JPH0317964A - Manufacture of lithium secondary battery - Google Patents

Manufacture of lithium secondary battery

Info

Publication number
JPH0317964A
JPH0317964A JP1151970A JP15197089A JPH0317964A JP H0317964 A JPH0317964 A JP H0317964A JP 1151970 A JP1151970 A JP 1151970A JP 15197089 A JP15197089 A JP 15197089A JP H0317964 A JPH0317964 A JP H0317964A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
aluminum
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1151970A
Other languages
Japanese (ja)
Inventor
Hideki Ishikawa
英樹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP1151970A priority Critical patent/JPH0317964A/en
Publication of JPH0317964A publication Critical patent/JPH0317964A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a lithium secondary battery of excellence in cycle life with a simple process by emitting lithium ions occluded in manganese dioxide at a positive electrode through charge to electrically deposit lithium on aluminum at a negative electrode so that a lithium-aluminum alloy negative electrode is formed. CONSTITUTION:For an assembly, an aluminum plate is used on a negative electrode 1 side, manganese dioxide in which lithium is occluded is used on a positive electrode 5 side and organic solvent containing lithium salt is used as electrolyte. When this is charged, the lithium occluded in the manganese dioxide used on the positive electrode 5 side is electrically deposited on the aluminum plate on the negative electrode 1 side, and manufactured lithium- aluminum alloy is used as an electrode. It is thus possible to obtain a lithium secondary battery of excellent in charge and discharge cycle life with a simple manufacture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、負極にリチウムーアルくニウム合金を用いた
リチウム二次電池の製造方法に関するものである. 〔発明の概要〕 本発明は、リチウム二次電池の負極のリチウムアルもニ
ウム合金を、リチウムイオンを吸蔵した二酸化マンガン
正極とアルミニウム負極からなる電池組み立て後、充電
によりあらかしめ二酸化マンガンに吸蔵させたリチウム
を負極側のアルミニウム上に電着して、組み立てられた
電池内でリチウム−アルミニウム合金負極を1!造する
ことにより、サイクル寿命の優れたリチウム二次電池を
実現しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a lithium secondary battery using a lithium-aluminum alloy for the negative electrode. [Summary of the Invention] The present invention is a lithium secondary battery in which a lithium-aluminium alloy, which is a negative electrode, is warmed up by charging after assembling a battery consisting of a manganese dioxide positive electrode and an aluminum negative electrode that occludes lithium ions, and is occluded in manganese dioxide. Lithium is electrodeposited on the aluminum on the negative electrode side, and the lithium-aluminum alloy negative electrode is placed in the assembled battery. The aim is to create a lithium secondary battery with excellent cycle life.

〔従来の技術〕[Conventional technology]

近年、充放電可能な高工不ルギー密度電池として、リチ
ウム二次電池が注目されているが、このリチウム二次電
池の負極活物質に金属リチウムを使用した場合には、充
放電に伴い電池負極にデンドライトが発生するなどの問
題があり、これらの問題を解決するため、最近ではリチ
ウム合金、とりわけリチウム−アルミニウム合金が使用
されている。
In recent years, lithium secondary batteries have attracted attention as highly engineered inert-density batteries that can be charged and discharged.When metallic lithium is used as the negative electrode active material of these lithium secondary batteries, the negative electrode of the battery deteriorates during charging and discharging. However, in order to solve these problems, lithium alloys, especially lithium-aluminum alloys, have recently been used.

上述したような電池電極用リチウム−アルミニウム合金
は大別して、 (1)適当比率のリチウムとアルミニウムとを不活性雰
囲気中で溶融して合金化する冶金学的製造方法。
The above-mentioned lithium-aluminum alloy for battery electrodes can be roughly divided into (1) a metallurgical production method in which lithium and aluminum in an appropriate ratio are melted and alloyed in an inert atmosphere;

