JPS63308869A - Nonaqueous electrolytic solution battery - Google Patents

Nonaqueous electrolytic solution battery

Info

Publication number
JPS63308869A
JPS63308869A JP14328187A JP14328187A JPS63308869A JP S63308869 A JPS63308869 A JP S63308869A JP 14328187 A JP14328187 A JP 14328187A JP 14328187 A JP14328187 A JP 14328187A JP S63308869 A JPS63308869 A JP S63308869A
Authority
JP
Japan
Prior art keywords
light metal
negative electrode
lithium
battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14328187A
Other languages
Japanese (ja)
Inventor
Tomohiro Nishiyama
西山 朋宏
Kazuo Furushima
古嶋 和夫
Shintaro Suzuki
信太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP14328187A priority Critical patent/JPS63308869A/en
Publication of JPS63308869A publication Critical patent/JPS63308869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a battery excellent in its heavy-load discharging characteristic and high in its productivity by making a negative electrode composed of a block consisting of powdery particles of light metal or light metal alloy. CONSTITUTION:A negative electrode is composed of a block consisting of powdery particles of light metal or light metal alloy. Porosity of the block is made to be 5% to 40%. One species selected from a group of lithium and sodium is used as the light metal. Two or more species of metal alloys selected from a group of lithium, sodium, aluminium, indium, and gallium are used as the light metal alloys. A mean diameter of each powdery particle is made to be 10mum to 300mum. Hence, a surface area of the negative electrode is made large to improve a heavy-load characteristic of the battery. Since no needless fragments are produced further, productivity can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、非水電解液電池に関し、さらに詳しくは、重
負荷放電特性が優れている非水電解液電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery that has excellent heavy load discharge characteristics.

(従来の技術) 近年、エネルギー密度が大きく貯蔵性能が優れた電池と
して、非水電解液電池が注目されている。このような非
水電解液電池の1例を第2図に示す。
(Prior Art) In recent years, non-aqueous electrolyte batteries have attracted attention as batteries with high energy density and excellent storage performance. An example of such a non-aqueous electrolyte battery is shown in FIG.

図において、正極端子を兼ねる正極缶(1)内には、正
極(2)が着設収納されている。この正極は、酸化銅、
二硫化鉄、二酸化マンガン等を活物質とし、これが導電
材および結着剤と共に混合され、例えばベレット状に成
形されたものである。導電材としては、例えば黒鉛粉末
、結着剤としては、例えばポリテトラフルオロエチレン
が用いられる。この正極(2)上にはポリプロピレン酸
の不織布からなるセパレータ(3)を介して負極(5)
が積層されている。
In the figure, a positive electrode (2) is installed and housed in a positive electrode can (1) which also serves as a positive electrode terminal. This positive electrode consists of copper oxide,
The active material is iron disulfide, manganese dioxide, etc., which is mixed with a conductive material and a binder, and formed into, for example, a pellet shape. As the conductive material, for example, graphite powder is used, and as the binder, for example, polytetrafluoroethylene is used. A negative electrode (5) is placed on the positive electrode (2) via a separator (3) made of a nonwoven fabric of polypropylene acid.
are layered.

セパレータ(3)には、電解液が保持されており、電解
液としては、プロピレンカーポネート、1.2−ジメト
キシエタン、γ−ブチロラクトン等の非水(有機)溶媒
に、過塩素酸リチウム、過塩素酸ナトリウム等の電解質
を、濃度0.4〜1.0モル/見で溶解せしめたものが
用いられる。
The separator (3) holds an electrolytic solution, and the electrolytic solution consists of a nonaqueous (organic) solvent such as propylene carbonate, 1,2-dimethoxyethane, and γ-butyrolactone, lithium perchlorate, and peroxide. An electrolyte such as sodium chlorate dissolved therein at a concentration of 0.4 to 1.0 mol/ml is used.

負極(5)は活物質が、リチウム、ナトリウム等の軽金
属であり、これらの金属のフォイルから所定の形状に打
ち抜かれた箔体が使用されている。
The active material of the negative electrode (5) is a light metal such as lithium or sodium, and a foil body punched into a predetermined shape from a foil of these metals is used.

