode zinc, mercury moves to the negative electrode current collector side, and the formation of a local battery reaction between the negative electrode current collector and negative electrode zinc is suppressed.

(発明が解決しようとする問題点) アルカリ電池の性能向上に大きく寄与した負極亜鉛をア
マルガム化する技術は、有害物質である水銀を用いると
いう問題を内在している。したがって、電池の水銀含有
Rは極力少ない方が望ましい。そのために、負極の亜鉛
中の水銀含有率を低下させ、しかも、電池の性能を低下
させないようにする研究開発がさかんになされている。
(Problems to be Solved by the Invention) The technology of amalgamating negative electrode zinc, which has greatly contributed to improving the performance of alkaline batteries, has the inherent problem of using mercury, which is a harmful substance. Therefore, it is desirable that the mercury content R of the battery be as small as possible. For this reason, research and development efforts are being made to reduce the mercury content in zinc of the negative electrode without deteriorating battery performance.

しかし、単に負極亜鉛のアマルガム化度をさげると、負
極集電体との関係で次のような問題を生ずる。
However, simply lowering the amalgamation degree of negative electrode zinc causes the following problems in relation to the negative electrode current collector.

すなわち、上記したごとく、アマルガム化した負極亜鉛
中に負極集電体を挿入すると、負極亜鉛中の水銀が負極
集電体側へ移行し、負極集電体は、その表面及び表面に
近い結晶粒界がアマルガム化される。そして、負極集電
体の表面及び結晶粒界が充分にアマルガム化されること
で、水素過電圧が上昇し、局部電池形成による水素ガス
発生反応を抑制でき、亜鉛とのつながりも良好となる。
That is, as described above, when a negative electrode current collector is inserted into amalgamated negative electrode zinc, mercury in the negative electrode zinc migrates to the negative electrode current collector side, and the negative electrode current collector is transferred to the surface and grain boundaries near the surface. is amalgamated. Then, since the surface and grain boundaries of the negative electrode current collector are sufficiently amalgamated, the hydrogen overvoltage increases, the hydrogen gas generation reaction due to local battery formation can be suppressed, and the connection with zinc becomes good.

しかし、負極集電体側へ水銀が移行することにより亜鉛
表面の水銀が失われることになる。このことは、負極亜
鉛のアマルガム化度が高ければ、負極8N電体側へ水銀
が移行しても問題はなかったが、負極亜鉛のアマルガム
化度を例えば、1%程度にさげると負極集電体側へ水銀
を取られることで亜鉛表面の水銀が極端な不足状態とな
る。その結果、負極集電体と亜鉛との間に局部電池を形
成し易くなり、亜鉛の溶解と水素ガス発生反応を充分に
抑制することができず、電池の貯蔵性能が低下するなど
の悪影響が顕著になる。
However, as the mercury migrates to the negative electrode current collector side, the mercury on the zinc surface is lost. This means that if the amalgamation degree of the negative electrode zinc was high, there would be no problem even if mercury migrated to the negative electrode 8N current collector side, but if the amalgamation degree of the negative electrode zinc was reduced to about 1%, for example, the negative electrode current collector side When mercury is removed from zinc, mercury on the surface of zinc becomes extremely deficient. As a result, a local battery is likely to form between the negative electrode current collector and zinc, and the dissolution of zinc and hydrogen gas generation reaction cannot be sufficiently suppressed, resulting in negative effects such as a decrease in battery storage performance. become noticeable.

また、負極集電体の表面に、水素過電圧が高く、水銀へ
の溶解度が比較的大きいcd、TI等を存在させる手段
もあるが、充分な効果は得られなかった。
There is also a method of making CD, TI, etc., which have a high hydrogen overvoltage and relatively high solubility in mercury, exist on the surface of the negative electrode current collector, but no sufficient effect was obtained.

本発明は上記した問題点に鑑みてなされたもので、その
目的とするところは、負極亜鉛から負極集電体への水銀
の移行量を必要最低限に押さえ、その結果として水銀の
含有量を少なくしても電池の性能低下を抑制できるよう
にしたアルカリ電池を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to suppress the amount of mercury transferred from the negative electrode zinc to the negative electrode current collector to the necessary minimum, and as a result, reduce the mercury content. An object of the present invention is to provide an alkaline battery capable of suppressing deterioration in battery performance even if the battery is reduced.