(2)リチウム塩を含む有機溶媒中にアルミニウム威形
物を浸漬し、このアルミニウム戊形物上にリチウムを電
着して合金化する電気化学的製造方法の2つの方法によ
り製造することができるが、filの冶金学的製造方法
により電池電極用リチウムーアル旦ニウム合金を製造す
る場合には、高瓜加熱が必要であり、このため装置的に
大掛かりなものとなり、また作業取り扱い上にも難点が
あると言った問題がある.他方、(2)の電気化学的製
造方法に関しては、アルミニウム板上にリチウムを圧着
して圧着物を形成し、次いでこの圧着物をリチウム塩を
含む有a溶媒に浸漬することにより電池電極用リチウム
−アルミニウム合金を製造する方法が知られており、こ
の方法は比較的簡易であり、上述した冶金学的製造方法
のような問題点はないが、この方法で製造したリチウム
−アルミニウム合金を二次電池の電極として使用すると
、二次電池のサイクル寿命が短いという問題があった.
また、{2}の電気化学的方法でリチウム塩を含む有機
溶媒中にアルミニウム板を浸漬し、対極としてリチウム
を浸漬し、アルミニウム板上にリチウムを電着して製造
したリチウム−アルミニウム合金を二次電池用の電極と
して使用すると、二次電池のサイクル寿命は長くなるこ
とが知られている.〔発明が解決しようとする課題〕 上述のようなリチウム塩を含む有機溶媒中にアルミニウ
ム板を浸漬し、対極としてリチウムを浸漬し、アルミニ
ウム板上にリチウムを電着してリチウム−アルミニウム
合金を製造する方法では、製造したリチウム−アルミニ
ウム合金を電池内に組み込むための工程、例えばリチウ
ム−アルミニウム負極と外装缶とを固着するなどの工程
が必要となり、作業取り扱い上難点があった。
(2) It can be produced by two methods: an electrochemical production method in which an aluminum shape is immersed in an organic solvent containing lithium salt, and lithium is electrodeposited onto the aluminum shape to form an alloy. However, when producing a lithium-aluminum alloy for battery electrodes using the fil metallurgical production method, it is necessary to heat the melon, which requires a large-scale equipment and is also difficult to handle. There is a problem that I mentioned. On the other hand, regarding the electrochemical production method (2), lithium for battery electrodes is produced by pressing lithium onto an aluminum plate to form a crimped object, and then immersing this crimped object in an aqueous solvent containing a lithium salt. - A method for producing an aluminum alloy is known, and although this method is relatively simple and does not have the problems of the metallurgical production method described above, it is possible to use the lithium-aluminum alloy produced by this method as a secondary When used as a battery electrode, there was a problem that the cycle life of the secondary battery was short.
In addition, a lithium-aluminum alloy produced by immersing an aluminum plate in an organic solvent containing a lithium salt using the electrochemical method of {2}, immersing lithium as a counter electrode, and electrodepositing lithium on the aluminum plate was used. It is known that when used as an electrode for secondary batteries, the cycle life of the secondary battery will be extended. [Problem to be solved by the invention] A lithium-aluminum alloy is produced by immersing an aluminum plate in an organic solvent containing a lithium salt as described above, immersing lithium as a counter electrode, and electrodepositing lithium onto the aluminum plate. This method requires a process for incorporating the manufactured lithium-aluminum alloy into the battery, such as fixing the lithium-aluminum negative electrode and the outer can, which is difficult to handle.