さらに、正極端子を兼ねる正極缶(1)の開口部に絶縁
バッキング(封口体)(6)を介して、負極端子を兼ね
る負極缶(4)が冠着され、両極缶(1,4)内に、正
極(2)、セパレータ(3)および負極(5)が、気密
に封口されている。このときの絶縁バッキング(封口体
)としては、例えばポリオレフィン系樹脂、ポリテトラ
フルオロエチレン等が用いられる。
Further, a negative electrode can (4), which also serves as a negative electrode terminal, is attached to the opening of the positive electrode can (1), which also serves as a positive electrode terminal, via an insulating backing (sealing body) (6), and inside the both electrode cans (1, 4). A positive electrode (2), a separator (3) and a negative electrode (5) are hermetically sealed. As the insulating backing (sealing body) at this time, for example, polyolefin resin, polytetrafluoroethylene, etc. are used.

(発明が解決しようとする問題点) しかしながら、従来の軽金属箔体を用いた場合は、電池
反応に寄与する反応面積が小さいため、重負荷放電特性
が充分に優れているとはいえない。しかも、負極の製造
に際しては、フォイルに打ち抜き加工を施すため端材が
出やすい。このようなことは、ボタン型電池の場合のよ
うに、負極形状がディスク状の場合に特に顕著であり、
平均して約20%もの部分が使用されず無駄となり、負
極の製造得率が低くなる。
(Problems to be Solved by the Invention) However, when a conventional light metal foil is used, the reaction area that contributes to the battery reaction is small, so it cannot be said that the heavy load discharge characteristics are sufficiently excellent. Moreover, when manufacturing the negative electrode, the foil is punched out, so scraps are likely to come out. This is especially noticeable when the negative electrode shape is disc-shaped, as in the case of button-type batteries.
On average, about 20% of the amount is unused and wasted, resulting in a low manufacturing yield of the negative electrode.

本発明は、従来のような箔体である負極における、上記
したような問題点を解消し、重負荷放電特性が優れ、し
かも負極の製造得率が高い非水電解液電池の提供を目的
とする。
The present invention aims to solve the above-mentioned problems with the conventional foil negative electrode, and to provide a non-aqueous electrolyte battery with excellent heavy load discharge characteristics and a high manufacturing yield of the negative electrode. do.

木発明者は上記問題点を解決すべく鋭意研究を重ねる過
程で、重負荷放電特性を向上せしめるためには、正極、
負極の電池反応に寄与する反応面積を大たちしめること
が有効であるとの事実に着目し、そして、そのためには
負極を粉粒の集合体とすればよいとの着想を抱くに到っ
た。しかも、負極の構成素材を粉粒とすることによって
、従来の打ち抜き加工時におけるフォイルの無駄も解消
しうるとの効果が得られることも確認し、本発明の非水
電解液電池を開発するに到った。
In the process of intensive research to solve the above problems, the inventor of the tree found that in order to improve the heavy load discharge characteristics, the positive electrode,
We focused on the fact that it is effective to increase the reaction area of the negative electrode that contributes to battery reactions, and came up with the idea that in order to do this, the negative electrode could be made of an aggregate of powder particles. . Moreover, it was confirmed that by using powder particles as the constituent material of the negative electrode, it was possible to eliminate the waste of foil during the conventional punching process. It has arrived.

[発明の構成] (問題点を解決するための手段) すなわち、本発明は、負極が軽金属粉粒または軽金属合
金粉粒の集合体であることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention is characterized in that the negative electrode is an aggregate of light metal powder particles or light metal alloy powder particles.

本発明の電池は、負極の形態にのみ特徴を有するもので
あって、電池の他の構成部材および相互の結合関係など
は、上述した従来の非水電解液電池の場合と何ら変るこ
とはない。
The battery of the present invention is characterized only by the form of the negative electrode, and the other constituent members of the battery and their mutual connection relationships are no different from those of the conventional non-aqueous electrolyte battery described above. .

本発明にかかる軽金属または軽金属合金は、いずれも活
物質として機能するものであり、軽金属の場合は、例え
ば、リチウム、ナトリウム等を挙げることができる。特
に、リチウムは好適である。また、軽金属合金としては
、上記した各軽金属を組合わせ調製した合金、または、
これら上記軽金属もしくは上記軽金属の合金とアルミニ
ウム、インジウム、ガリウム等のような他の金属とを組
合わせてなる合金が挙げられる。特に、リチウムとアル
ミニウムとの合金は好適である。
The light metal or light metal alloy according to the present invention functions as an active material, and examples of light metals include lithium, sodium, and the like. In particular, lithium is suitable. In addition, light metal alloys include alloys prepared by combining the above-mentioned light metals, or
Examples include alloys formed by combining the above-mentioned light metals or alloys of the above-mentioned light metals with other metals such as aluminum, indium, gallium, etc. In particular, an alloy of lithium and aluminum is suitable.