(問題点を解決するための手段) 上記した目的を達成するために、本発明に係るアルカリ
電池では、焼鈍して形成した負極集電体を用いた。
(Means for Solving the Problems) In order to achieve the above object, the alkaline battery according to the present invention uses a negative electrode current collector formed by annealing.

(作 用) 負極集電体を焼鈍することにより、銅、真鍮等の負極集
電体を形成している金属の結晶粒を成長さけ、大きくさ
せる。その結果、負極集電体の表面には、大きな変化は
生じないが、水銀が入り込む結晶粒界の面積が減少し、
負極集電体をアマルガム化するに必要な水銀の聞は低減
される。従って、負極亜鉛中に含有させる水銀の小は少
なくてすむ。
(Function) By annealing the negative electrode current collector, crystal grains of metal such as copper, brass, etc. forming the negative electrode current collector are prevented from growing and enlarged. As a result, although no major changes occur on the surface of the negative electrode current collector, the area of grain boundaries into which mercury enters decreases.
The amount of mercury required to amalgamate the negative electrode current collector is reduced. Therefore, the amount of mercury contained in the negative electrode zinc can be reduced.

(実 施 例) 以下、本考案に係るアルカリ電池の好適な実施例につい
て添付図面を参照にして説明する。
(Embodiments) Hereinafter, preferred embodiments of the alkaline battery according to the present invention will be described with reference to the accompanying drawings.

第1図は、本考案に係るアルカリ電池の断面図を示して
いる。
FIG. 1 shows a cross-sectional view of an alkaline battery according to the present invention.

同図に示すように、有底円筒形の正極缶10内に、二酸
化マンガンとカーボンを混合して成形した円筒状の正極
合剤12が配設されている。そして、この正極合剤12
の中央空間内には、その内周面に沿ってポリプロピレン
不織布等を袋状に形成したセパレータ14が挿入配設さ
れている。さらに、このセパレータ14の内側空間内に
はアマルガム化した粒状亜鉛を主体としこれにアルカリ
電解液やゲル化剤を加えて混練したゲル状の負極亜鉛1
6が充填されている。
As shown in the figure, a cylindrical positive electrode mixture 12 formed by mixing manganese dioxide and carbon is placed in a bottomed cylindrical positive electrode can 10 . Then, this positive electrode mixture 12
A separator 14 made of polypropylene non-woven fabric or the like is formed into a bag shape and is inserted into the central space along the inner peripheral surface of the separator 14 . Further, in the inner space of the separator 14, a gel-like negative electrode zinc 1 which is mainly composed of amalgamated granular zinc and kneaded with an alkaline electrolyte and a gelling agent is formed.
6 is filled.

また、正極缶10の上端開口部は、封口ガスケット18
と負極端子板20とで密封されている。
Further, the upper end opening of the positive electrode can 10 is provided with a sealing gasket 18.
and the negative terminal plate 20.

さらに、負極亜鉛16の中心部には、棒状の負極集電体
22が挿入配設され、その上方部は封口がスケット18
の中心を負通して負極端子板20の内面中央部にスポッ
ト溶接などで接合されている。
Furthermore, a rod-shaped negative electrode current collector 22 is inserted into the center of the negative electrode zinc 16, and the upper part thereof is sealed with a sket 18.
The negative electrode terminal plate 20 is connected to the center of the inner surface of the negative electrode terminal plate 20 by spot welding or the like through the center thereof.

また、負極集電体22は、銅と亜鉛の比が65:35の
真鍮で成形されている。
Further, the negative electrode current collector 22 is made of brass with a copper:zinc ratio of 65:35.

ここで、本発明に係るアルカリ電池では、上記した負極
集電体22を焼鈍により形成しである。
Here, in the alkaline battery according to the present invention, the negative electrode current collector 22 described above is formed by annealing.

寸なわら、焼鈍することにより、負極集電体22を形成
している真鍮の結晶を成長させて大きくし、結晶粒界の
面積を減少させた負極集電体22を形成する。
However, by annealing, the brass crystals forming the negative electrode current collector 22 are grown and enlarged, thereby forming the negative electrode current collector 22 with a reduced area of grain boundaries.