本発明は負極としてリチウム−アルミニウム合金を用い
た。サイクル寿命の優れたリチウム二次電池を簡単に製
造する方法を提供することを目的とする。
In the present invention, a lithium-aluminum alloy was used as the negative electrode. The purpose of the present invention is to provide a method for easily manufacturing a lithium secondary battery with excellent cycle life.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記目的を達成するため鋭意検討を重ね
た結果、負極側にアルミニウム板を用い、正極側にリチ
ウムを吸蔵させた二酸化マンガンを用い、電解液として
リチウム塩を含む有機溶媒を用いて組み立てた電池を、
通常の電池を充電するのと同しことをすると正極側に用
いた二酸化マンガンに吸蔵させたリチウムが、負極側の
アルミニウム板上に電着されることにより、前述した電
気化学的方法で、リチウム塩を含む有機溶媒中にアルミ
ニウム板を浸漬し、対極としてリチウムを浸清し、アル
ミニウム板上にリチウムを電着することにより製造した
リチウム−アルミニウム合金を二次電池用の電極として
使用したリチウム二次電池と同程度のサイクル寿命の優
れたリチウム二次電池が製造できることを知見し、本発
明を完威させるに至ったものである. なお、正極側にリチウムを吸蔵させた二酸化マンガンを
用い、負極側にアルミニウム板を用い、電解液としてリ
チウム塩を含む有機溶媒を用いて組み立たて電池の充電
方法は用いるリチウム塩や有機溶媒によっても異なるが
、充電の際の電池の電圧を上限電圧を設定して充電を行
う方法が好適である. 〔作用〕 電池電極用のリチウム−アルミニウム合金の製造方法で
、サイクル寿命の優れたリチウム−アルミニウム合金の
製造方法としては、リチウム塩を含む有機溶媒中にアル
ミニウム板と、リチウムを浸漬し、アルξニウム板上に
リチウムを電着する方法が好適であるが、製造工程上難
点があった。
As a result of intensive studies to achieve the above object, the present inventors used an aluminum plate on the negative electrode side, used manganese dioxide with lithium occluded on the positive electrode side, and used an organic solvent containing lithium salt as the electrolyte. The battery assembled using
When charging a normal battery, the lithium occluded in the manganese dioxide used on the positive electrode side is electrodeposited on the aluminum plate on the negative electrode side, and lithium is charged by the electrochemical method described above. A lithium secondary battery using a lithium-aluminum alloy produced by immersing an aluminum plate in an organic solvent containing salt, immersing lithium as a counter electrode, and electrodepositing lithium on the aluminum plate as an electrode for a secondary battery. It was discovered that it was possible to manufacture a lithium secondary battery with a cycle life comparable to that of secondary batteries, and this led to the completion of the present invention. In addition, the battery is assembled using manganese dioxide with lithium occluded for the positive electrode side, an aluminum plate for the negative electrode side, and an organic solvent containing lithium salt as the electrolyte.The charging method for the battery depends on the lithium salt and organic solvent used. However, the preferred method is to set an upper limit voltage for the battery voltage during charging. [Function] A method for producing a lithium-aluminum alloy with excellent cycle life for use in battery electrodes is to immerse an aluminum plate and lithium in an organic solvent containing a lithium salt, A method of electrodepositing lithium on a metal plate is suitable, but there are some difficulties in the manufacturing process.

このように、従来のリチウム−アルミニウム合金負極は
、電池組み立て前に予め作製するものである。
In this way, conventional lithium-aluminum alloy negative electrodes are prepared in advance before battery assembly.

一方、本発明のリチウム二次電池の製造方法は、電池内
で負極側のアルミニウム板にリチウムを電着させ、リチ
ウム−アルミニウム合金を製造する方法であり、電池組
み立てのときは、正極側にリチウムを吸蔵させた二酸化
マンガン、負極側にアルミニウム板、電解液としてリチ
ウム塩を含む有機溶媒を用いて電池を組み立てることが
できるので、組み立ての時にリチウム−アルミニウム合
金を用いる方法に較べて、製造工程が簡略化でき、コス
トメリットが大きい。
On the other hand, the method for manufacturing a lithium secondary battery of the present invention is a method of electrodepositing lithium on an aluminum plate on the negative electrode side in the battery to manufacture a lithium-aluminum alloy, and when assembling the battery, lithium is placed on the positive electrode side. Since a battery can be assembled using manganese dioxide occluded with carbon dioxide, an aluminum plate on the negative electrode side, and an organic solvent containing lithium salt as the electrolyte, the manufacturing process is faster than when using a lithium-aluminum alloy. It can be simplified and has great cost benefits.

〔実施例〕〔Example〕

以下、本発明を具体的な実験例に基づいて説明するが、
本発明がこれら実験例に限定されるものではない. (実施例) 以下に示す手順に従って第l図に示すコイン型電池を作
威した。
The present invention will be explained below based on specific experimental examples.
The present invention is not limited to these experimental examples. (Example) A coin type battery shown in FIG. 1 was produced according to the procedure shown below.