Li−A1合金の場合、リチウムに対するアルミニウム
の割合は40〜80重量%であることが好ましい、他の
金属が40重量%より少ないと粉粒の集合体を維持し難
くなり、80重量%より多い場合は、合金それ自体の活
量が低下するからである。
In the case of Li-A1 alloy, the ratio of aluminum to lithium is preferably 40 to 80% by weight; if the other metals are less than 40% by weight, it will be difficult to maintain the aggregate of powder particles, and if the proportion of other metals is less than 40% by weight, it will be more than 80% by weight. In this case, the activity of the alloy itself decreases.

本発明にかかる負極は、上記したような軽金属または軽
金属合金の粉粒を後述するような方法で集合(凝集)せ
しめた集合体であり、各粉粒がいわば“おこし”のよう
に集合しているものである。
The negative electrode according to the present invention is an aggregate of light metal or light metal alloy powder particles as described above that are aggregated (agglomerated) by the method described below. It is something that exists.

この集合体において、各粉粒はそれぞれがその独自の粉
粒形状を基本的に維持し、各接触界面でのみ相互に結着
し、全体としては比較的多孔状態にある。
In this aggregate, each powder particle basically maintains its unique particle shape, and is bonded to each other only at each contact interface, so that the entire particle is in a relatively porous state.

この場合、集合体の多孔度は一概に特定できないが、5
〜40%程度であればよい、多孔度が大きすぎるとそも
そちが、活物質の量が少ないために電池の放電寿命が短
くなり、また多孔度が小さすぎると、電池反応に寄与す
る反応面積は小さくなって、重負荷放電特性の向上に寄
与しないからである。好ましくは10〜30%である。
In this case, the porosity of the aggregate cannot be unambiguously determined, but 5
If the porosity is too large, the discharge life of the battery will be shortened due to the small amount of active material, and if the porosity is too small, reactions that contribute to the battery reaction will be reduced. This is because the area becomes small and does not contribute to improving heavy load discharge characteristics. Preferably it is 10 to 30%.

このような集合体は、例えば軽金属がリチウムの場合に
は、窒素、アルゴン等の不活性雰囲気中でリチウム箔を
切断後、造粒機で粉粒にするか、軽金属合金がリチウム
−アルミニウムの場合には、溶融・冷却後のインゴット
を粉砕機で粉砕して製造した粉粒を負極缶の中に流入し
、これを所定の比で加圧成形して製造することができる
。この場合、粉粒の平均粒径は、それがあまり小さいと
粉粒状のまま成形するのが困難となり、逆に大きすぎる
と表面積の寄与が減少するので、通常10〜300−で
あることが好ましい。
For example, when the light metal is lithium, such aggregates are produced by cutting lithium foil in an inert atmosphere such as nitrogen or argon and then turning it into powder using a granulator, or when the light metal alloy is lithium-aluminum. In this case, the ingot after being melted and cooled is pulverized by a pulverizer, and the resulting powder particles are flowed into a negative electrode can, and the granules are press-molded at a predetermined ratio. In this case, if the average particle size of the powder particles is too small, it will be difficult to mold the particles as they are, and if it is too large, the contribution of the surface area will decrease, so it is usually preferable that the average particle size is 10 to 300. .

また、加圧成形時に適用する圧は、成形後得られた負極
成形体が、上記した多孔度となるように選定する。例え
ば、平均粒径45−のLi粉を用いた場合、1〜30 
kg/ c+*2程度の圧である。
Further, the pressure applied during pressure molding is selected so that the negative electrode molded body obtained after molding has the above-mentioned porosity. For example, when using Li powder with an average particle size of 45-
The pressure is about kg/c+*2.

[実施例] 実施例 (1)正極の製造 酸化銅の粉末140g、黒鉛粉末20gおよびポリテト
ラフルオロエチレン2gを混合し、得られた混合物0.
06gを25℃、5 kg/ ays2でベレット状に
加圧成形し、正極とした。
[Example] Example (1) Production of positive electrode 140 g of copper oxide powder, 20 g of graphite powder, and 2 g of polytetrafluoroethylene were mixed, and the resulting mixture was 0.0 g.
06g was press-molded into a pellet shape at 25°C and 5 kg/ays2 to form a positive electrode.

(2)負極の製造 リチウム60重量%およびアルミニウム40重量%から
なるリチウム−アルミニウム合金50gのインゴットを
粉砕機により粉末化し、平均粒径45−の粉末とした。
(2) Manufacture of Negative Electrode A 50 g ingot of a lithium-aluminum alloy consisting of 60% by weight of lithium and 40% by weight of aluminum was pulverized by a pulverizer to obtain powder with an average particle size of 45 mm.

この粉末o 、05gを負極缶の中に流入し、15 k
g/ am2の圧で圧着成形した。このときの負極の多
孔度は25%であった。
05 g of this powder was poured into the negative electrode can, and 15 k
Pressure molding was performed at a pressure of g/am2. The porosity of the negative electrode at this time was 25%.

(3)電池の組立て ステンレス鋼製の正極缶の中に上述した正極を着設し、
その上に、ポリプロピレン不織布からなり、プロピレン
カーボネートと1.2−ジメトキシエタン1:1(容量
比)の混合溶媒に過塩素酸リチウムを1モル/交の濃度
で溶解した電解液が含浸保持されているセパレータを載
置し、さらにその上に前述の負極が圧着された負極缶を
冠着した。負極缶の周縁にポリプロピレンからなるバッ
キングを充填し、正極缶の開口端をかしめて、第1図に
示したようなボタン型非水電解液電池を組立てた。
(3) Assembling the battery Place the above-mentioned positive electrode in a stainless steel positive electrode can,
On top of that, it is made of polypropylene nonwoven fabric and is impregnated with an electrolytic solution in which lithium perchlorate is dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a concentration of 1:1 (volume ratio) at a concentration of 1 mole/cross. A separator was placed on top of the separator, and the negative electrode can with the negative electrode crimped thereon was mounted on top of the separator. A backing made of polypropylene was filled around the periphery of the negative electrode can, and the open end of the positive electrode can was caulked to assemble a button-type nonaqueous electrolyte battery as shown in FIG.

(4)低温重負荷特性試験 製作した電池に5にΩの定抵抗負荷を接続し、−10℃
にて4 、8 rasec/ secのパルスをかけ、
低温重負荷特性を調べた。その結果を第1表に示す。
(4) Low temperature heavy load characteristic test A constant resistance load of Ω was connected to the manufactured battery at -10°C.
Apply pulses of 4 and 8 rasec/sec at
The low temperature heavy load characteristics were investigated. The results are shown in Table 1.

比較例 負極を板状のリチウムから打ち抜き、その容量が実施例
1の粉末状リチウム合金を負極缶に圧着したときのもの
と同容量になるようにした以外は、実施例1と同様にし
て、ボタン型非水電解液電池を組立゛て、実施例1と同
一の条件で、低温重負荷特性試験を行なった。その結果
も第1表に示す。
Comparative Example A negative electrode was punched out of a plate-shaped lithium plate, and the capacity was the same as that obtained when the powdered lithium alloy of Example 1 was crimped onto the negative electrode can, but in the same manner as in Example 1. A button-type non-aqueous electrolyte battery was assembled, and a low-temperature heavy load characteristic test was conducted under the same conditions as in Example 1. The results are also shown in Table 1.

本実施例による電池は比較例による電池に比べ、開路電
圧は若干低いが、閉路電圧は高く、その差が小さいこと
から重負荷放電に優れていることがわかる。
Although the battery according to this example has a slightly lower open circuit voltage than the battery according to the comparative example, it has a higher closed circuit voltage and the difference is small, indicating that it is excellent in heavy load discharge.

[発明の・効果コ 本発明の非水電解液電池を使用した場合、粉末状態の軽
金属またはその合金を負極に用いているので、負極の表
面積が大きくなり、電池の重負荷特性が有利となる。ま
た、負極に粉末状態の軽金属合金を用いた場合には、取
扱いが容易であり、さらに、電池組立て後の初期電圧を
放電電位に近づけるための、予備放電等の操作を必要と
しない。また、従来では、軽金属のフォイルを打ち抜い
ていたので無駄な端材が出ていたが、その無駄がなくな
り、コスト面でも、作業性の面でも優れている。
[Advantageous Effects of the Invention] When the non-aqueous electrolyte battery of the present invention is used, since a powdered light metal or its alloy is used for the negative electrode, the surface area of the negative electrode becomes large and the heavy load characteristics of the battery are advantageous. . Further, when a powdered light metal alloy is used for the negative electrode, it is easy to handle, and furthermore, there is no need for operations such as preliminary discharge to bring the initial voltage close to the discharge potential after battery assembly. In addition, in the past, light metal foil was punched out, resulting in wasted scraps, but this eliminates that waste, making it superior in terms of cost and workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるボタン型非水電解液電
池の縦断面図であり、第2図は比較例による従来型の非
水電解゛液電池の縦断面図である。 1・・・正極缶 2・・・正極 3・・・セパレータ 4・・・電極缶 5・・・負極(軽金属箔) 5′・・・負極(軽金属またはその合金の粉粒集合体)
FIG. 1 is a longitudinal sectional view of a button-type non-aqueous electrolyte battery according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional non-aqueous electrolyte battery according to a comparative example. 1... Positive electrode can 2... Positive electrode 3... Separator 4... Electrode can 5... Negative electrode (light metal foil) 5'... Negative electrode (powder aggregate of light metal or its alloy)