具体的には、不活性ガスであるN2雰囲気中において6
00〜930℃で30分間焼鈍を行った。
Specifically, 6 in an inert gas N2 atmosphere.
Annealing was performed at 00 to 930°C for 30 minutes.

ここで焼鈍温度を600〜930℃としたのは、あまり
温度が低いと結晶粒を充分に成長させることができず、
また、930℃を越えると負極集電体22を形成してい
る真鍮の融点となり、真鍮が溶けてしまうからである。
Here, the annealing temperature was set at 600 to 930°C because if the temperature is too low, the crystal grains cannot grow sufficiently.
Moreover, if the temperature exceeds 930° C., the melting point of the brass forming the negative electrode current collector 22 is reached, and the brass will melt.

上記したごとく焼鈍をした負極集電体22をアマルガム
化度1.5重量%の負極亜鉛16中に挿入し、時間とと
もに負極集電体22の表面に移行してくる水銀量を測定
した。その結果が、第2図に示す■の曲線である。第2
図において、横軸は経過時間であり、縦軸は負極集電体
22表面に付着した単位表面積当りの水銀の増加mであ
る。なお、試験温度は45℃とし、亜鉛粒度は35〜1
5Qmeshのものを使用した。
The negative electrode current collector 22 annealed as described above was inserted into negative electrode zinc 16 having a degree of amalgamation of 1.5% by weight, and the amount of mercury that migrated to the surface of the negative electrode current collector 22 over time was measured. The result is the curve ``■'' shown in FIG. Second
In the figure, the horizontal axis is the elapsed time, and the vertical axis is the increase m of mercury per unit surface area attached to the surface of the negative electrode current collector 22. The test temperature was 45°C, and the zinc particle size was 35 to 1.
A 5Qmesh one was used.

また、上記した負極集電体22をアマルガム化度3Φ聞
%の負極亜鉛16内に挿入した場合の特性を■に示す。
Further, the characteristics when the negative electrode current collector 22 described above is inserted into the negative electrode zinc 16 having a degree of amalgamation of 3Φ% are shown in (2).

一方、本発明のアルカリ電池と比較するために、従来の
焼鈍を行っていない負極集電体を用いたアルカリ電池に
おけるそれを同図中に示す。すなわら、アマルガム化度
1.5重ω%の負極亜鉛を用いたものが同図中■に、ま
た、3重量%のものが■にそれぞれ示している。
On the other hand, in order to compare with the alkaline battery of the present invention, a conventional alkaline battery using an unannealed negative electrode current collector is shown in the figure. In other words, the one using negative electrode zinc with an amalgamation degree of 1.5% by weight is shown in (■), and the one with an amalgamation degree of 3% by weight is shown in (■).

同図から明らかなように、従来の集電体では、結晶粒が
小さいため、粒界が大きく従って、粒界に入り込む水銀
量は多量に必要となる。これに対して、本発明のアルカ
リ電池では、集電体の結晶粒が大きいために粒界の面積
は小さくなり、その結果、小量の水銀で集電体を充分に
アマルガム化することができ、負極亜鉛からの水銀の移
行量は少なくてすむ。なお、水銀の付着恐が少ないとい
っても、上記のごとく、負極集電体22の表面は水銀に
よって覆われているので、負極亜鉛16と負極集電体2
2との接触面の電位差による局部電池反応は充分に抑制
することができる。
As is clear from the figure, in the conventional current collector, since the crystal grains are small, the grain boundaries are large, and therefore a large amount of mercury is required to enter the grain boundaries. In contrast, in the alkaline battery of the present invention, since the crystal grains of the current collector are large, the area of the grain boundaries is small, and as a result, the current collector cannot be sufficiently amalgamated with a small amount of mercury. , the amount of mercury transferred from the negative electrode zinc is small. Although there is little risk of mercury adhesion, as mentioned above, the surface of the negative electrode current collector 22 is covered with mercury, so the negative electrode zinc 16 and the negative electrode current collector 2
The local battery reaction due to the potential difference at the contact surface with 2 can be sufficiently suppressed.