市販の電解二酸化マンガンと市販のn−ブチルリチウム
を所定量反応させて、マンガンに対するモル比が0.8
の量だけリチウムイオンを吸蔵した二酸化マンガンを得
た. 上述のようにして得られたリチウムを吸藏した二酸化マ
ンガンを正極活物質として用い、これに導電剤としてグ
ラファイト,バインダーとしてポリテトラフルオ口エチ
レンを重量比で85:10:5の割合で混合し正極合剤
とした.これを直径15.5關、厚さ0.61m、重量
0.300gに加圧戒型して正極ベレソト5を作戒した
A predetermined amount of commercially available electrolytic manganese dioxide and commercially available n-butyllithium are reacted to produce a molar ratio of 0.8 to manganese.
We obtained manganese dioxide that occluded lithium ions in an amount equal to . The lithium-adsorbed manganese dioxide obtained as described above was used as a positive electrode active material, and graphite as a conductive agent and polytetrafluoroethylene as a binder were mixed in a weight ratio of 85:10:5. It was used as a positive electrode mixture. This was pressurized into a mold with a diameter of 15.5 mm, a thickness of 0.61 m, and a weight of 0.300 g to form a positive electrode Veresoto 5.

次に、厚さ0.2 1−のアルミニウム板を直径15.
5關に打ち抜き、負極ベレ7}1とし負極缶2にスポッ
ト溶接し、負極を作威した. この負極上にセパレータ3を置き、プラスチック製のガ
スケフト4をはめこみ、電解液7として1モル1lの割
合でLi B F aを溶解したプロピレンカーボネー
トを注入し、先に作威した正極ペレット5を入れ、正極
缶6を被せた後、開口部を密封するようにカシメてシー
ルし外径20,Ox、厚み1.5wmのリチウム二次電
池を作威した。この電池を電流1mAで充電し、充電終
止電圧を3.7vとしたところ、55mAHの容量だけ
充電できた。
Next, we cut an aluminum plate with a thickness of 0.2 mm and a diameter of 15 mm.
5 pieces were punched out, the negative electrode bevel 7}1 was spot welded to the negative electrode can 2, and the negative electrode was made. A separator 3 is placed on this negative electrode, a plastic gasket 4 is fitted, propylene carbonate in which LiBFa is dissolved at a ratio of 1 mol 1 liter is injected as an electrolytic solution 7, and the positive electrode pellets 5 prepared earlier are placed. After covering the positive electrode can 6, the opening was caulked and sealed to produce a lithium secondary battery with an outer diameter of 20 mm and a thickness of 1.5 wm. When this battery was charged with a current of 1 mA and the charging end voltage was set to 3.7 V, it was possible to charge the battery to a capacity of 55 mAH.

上記のように組み立てた後充電した電池をサンプル電池
Aとした. (比較例1) 市販の二酸化マンガンを正極活物質として用い、これに
導電剤としてグラファイト,バインダーとしてポリテト
ラフルオロエチレンを重量比で82=12:6の割合で
混合し正極合剤とした。これを直径15.5n、厚さ0
.4fl、重量0.285gに加圧成型して正極ベレッ
ト5を作或した. 次に、厚さ0.2flのアルミニウム板を直径l5.5
nに打ち抜き、負極缶2にスポット溶接し、その上に直
径15.0y、厚さ0.2 mmのリチウム板を打ち抜
いたものを圧着し負極ペレソト1として負極を作威した
。上記の直径15.0m,厚さ0.2Hのリチウムの容
量を測定したところ55mAHの容量であった. この負極上にセパレータ3を置き、プラスチック製のガ
スケット4をはめ込み、電解液7としてlモル/lの割
合でLiBF4を溶解したプロビレンカーボネートを注
入し、先に作威した正極ベレット5を入れ、正極缶6を
被せた後、開口部を密封するようにカシメてシールし外
径20.0mm、厚み1.6 0のリチウム二次電池を
作戒した。この電池をサンプル電池Bとした。
The battery assembled and charged as described above was designated as sample battery A. (Comparative Example 1) Commercially available manganese dioxide was used as a positive electrode active material, and a positive electrode mixture was prepared by mixing graphite as a conductive agent and polytetrafluoroethylene as a binder in a weight ratio of 82=12:6. This has a diameter of 15.5n and a thickness of 0.
.. A positive electrode pellet 5 was prepared by pressure molding to a size of 4 fl and a weight of 0.285 g. Next, a 0.2fl thick aluminum plate with a diameter l5.5
A lithium plate having a diameter of 15.0 mm and a thickness of 0.2 mm was press-bonded thereon to produce a negative electrode as the negative electrode 1. The capacity of the above 15.0m diameter, 0.2H thick lithium was measured and found to be 55mAH. A separator 3 is placed on this negative electrode, a plastic gasket 4 is fitted, propylene carbonate in which LiBF4 is dissolved at a ratio of 1 mol/l is injected as an electrolytic solution 7, and the previously prepared positive electrode pellet 5 is placed. After covering the positive electrode can 6, the opening was caulked and sealed, and a lithium secondary battery having an outer diameter of 20.0 mm and a thickness of 1.6 mm was prepared. This battery was designated as sample battery B.