Claims (4)

【特許請求の範囲】[Claims] (1)負極が軽金属粉粒または軽金属合金粉粒の集合体
であることを特徴とする非水電解液電池。
(1) A non-aqueous electrolyte battery characterized in that the negative electrode is an aggregate of light metal powder particles or light metal alloy powder particles.
(2)該軽金属が、リチウムおよびナトリウムの群から
選ばれる1種である特許請求の範囲第1項記載の非水電
解液電池。
(2) The nonaqueous electrolyte battery according to claim 1, wherein the light metal is one selected from the group of lithium and sodium.
(3)該軽金属合金が、リチウム、ナトリウム、アルミ
ニウム、インジウムおよびガリウムの群から選ばれる2
種以上の金属の合金である特許請求の範囲第1項記載の
非水電解液電池。
(3) the light metal alloy is selected from the group of lithium, sodium, aluminum, indium and gallium;
The non-aqueous electrolyte battery according to claim 1, which is an alloy of at least one metal.
(4)該粉粒の平均粒径が、10〜300μmである特
許請求の範囲第1項記載の非水電解液電池。
(4) The nonaqueous electrolyte battery according to claim 1, wherein the powder particles have an average particle size of 10 to 300 μm.
JP14328187A 1987-06-10 1987-06-10 Nonaqueous electrolytic solution battery Pending JPS63308869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14328187A JPS63308869A (en) 1987-06-10 1987-06-10 Nonaqueous electrolytic solution battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14328187A JPS63308869A (en) 1987-06-10 1987-06-10 Nonaqueous electrolytic solution battery

Publications (1)

Publication Number Publication Date
JPS63308869A true JPS63308869A (en) 1988-12-16

Family

ID=15335089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14328187A Pending JPS63308869A (en) 1987-06-10 1987-06-10 Nonaqueous electrolytic solution battery

Country Status (1)

Country Link
JP (1) JPS63308869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855752A3 (en) * 1997-01-28 2001-10-10 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and process for the production of said electrode structural body and said rechargeable battery
WO2022270138A1 (en) 2021-06-22 2022-12-29 パナソニックIpマネジメント株式会社 Wound non-aqueous electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855752A3 (en) * 1997-01-28 2001-10-10 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and process for the production of said electrode structural body and said rechargeable battery
WO2022270138A1 (en) 2021-06-22 2022-12-29 パナソニックIpマネジメント株式会社 Wound non-aqueous electrolyte battery

Similar Documents

Publication Publication Date Title
US4658498A (en) Process for producing rechargeable electrochemical device
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
US6265109B1 (en) Magnesium alloy battery
JP4534263B2 (en) Nonaqueous electrolyte secondary battery
JPS63308869A (en) Nonaqueous electrolytic solution battery
JPS62213064A (en) Lithium-alloy negative electrode and its manufacture
JPS63264865A (en) Manufacture of negative electrode for secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPS6337568A (en) Alkaline cell
JPH0355770A (en) Lithium secondary battery
JPH09245798A (en) Lithium secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP4534264B2 (en) Nonaqueous electrolyte secondary battery
JPS62226563A (en) Nonaqueous electrolyte secondary battery
JPH09161773A (en) Electrode material for nonaqueous secondary battery and nonaqueous secondary battery
JPS59130070A (en) Nonaqueous electrolytic secondary battery
JP2542812B2 (en) Non-aqueous electrolyte secondary battery
JP2714078B2 (en) Non-aqueous electrolyte battery
JPH0620688A (en) Zinc alkaline battery
JPH073785B2 (en) Non-aqueous electrolyte battery
JPS6145565A (en) Storage battery
JPS6322019B2 (en)
JPH0265056A (en) Nonaqueous secondary battery
JPH0317964A (en) Manufacture of lithium secondary battery