また、負極集電体22への水銀移行Rが少ないというこ
とは、負極亜鉛16から失われる水銀mが少ないという
ことになり、負極亜鉛16の亜鉛表面上における局部電
池反応の抑制効果が保たれている。したがって、負極亜
鉛16のアマルガム化度が同じであれば、従来のものと
本発明のものとでは、水素ガス発生mは本発明の方が少
なくなる。その結果、水銀含有mを低下させることによ
る電池性能の低下をおさえることができる。
Furthermore, the fact that mercury transfer R to the negative electrode current collector 22 is small means that less mercury m is lost from the negative electrode zinc 16, and the effect of suppressing local battery reactions on the zinc surface of the negative electrode zinc 16 is maintained. ing. Therefore, if the degree of amalgamation of the negative electrode zinc 16 is the same, hydrogen gas generation m is smaller in the conventional case and in the case of the present invention. As a result, it is possible to suppress a decrease in battery performance due to a decrease in mercury content m.

次に、しR20の電池を用い、本発明のアルカリ電池の
従来のアルカリ電池との放電特性の比較を行った結果、
表1に示すようになった。なお、ともに、負極亜鉛の亜
鉛粒度は35〜150meshで、アマルガム化度は1
.5重量%のものを使用し、端子電圧が0.90Vにな
るまでを測定した(測定温度20℃)。
Next, using a ShiR20 battery, we compared the discharge characteristics of the alkaline battery of the present invention with a conventional alkaline battery.
The results are shown in Table 1. In both cases, the zinc particle size of the negative electrode zinc is 35 to 150 mesh, and the amalgamation degree is 1.
.. Using 5% by weight, measurements were taken until the terminal voltage reached 0.90V (measurement temperature: 20°C).

(アマルガム化度5重量%の放電特性を100とした時
の指数) 表  1 上記表から明らかなように、本発明のアルカリ電池は負
極亜鉛のアマルガム化度が同じのものと比較すると、そ
の放電特性が優れており、焼鈍を行っていないアマルガ
ム化度5%の従来のアルカリ電池とほぼ同等の放電特性
を示すことがわかる。
(Index when the discharge characteristic with a degree of amalgamation of 5% by weight is set as 100) Table 1 As is clear from the above table, the alkaline battery of the present invention has a lower discharge characteristic when compared with an alkaline battery having the same degree of amalgamation of the negative electrode zinc. It can be seen that the characteristics are excellent and the discharge characteristics are almost the same as a conventional alkaline battery with a degree of amalgamation of 5% that is not annealed.

また、表中、従来品の放電特性が劣るのは、次の理由に
よる。すなわち、結晶粒の小さな従来のものは、粒界面
積が大きいために、アマルガム化に要りろ水銀徂が多量
に必要となり、その結果、負極亜鉛のアマルガム化度が
低下して、局部電池を形成してしまい、そのために、性
能が低下してしまっているのである。
Moreover, the reason why the discharge characteristics of the conventional product in the table is inferior is due to the following reason. In other words, conventional products with small crystal grains have a large grain boundary area, so a large amount of mercury is required for amalgamation, and as a result, the degree of amalgamation of negative electrode zinc decreases, forming a local battery. As a result, performance deteriorates.

さらに、LP01の電池を用い、本発明と従来のものと
の漏液特性を測定した結果を表2に示す。
Furthermore, Table 2 shows the results of measuring the leakage characteristics of the present invention and the conventional battery using the LP01 battery.

表  2 上記表から明らかなように、本発明品は、負極亜鉛のア
マルガム化度を下げても、高いアマルガム化度の従来品
とほぼ同じ漏液特性を示すことがわかる。また、単にア
マルガム化度のみ低くし、従来の負極集電体を用いたも
の(表2の1.5重量%の従来品)と比較すると、その
性能の優劣は明らかである。
Table 2 As is clear from the above table, even if the amalgamation degree of the negative electrode zinc is lowered, the product of the present invention exhibits almost the same leakage characteristics as the conventional product with a high amalgamation degree. Moreover, when compared with the one in which only the degree of amalgamation is lowered and a conventional negative electrode current collector is used (the conventional product of 1.5% by weight in Table 2), the superiority and inferiority of the performance is clear.