(比較例2) 比較例Iと同様にして正極ペレソト5を作威した。(Comparative example 2) A positive electrode Peresoto 5 was produced in the same manner as in Comparative Example I.

次に、厚さQ,21mのアルミニウム板を直径l5,5
nに打ち抜いて、その打ち抜いたアルミニウム板をリチ
ウム塩を含む有機溶媒中に浸漬する.そして対極として
リチウムを浸漬し、打ち抜いたアルミニウム板上に55
mAHの容量の分だけのリチウムを電着させてリチウム
−アルミニウム合金を製造した。
Next, an aluminum plate with a thickness of Q and 21 m was placed with a diameter of l5.
The aluminum plate was punched out into an aluminum plate and immersed in an organic solvent containing a lithium salt. Then, as a counter electrode, lithium was immersed and placed on a punched aluminum plate.
A lithium-aluminum alloy was manufactured by electrodepositing lithium in an amount corresponding to the capacity of mAH.

次に、上記のリチウム−アルミニウム合金を負極缶2に
スポット溶接して負極を作威した。
Next, the above lithium-aluminum alloy was spot welded to the negative electrode can 2 to produce a negative electrode.

この負極上にセバレーター3を置き、プラスチック製の
ガスケット4をはめ込み、電解液7として1モル/Il
の割合でL i B F aを溶解したプロピレンカー
ボネートを注入し、先に作成した正極ペレット5を入れ
、正極缶6を被せた後、開口部を密封するようにカシメ
てシールし外径20.0關、厚み1.6 tmのリチウ
ム二次電池を作威した.この電池をサンフ゜ノレ電冫也
Cとした. 第2図はサンプル電池A,サンプル電池B,サンプル電
池Cの充放電サイクル特性図を示す。なお、充放電条件
はt流1mAで10時間放電し、電i!t 1 m A
で充電し、充電終止電圧3.7vとした。
A separator 3 is placed on this negative electrode, a plastic gasket 4 is fitted, and an electrolytic solution 7 of 1 mol/Il is placed on top of the negative electrode.
After injecting propylene carbonate in which LiBFa is dissolved at a ratio of 20.0, the positive electrode pellet 5 prepared earlier is placed, and the positive electrode can 6 is placed on top.The opening is caulked to seal the opening, and the outer diameter is 20. We have created a lithium secondary battery with a thickness of 1.6 tm. This battery was designated as Sanfunore Denya C. FIG. 2 shows charge/discharge cycle characteristics of sample battery A, sample battery B, and sample battery C. The charging and discharging conditions were to discharge at a current of 1 mA for 10 hours, and to obtain an electric i! t 1 m A
The battery was charged at a charge end voltage of 3.7V.

第2図より本発明の製造方法によるサンプル電池Aは、
アルミニウム板上にリチウムを圧着して作威したりチウ
ムーアルミニウム合金負極を用いたサンプル電池Bより
もサイクル寿命が優れている。又、本発明の製造方法に
よるサンプル電他Aは、リチウム塩を含む有m?8媒中
にアルミニウム板を浸漬し、対極としてリチウムを浸冫
1し、アルミニウム板上にリチウムを電着して製造した
リチウム−アルミニウム合金負極を用いたサンプル電池
Cと同程度のサイクル寿命を示しており、製造工程が簡
略化できるという本発明の製造方法が優れている. 〔発明の効果〕 上述の説明からも明らかなように、リチウムを吸蔵させ
た二酸化マンガンからなる正極と、アルミニウムからな
る負極と、非水電解液からなる電池を充電する本発明の
リチウム二次電池の製造方法は、充放電のサイクル寿命
の優れたリチウム二次電池を、簡略な製造方法で提供す
ることができ
From FIG. 2, sample battery A manufactured by the manufacturing method of the present invention is as follows:
The cycle life is better than that of sample battery B, which is made by press-bonding lithium onto an aluminum plate or uses a lithium-aluminum alloy negative electrode. In addition, Sample A produced by the production method of the present invention contains lithium salt. The battery exhibited a cycle life comparable to that of sample battery C, which used a lithium-aluminum alloy negative electrode produced by immersing an aluminum plate in 8 medium, immersing it in lithium as a counter electrode, and electrodepositing lithium on the aluminum plate. The manufacturing method of the present invention is superior in that it can simplify the manufacturing process. [Effects of the Invention] As is clear from the above description, the lithium secondary battery of the present invention charges a battery comprising a positive electrode made of manganese dioxide occluded with lithium, a negative electrode made of aluminum, and a non-aqueous electrolyte. This manufacturing method can provide a lithium secondary battery with an excellent charge/discharge cycle life using a simple manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により製造したリチウム二次電池の
構或例を示す概略断面図である.第2図は電池の充放電
サイクル特性図である.・負極ペレフト ・負極缶 ・セパレーター ・ガスケフト ・正極ベレフト ・正極缶 以上
FIG. 1 is a schematic cross-sectional view showing an example of the structure of a lithium secondary battery manufactured by the method of the present invention. Figure 2 shows the charge/discharge cycle characteristics of the battery.・Negative pole left, negative pole can, separator, gaskeft, positive pole left, positive pole can or above

Claims (1)

【特許請求の範囲】[Claims] リチウムイオンを吸蔵させた二酸化マンガンからなる正
極と、アルミニウムからなる負極と、非水電解液とから
なる電池を組み立てた後、充電により、正極である二酸
化マンガンに吸蔵しているリチウムイオンを放出せしめ
、負極のアルミニウム上にリチウムを電着せしめ、リチ
ウム−アルミニウム合金負極とすることを特徴とするリ
チウム二次電池の製造方法。
After assembling a battery consisting of a positive electrode made of manganese dioxide that occludes lithium ions, a negative electrode made of aluminum, and a non-aqueous electrolyte, charging releases the lithium ions occluded in the manganese dioxide that is the cathode. A method for producing a lithium secondary battery, which comprises electrodepositing lithium on aluminum as a negative electrode to obtain a lithium-aluminum alloy negative electrode.
JP1151970A 1989-06-14 1989-06-14 Manufacture of lithium secondary battery Pending JPH0317964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151970A JPH0317964A (en) 1989-06-14 1989-06-14 Manufacture of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151970A JPH0317964A (en) 1989-06-14 1989-06-14 Manufacture of lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0317964A true JPH0317964A (en) 1991-01-25

Family

ID=15530202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151970A Pending JPH0317964A (en) 1989-06-14 1989-06-14 Manufacture of lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0317964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538385B2 (en) 2000-06-22 2003-03-25 Hitachi, Ltd. Cathode-ray tube and flat electrode of electronic gun and production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538385B2 (en) 2000-06-22 2003-03-25 Hitachi, Ltd. Cathode-ray tube and flat electrode of electronic gun and production method

Similar Documents

Publication Publication Date Title
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
US4658498A (en) Process for producing rechargeable electrochemical device
JP2002237293A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
US6432581B1 (en) Rechargeable battery including an inorganic anode
JP4910235B2 (en) Lithium secondary battery and manufacturing method thereof
CN112072076B (en) Modification method for surface of negative electrode of lithium metal battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPH0317964A (en) Manufacture of lithium secondary battery
JP3403858B2 (en) Organic electrolyte battery
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH0536401A (en) Lithium secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH0554887A (en) Nonaqueous electrolyte secondary battery
JPH0554912A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JPS61116758A (en) Lithium battery
JPH05135760A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
KR20050028891A (en) Method for production of a rechargeable electrochemical element, and an element such as this
JPS63317634A (en) Manufacture of lithium alloy
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JPH1040960A (en) Nonaqueous electrolyte secondary battery
JPH02265173A (en) Manufacture of battery
US20060141364A1 (en) Electrolyte additive
JPS63308869A (en) Nonaqueous electrolytic solution battery
JPH02278658A (en) Secondary battery