なお、上記実施例によれば、負極集電体を焼鈍する際に
N2ガス雰囲気中において行ったが、本発明はこれに限
られることはなく、例えば、空気中で行ってもかまわな
い。但し、その場合には負極集電体の表面が酸化してし
まうため、焼鈍した後、表面を酸処理する必要がある。
In addition, according to the above-mentioned example, when annealing the negative electrode current collector, the annealing was performed in a N2 gas atmosphere, but the present invention is not limited to this, and for example, the annealing may be performed in air. However, in that case, since the surface of the negative electrode current collector is oxidized, it is necessary to perform an acid treatment on the surface after annealing.

また、負極集電体として真鍮を用いたが、例えば、銅や
錫等を用いても良い。その場合には、前者は900〜1
080℃が、優者は150〜230℃の温度で焼鈍を行
うのが望ましい。
Further, although brass was used as the negative electrode current collector, for example, copper, tin, or the like may be used. In that case, the former is 900 to 1
It is desirable to carry out annealing at a temperature of 080°C, but more preferably at a temperature of 150 to 230°C.

(発明の効果) 以上のように、本発明に係るアルカリ電池によれば、電
池の負極亜鉛内に挿入する負極集電体として、焼鈍した
負極集電体を用いたことにより、負極集電体を構成する
真鍮等の結晶粒が成長して大ぎくなるため、結晶粒界の
面積が小さくなる。
(Effects of the Invention) As described above, according to the alkaline battery according to the present invention, an annealed negative electrode current collector is used as the negative electrode current collector inserted into the negative electrode zinc of the battery. As the crystal grains of brass, etc. that make up the material grow and become larger, the area of the grain boundaries becomes smaller.

その結果、負極集電体に付着しその表面及び粒界面を覆
うにたりる水銀の憬が減少し、負極亜鉛内からの水銀の
移行mも減少する。従って、予め負極亜鉛をアマルガム
化するために添加する水銀の昂を少なくしても、負極亜
鉛と負極集電体との接触面にて局部電池形成を抑制する
ことができる。
As a result, the amount of mercury that adheres to the negative electrode current collector and covers its surface and grain interface is reduced, and the migration of mercury from within the negative electrode zinc is also reduced. Therefore, even if the amount of mercury added in advance to amalgamate the negative electrode zinc is reduced, local battery formation can be suppressed at the contact surface between the negative electrode zinc and the negative electrode current collector.

その結果、放電特性、漏液特性等の電池の性能を低下さ
せることなく、電池内に添加する水銀の岱を減少させる
ことができる。
As a result, the amount of mercury added into the battery can be reduced without deteriorating battery performance such as discharge characteristics and leakage characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るアルカリ電池の一実施例を示す断
面図、第2図は本発明並びに従来の電池における負極集
電体への水銀移行量を示すグラフである。 10・・・正極缶    12・・・正極合剤14・・
・セパレータ  16・・・負極亜鉛22・・・負極集
電体 第1図
FIG. 1 is a cross-sectional view showing an embodiment of an alkaline battery according to the present invention, and FIG. 2 is a graph showing the amount of mercury transferred to the negative electrode current collector in the present invention and conventional batteries. 10... Positive electrode can 12... Positive electrode mixture 14...
・Separator 16...Negative electrode zinc 22...Negative electrode current collector Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)筒状の正極缶内に配設する筒状の正極合剤と、該
正極合剤の中央空間内にセパレータを介装して注入され
る負極亜鉛と、該負極亜鉛内に挿入配設される負極集電
体とを有するアルカリ電池において、該負極集電体を焼
鈍して形成したことを特徴とするアルカリ電池。
(1) A cylindrical positive electrode mixture disposed in a cylindrical positive electrode can, a negative electrode zinc injected into the central space of the positive electrode mixture with a separator interposed, and a negative electrode zinc inserted into the negative electrode zinc. 1. An alkaline battery having a negative electrode current collector provided therein, characterized in that the alkaline battery is formed by annealing the negative electrode current collector.
(2)前記負極集電体が真鍮で形成され、かつ、600
〜930℃で焼鈍されたことを特徴とする特許請求の範
囲第1項記載のアルカリ電池。
(2) the negative electrode current collector is made of brass, and
The alkaline battery according to claim 1, wherein the alkaline battery is annealed at a temperature of ~930°C.
(3)前記焼鈍が、不活性ガス雰囲気中で行われたこと
を特徴とする特許請求の範囲第1項または第2項記載の
アルカリ電池。
(3) The alkaline battery according to claim 1 or 2, wherein the annealing is performed in an inert gas atmosphere.
(4)前記負極亜鉛のアマルガム化度が3.0重量%以
下であることを特徴とする特許請求の範囲第1項、第2
項または第3項のいずれかに記載のアルカリ電池。
(4) Claims 1 and 2, characterized in that the degree of amalgamation of the negative electrode zinc is 3.0% by weight or less.
The alkaline battery according to any one of Items 1 and 3.
JP17861686A 1986-07-31 1986-07-31 Alkaline battery manufacturing method Expired - Fee Related JPH0719604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17861686A JPH0719604B2 (en) 1986-07-31 1986-07-31 Alkaline battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17861686A JPH0719604B2 (en) 1986-07-31 1986-07-31 Alkaline battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS6337568A true JPS6337568A (en) 1988-02-18
JPH0719604B2 JPH0719604B2 (en) 1995-03-06

Family

ID=16051558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17861686A Expired - Fee Related JPH0719604B2 (en) 1986-07-31 1986-07-31 Alkaline battery manufacturing method

Country Status (1)

Country Link
JP (1) JPH0719604B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691036A1 (en) * 1993-03-16 1996-01-10 Duracell Inc. Cell sealant
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
EP0845827A2 (en) * 1990-08-14 1998-06-03 Eveready Battery Company, Inc. Substantially mercury-free electrochemical cells
WO2006095683A1 (en) * 2005-03-07 2006-09-14 Fukui Byora Co., Ltd. Negative electrode collector for dry cell
WO2008029762A1 (en) * 2006-09-04 2008-03-13 Fukui Byora Co., Ltd. Dry cell negative electrode collector
EP2306564A1 (en) * 2009-10-01 2011-04-06 Panasonic Corporation Alkaline dry battery and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845827A2 (en) * 1990-08-14 1998-06-03 Eveready Battery Company, Inc. Substantially mercury-free electrochemical cells
EP0845827A3 (en) * 1990-08-14 2002-06-19 Eveready Battery Company, Inc. Substantially mercury-free electrochemical cells
EP0691036A1 (en) * 1993-03-16 1996-01-10 Duracell Inc. Cell sealant
EP0691036A4 (en) * 1993-03-16 1996-03-13 Duracell Inc Cell sealant
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
WO2006095683A1 (en) * 2005-03-07 2006-09-14 Fukui Byora Co., Ltd. Negative electrode collector for dry cell
WO2008029762A1 (en) * 2006-09-04 2008-03-13 Fukui Byora Co., Ltd. Dry cell negative electrode collector
JP2008065983A (en) * 2006-09-04 2008-03-21 Fukui Byora Co Ltd Negative electrode current collector for dry cell
EP2306564A1 (en) * 2009-10-01 2011-04-06 Panasonic Corporation Alkaline dry battery and method for producing the same
US20110081579A1 (en) * 2009-10-01 2011-04-07 Susumu Kato Alkaline dry battery and method for producing the same
JP2011076978A (en) * 2009-10-01 2011-04-14 Panasonic Corp Alkaline dry battery, and method of manufacturing the same
CN102034982A (en) * 2009-10-01 2011-04-27 松下电器产业株式会社 Alkaline dry battery and method for producing the same

Also Published As

Publication number Publication date
JPH0719604B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPS6337568A (en) Alkaline cell
JP3344486B2 (en) Method for producing non-melonized zinc alloy powder for alkaline batteries
JPH0425676B2 (en)
JPH0418671B2 (en)
JPH0317181B2 (en)
JPS6337567A (en) Alkaline cell
JP2609609B2 (en) Alkaline battery
JPH0317182B2 (en)
JP3163006B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3155201B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JPH03230476A (en) Negative electrode active material for alkaline battery
JPS6247952A (en) Alkaline battery
JP3187862B2 (en) Zinc alkaline battery
JPS6158165A (en) Gelled negative electrode of nommercury sealed alkaline battery
JP2000260425A (en) Positive electrode mix for alkaline battery and alkaline battery using it
JPS6247961A (en) Alkaline battery
JP3155202B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3155203B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPS63308869A (en) Nonaqueous electrolytic solution battery
JPS6182674A (en) Nonaqueous solvent battery
JPH0441468B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees