JPH05135760A - Nonaqueous electrolyte secondary battery and manufacture thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacture thereof

Info

Publication number
JPH05135760A
JPH05135760A JP4080624A JP8062492A JPH05135760A JP H05135760 A JPH05135760 A JP H05135760A JP 4080624 A JP4080624 A JP 4080624A JP 8062492 A JP8062492 A JP 8062492A JP H05135760 A JPH05135760 A JP H05135760A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4080624A
Other languages
Japanese (ja)
Other versions
JP3227771B2 (en
Inventor
Sukeyuki Murai
祐之 村井
Yasuhiko Mifuji
靖彦 美藤
Shuji Ito
修二 伊藤
Masaki Hasegawa
正樹 長谷川
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP08062492A priority Critical patent/JP3227771B2/en
Publication of JPH05135760A publication Critical patent/JPH05135760A/en
Application granted granted Critical
Publication of JP3227771B2 publication Critical patent/JP3227771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery having no discharge capacity reduction caused by the charge/discharge capacity difference of a negative electrode and easy to manufacture and its manufacture. CONSTITUTION:An electrode plate incorporating a positive electrode active material is manufactured, it is dipped in a liquid incorporating a lithium agent such as butyl lithium, phenyl lithium, naphthyl lithium, or lithium iodide to form a positive electrode plate, and a battery is constituted. An electrode body faced with a positive electrode 1 and a negative electrode 2 via a separator 3 is dipped in a liquid incorporating the lithium agent to constitute the battery. The electrode body is inserted into a battery jar 9, the liquid incorporating the lithium agent is filled in the battery jar 9, an electrolyte is added, and it is sealed to manufacture the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は正極活物質としてリチウ
ム塩を、負極にリチウムを吸蔵放出する材料を用いた非
水電解液二次電池およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium salt as a positive electrode active material and a material which absorbs and releases lithium for a negative electrode, and a method for producing the same.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極に
用いた非水電解液二次電池は高電圧,高エネルギー密度
電池となることが期待され、実用化に向けて数多くの研
究が行われている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode is expected to be a high voltage, high energy density battery, and many studies have been conducted for practical use.

【0003】従来、非水電解液二次電池の正極活物質と
してはV25,Cr25,MnO2,TiS2などが知ら
れている。また、最近ThackrayらによってLi
Mn24が上記電池系の正極活物質になりうることが報
告された(マテリアルリサーチ ブレチン1983年1
8巻461−472ページ)。この正極活物質Li x
24のX値と開路電位の関係を図2に示す。電位曲線
は4.0V付近と2.8V付近に平坦部をもち、2段と
なる。したがって、充放電の電圧範囲を4.5Vから3
Vまでとし、4.0V付近の電位平坦部を用いて、充放
電サイクルを行なうことにより、4V級の二次電池とし
て使用することができる。また、正極活物質LixCo
2のX値と開路電圧の関係を図3に示した。電位曲線
は4.0V付近と1.2V付近に電位平坦部を持ち、こ
の場合も図2と同様に4.0V付近の電位平坦部を用い
て充放電サイクルを行なうことにより、4V級の二次電
池として使用することができる。
Conventionally, as a positive electrode active material for a non-aqueous electrolyte secondary battery,
Then V2OFive, Cr2OFive, MnO2, TiS2Is known
Has been. Also, recently, by Thackray et al.
Mn2OFourCan be a positive electrode active material for the above battery system.
Reported (Material Research Bulletin 1983 1
8: 461-472). This positive electrode active material Li xM
n2OFourThe relationship between the X value and the open circuit potential is shown in FIG. Potential curve
Has flat parts around 4.0V and 2.8V and has two stages.
Become. Therefore, the charging / discharging voltage range is 4.5V to 3V.
Charge up to V and discharge using a potential flat part around 4.0V.
By carrying out an electric cycle, it becomes a 4V class secondary battery.
Can be used. In addition, the positive electrode active material LixCo
O2The relationship between the X value and the open circuit voltage is shown in FIG. Potential curve
Has a potential flat part near 4.0V and 1.2V.
In the case of, as in FIG. 2, a potential flat portion around 4.0 V is used.
Charging and discharging cycle by
Can be used as a pond.

【0004】一方、負極としては、金属リチウムが多く
検討されてきた。しかし、充電時にリチウム表面に樹脂
状のリチウムが析出し、充放電サイクルを重ねると充放
電効率の低下もしくは正極と接することによる内部短絡
を生じるという問題を有していた。そこで、リチウムの
樹脂状成長を抑制し、リチウムを吸蔵,放出できる材料
として各種炭素材料やアルミニウムなどの金属,合金あ
るいは酸化物などが検討されている。
On the other hand, a large amount of metallic lithium has been studied for the negative electrode. However, there is a problem in that resin-like lithium is deposited on the surface of lithium during charging, and if charge / discharge cycles are repeated, charge / discharge efficiency decreases or an internal short circuit occurs due to contact with the positive electrode. Therefore, various carbon materials, metals such as aluminum, alloys, or oxides have been studied as materials capable of suppressing the resinous growth of lithium and absorbing and releasing lithium.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のような
従来の電池では、炭素材料やアルミニウム金属などの負
極活物質と、正極活物質としてのLiMn24,LiM
nO2,LiCoO2,LiNiO2,LiFeO2あるい
はγ−LiV25とを用いて電池を構成したとき、1回
目の充電で正極活物質から放出されたリチウムが、負極
活物質に吸蔵され、続く放電ではこの逆反応が起こり、
リチウムイオンは負極活物質から放出され、正極活物質
に吸蔵される。したがって、この電池反応に関与するリ
チウムイオンは最初に正極中に存在するリチウムイオン
のみとなり、このリチウムイオンの量が電池容量を決定
する。ところが、前記の負極活物質を用いたとき、1回
目の充電で負極活物質中に吸蔵されたリチウムイオン
は、続く放電でそのすべてを放出することができない
(1回目の充電で負極活物質に吸蔵されたリチウムイオ
ン量と1回目の放電で負極活物質中から放出されるリチ
ウムイオン量を比較すると前者の法が大きくなる:充放
電容量差)。このように1回目の充電で負極活物質中に
取り込まれ、以後の電池反応に関与しないリチウムイオ
ンが存在するため、電池中で可逆的に移動可能なリチウ
ムイオンが減少し、電池の容量が低下する。
However, in the conventional battery as described above, a negative electrode active material such as a carbon material or aluminum metal and LiMn 2 O 4 , LiM as a positive electrode active material are used.
When a battery is formed using nO 2 , LiCoO 2 , LiNiO 2 , LiFeO 2 or γ-LiV 2 O 5 , lithium released from the positive electrode active material by the first charge is occluded in the negative electrode active material, This reverse reaction occurs in the subsequent discharge,
Lithium ions are released from the negative electrode active material and occluded in the positive electrode active material. Therefore, the only lithium ions involved in this battery reaction are the lithium ions initially present in the positive electrode, and the amount of this lithium ion determines the battery capacity. However, when the above-mentioned negative electrode active material is used, all the lithium ions occluded in the negative electrode active material by the first charge cannot be released by the subsequent discharge (in the negative electrode active material by the first charge, When the amount of stored lithium ions and the amount of lithium ions released from the negative electrode active material by the first discharge are compared, the former method becomes larger: charge / discharge capacity difference). As described above, since lithium ions that are taken into the negative electrode active material by the first charge and are not involved in the subsequent battery reaction are present, the number of reversibly transferable lithium ions in the battery is decreased, and the battery capacity is decreased. To do.

【0006】そこで、正極活物質にLixMn24,L
sxMnO2,LixCoO2,LixNiO2,LixFe
2あるいはγ−Lix25(X>1)を用い、負極活
物質に吸蔵され、放出されないリチウムイオンを、正極
活物質中に存在する過剰のリチウムイオンで補うことが
検討されてきた。
Therefore, Li x Mn 2 O 4 , L is added to the positive electrode active material.
i sx MnO 2, Li x CoO 2, Li x NiO 2, Li x Fe
Using O 2 or γ-Li x V 2 O 5 (X> 1), it has been considered to supplement lithium ions that are occluded in the negative electrode active material and are not released with excess lithium ions present in the positive electrode active material. It was

【0007】このようなLiを過剰に含む正極活物質の
合成法としては、原料仕入時に過剰にリチウム塩を加え
る方法や、特開平2−265167号公報に開示されて
いるように正極活物質粉末をブチルリチウムでリチウム
化する提案がなされている。またTarasconらは
NaMo24をヨウ化リチウムを用いてイオン交換反応
によって過剰のリチウムを有するLixMo24を得る
方法を提案している。(米国特許第4710439号明
細書)。
As a method of synthesizing such a positive electrode active material containing excess Li, a method of adding an excessive lithium salt at the time of raw material charging or a positive electrode active material as disclosed in JP-A-2-265167 is disclosed. It has been proposed to lithiate the powder with butyllithium. Taracon et al. Have proposed a method of obtaining Li x Mo 2 O 4 having an excess of lithium by an ion exchange reaction of NaMo 2 O 4 with lithium iodide. (U.S. Pat. No. 4,710,439).

【0008】しかし、例えば、原料合成時に過剰のリチ
ウムを仕込み、加熱して得たLixMn24,LixMn
2,LixCoO2,LixNiO2,LixFeO2ある
いはγ−Lix25(X>1)は空気中の水分等と反応
し、LiMn24,LiMnO2,LiCoO2,LiN
iO2,LiFeO2あるいはγ−LiV25とLiOH
などに分解してしまう。このため、LixMn24,L
xMnO2,LixCoO2,LixNiO2,LixFe
2あるいはγ−Lix25(X>1)を合成したあと
で行われる粉砕や分級工程で、溶媒として水を使用する
ことができず、さらにこれらの工程を湿気を取り除いた
不活性ガス雰囲気中や乾燥空気中などで行なう必要があ
った。また、正極活物質合成後、正極活物質粉末をブチ
ルリチウムなどのリチウム化剤に浸漬し、リチウムを正
極活物質中にドープする方法においても、過剰のリチウ
ムを含む正極活物質は水分に対して不安定で、空気中の
水分などと反応するため、正極活物質と導電剤と結着剤
からなる電極板を作製する際、乾燥雰囲気中で非水系の
溶媒を用いる必要がある。
However, for example, Li x Mn 2 O 4 and Li x Mn obtained by charging excess lithium during the synthesis of the raw materials and heating
O 2, Li x CoO 2, Li x NiO 2, Li x FeO 2 , or γ-Li x V 2 O 5 (X> 1) is reacted with moisture in air or the like, LiMn 2 O 4, LiMnO 2 , LiCoO 2 , LiN
iO 2 , LiFeO 2 or γ-LiV 2 O 5 and LiOH
Will be decomposed into. Therefore, Li x Mn 2 O 4 , L
i x MnO 2 , Li x CoO 2 , Li x NiO 2 , Li x Fe
Water cannot be used as a solvent in the pulverizing and classifying steps carried out after synthesizing O 2 or γ-Li x V 2 O 5 (X> 1). It was necessary to carry out in an active gas atmosphere or in dry air. Also, in the method of immersing the positive electrode active material powder in a lithiating agent such as butyllithium after synthesizing the positive electrode active material to dope lithium into the positive electrode active material, the positive electrode active material containing excess lithium does not react with water. Since it is unstable and reacts with moisture in the air, it is necessary to use a non-aqueous solvent in a dry atmosphere when producing an electrode plate composed of a positive electrode active material, a conductive agent and a binder.

【0009】本発明はこのような課題を解決するもの
で、負極の充放電容量差に起因する放電容量低下がな
く、製造が簡便な非水電解液二次電池およびその製造法
を提供することを目的とするものである。
The present invention solves such a problem, and provides a non-aqueous electrolyte secondary battery which is easy to manufacture and does not have a decrease in discharge capacity due to a difference in charge / discharge capacity of a negative electrode, and a method for manufacturing the same. The purpose is.

【0010】[0010]

【課題を解決するための手段】この課題を解決するため
に本発明は正極活物質を含む電極板を作製し、これをブ
チルリチウム,フェニルリチウム,ナフチルリチウムあ
るいはヨウ化リチウムなどのリチウム化剤を含む液に浸
漬して作製した正極板を用いて電池を構成するようにし
たものである。
In order to solve this problem, the present invention prepares an electrode plate containing a positive electrode active material, which is treated with a lithiating agent such as butyl lithium, phenyl lithium, naphthyl lithium or lithium iodide. A battery is constructed by using a positive electrode plate prepared by immersing in a liquid containing the positive electrode.

【0011】また、正,負両極をセパレータを介して対
向させてなる電極体を上記リチウム化剤を含む液に浸漬
した後、電池を構成するようにしたものである。
Further, the battery is constructed by immersing an electrode body having positive and negative electrodes opposed to each other through a separator in a liquid containing the above-mentioned lithiating agent.

【0012】また電極体を電槽中に挿入し、電槽中にリ
チウム化剤を含む液を注入し、電解液を加え、封口して
電池を作製するようにしたものである。
Further, the battery is manufactured by inserting the electrode body into a battery case, injecting a liquid containing a lithiating agent into the battery case, adding an electrolytic solution and sealing the battery.

【0013】[0013]

【作用】本発明の非水電解液二次電池およびその製造法
によればLiMn24,LiMnO2,LiCoO2,L
iNiO2,LiFeO2あるいはγ−LiV25をブチ
ルリチウム,フェニルリチウムあるいはヨウ化リチウム
などのリチウム化剤を含む液に浸漬する工程を、正極活
物質と導電剤と結着剤とを溶媒を用いて混練し、塗布,
乾燥し正極板を作製した後に行なうことで、正極板作製
までのすべての工程において、非水系の溶媒を用いる必
要がなく、作業雰囲気も湿気を取り除いた不活性ガス中
や乾燥空気中で行なう必要がない。さらに、上記電極体
を電槽中に挿入した後、電槽中に上記リチウム化剤を注
入することにより、電極浸漬時の電極の膨潤による電極
の緩みがなく、電池組立時の作業性を向上させることが
できる。
According to the non-aqueous electrolyte secondary battery of the present invention and the manufacturing method thereof, LiMn 2 O 4 , LiMnO 2 , LiCoO 2 , L
iNiO 2, LiFeO 2 or γ-LiV 2 O 5 butyllithium, the step of immersing in a liquid containing a lithiating agent, such as phenyllithium or lithium iodide, the solvent and the positive electrode active material and the conductive agent and a binder Kneading using, coating,
By performing after the positive electrode plate is dried, it is not necessary to use a non-aqueous solvent in all steps up to the positive electrode plate, and the working atmosphere also needs to be performed in an inert gas from which moisture has been removed or in dry air. There is no. Furthermore, by inserting the above electrode body into a battery case and then injecting the above lithiating agent into the battery case, there is no loosening of the electrode due to swelling of the electrode when the electrode is immersed, and workability during battery assembly is improved. Can be made

【0014】[0014]

【実施例】以下に本発明の一実施例の非水電解液二次電
池およびその製造法を図面を参照しながら説明する。
EXAMPLES A non-aqueous electrolyte secondary battery and a method of manufacturing the same according to one example of the present invention will be described below with reference to the drawings.

【0015】(実施例1)LiMn24はLi2CO3
Mn34とを3:4のモル比で混合し、900℃で加熱
することによって合成した。またLiCoO2はLi2
3とCoCo3を1:2のモル比で混合し、900℃で
加熱することによって合成した。LiMnO2はLi2
3とMnCO3を1:2のモル比で混合し、800℃で
加熱することにより得た。LiNiO2はLiOHとN
i(NO32を1:1のモル比で混合し800℃で加熱
することによって得た。LiFeO2はLi2CO3Fe
(OH)3を1:2のモル比で混合し650℃に加熱す
ることによって得た。γ−LiV25はLi2CO3とV
25を1:2で混合し700℃に加熱することにより得
た。さらに、これらを粉砕し、100メッシュ以下に分
級したものを正極活物質に用いた。
[0015] a (Example 1) LiMn 2 O 4 is Li 2 CO 3 and Mn 3 O 4 3: were mixed in a molar ratio of 4 was synthesized by heating at 900 ° C.. LiCoO 2 is Li 2 C
It was synthesized by mixing O 3 and CoCo 3 in a molar ratio of 1: 2 and heating at 900 ° C. LiMnO 2 is Li 2 C
It was obtained by mixing O 3 and MnCO 3 in a molar ratio of 1: 2 and heating at 800 ° C. LiNiO 2 is LiOH and N
It was obtained by mixing i (NO 3 ) 2 in a molar ratio of 1: 1 and heating at 800 ° C. LiFeO 2 is Li 2 CO 3 Fe
Obtained by mixing (OH) 3 in a molar ratio of 1: 2 and heating to 650 ° C. γ-LiV 2 O 5 is Li 2 CO 3 and V
Obtained by mixing 2 O 5 1: 2 and heating to 700 ° C. Further, these were crushed and classified to 100 mesh or less, and used as the positive electrode active material.

【0016】つぎに、負極板としては活物質である黒鉛
100gに対して結着剤としてポリフッ化エチレン10
gを加え、水を用いてペースト状にし、これをニッケル
の芯材に塗布,乾燥したものを用いた。
Next, for the negative electrode plate, 100 g of graphite which is an active material, and 10 parts of polyfluorinated ethylene as a binder were used.
g was added, a paste was formed using water, and this was applied to a nickel core material and dried.

【0017】正の電極板は、正極活物質100gに対し
て導電剤として炭素粉末を10g、結着剤としてポリ四
フッ化エチレンを5g加え、水を加えて混練してペース
ト状にし、チタニウムの芯材に塗布し、乾燥して作製し
た。この電極板を1.65モル/リットルのn−ブチル
リチウムのヘキサン溶液に浸漬したものを正極板として
用いた。このとき正極活物質中のリチウムが15%過剰
であるようなLixMn24,LixMnO2,LixCo
2,LixNiO2,LixFeO2あるいはγ−Lix
25のX値が1.15になる6種類の正極活物質を得
た。このような正極板を用い、以下の方法で電池
(A),(B),(C),(D),(E),(F)を作
製した。
The positive electrode plate was prepared by adding 10 g of carbon powder as a conductive agent and 5 g of polytetrafluoroethylene as a binder to 100 g of the positive electrode active material, adding water and kneading to form a paste. It was prepared by coating on a core material and drying. This electrode plate was immersed in a 1.65 mol / liter n-butyllithium hexane solution and used as a positive electrode plate. At this time, Li x Mn 2 O 4 , Li x MnO 2 , and Li x Co such that the lithium in the positive electrode active material is in excess of 15%.
O 2 , Li x NiO 2 , Li x FeO 2 or γ-Li x V
Six types of positive electrode active materials having an X value of 2 O 5 of 1.15 were obtained. Using such a positive electrode plate, batteries (A), (B), (C), (D), (E) and (F) were produced by the following method.

【0018】本実施例の電池の構成を図1に示す。電極
体はスポット溶接により取り付けた芯材と同材質の正極
リード4を有する正極板1と、負極リード5を有する負
極板2との間に、両極板より幅の広い帯状の多孔性ポリ
プロピレン製セパレータ3を介在させて全体を渦巻状に
捲回して構成する。さらに、上記電極体の上下それぞれ
にポリプロピレン製の絶縁板6,7を配して電槽8に挿
入し、電槽8の上部に段部8aを形成させた後、非水電
解液として、1モル/リットルの過塩素酸リチウムを溶
解したプロピレンカーボネート溶液を注入し、封口板9
で密閉して電池とする。
The structure of the battery of this embodiment is shown in FIG. The electrode body is a strip-shaped porous polypropylene separator having a width wider than both electrode plates, between a positive electrode plate 1 having a positive electrode lead 4 made of the same material as the core material attached by spot welding and a negative electrode plate 2 having a negative electrode lead 5. 3 is interposed and the whole is spirally wound. Further, polypropylene insulating plates 6 and 7 are arranged on the upper and lower sides of the electrode body, respectively, and inserted into the battery case 8 to form a step 8a on the upper part of the battery case 8. A propylene carbonate solution in which mol / liter of lithium perchlorate is dissolved is injected, and the sealing plate 9
Seal with and make a battery.

【0019】また比較例1として、正極活物質にLiM
24,LiMnO2,LiCoO2,LiNiO2,L
iFeO2,r−LiV25をそれぞれ使用し、正極活
物質100gに対して導電剤として炭素粉末を10g,
結着剤としてポリ四フッ化エチレンを5g加え、水を加
えて混練してペースト状にし、チタニウムの芯材に塗布
し、乾燥し作製した正極板と、実施例1と同様に作製し
た負極板を用い、実施例1と同様の方法で作製した電池
を(a1),(b1),(c1),(d1),(e
1),(f1)とする。また、比較例2として、上記正
極活物質粉末をn−ブチルリチウムを含む液に浸漬し、
比較例1と同様の方法で作製した正極板を用いた電池を
(a2),(b2),(c2),(d2),(e2),
(f2)とする。このようにして作製した電池を(表
1)にまとめた。
Further, as Comparative Example 1, LiM was used as the positive electrode active material.
n 2 O 4 , LiMnO 2 , LiCoO 2 , LiNiO 2 , L
iFeO 2 and r-LiV 2 O 5 were used, and 10 g of carbon powder as a conductive agent was added to 100 g of the positive electrode active material.
A positive electrode plate prepared by adding 5 g of polytetrafluoroethylene as a binder, adding water and kneading to form a paste, applying it to a titanium core material, and drying it, and a negative electrode plate prepared in the same manner as in Example 1. Using the same method as in Example 1, batteries (a1), (b1), (c1), (d1), (e
1) and (f1). As Comparative Example 2, the positive electrode active material powder was dipped in a liquid containing n-butyllithium,
(A2), (b2), (c2), (d2), (e2), batteries using the positive electrode plate manufactured by the same method as in Comparative Example 1
(F2). The batteries thus produced are summarized in (Table 1).

【0020】[0020]

【表1】 [Table 1]

【0021】上記の電池を(表1)に示す電圧範囲で、
充放電電流を0.5mAh/cm2で充放電を行った。(表
2)にその結果をまとめた。
In the voltage range shown in (Table 1) of the above battery,
Charging / discharging was performed at a charging / discharging current of 0.5 mAh / cm 2 . The results are summarized in (Table 2).

【0022】[0022]

【表2】 [Table 2]

【0023】正極活物質LixMn24は図2に示すよ
うに、充電によりリチウムを放出し、放電により放出し
たリチウムを吸蔵することによって電位が変化する。そ
して、3.0Vから4.5Vまでの充放電を行なうこと
によって、x値は1.0から0.3まで変化し、3.0
Vから4.5Vまでの充放電に使用することができるリ
チウム量は約0.7電子である。したがって、この正極
活物質を用いた場合、3.0Vから4.5Vまでの充放
電で使用可能なリチウムすべて(0.7電子)を反応に
用いることにより、高容量の電池を構成することができ
る。
As shown in FIG. 2, the positive electrode active material Li x Mn 2 O 4 changes its potential by releasing lithium by charging and occluding the lithium released by discharging. Then, by performing charging / discharging from 3.0 V to 4.5 V, the x value changes from 1.0 to 0.3,
The amount of lithium that can be used for charging and discharging from V to 4.5 V is about 0.7 electron. Therefore, when this positive electrode active material is used, a high-capacity battery can be constructed by using all lithium (0.7 electrons) that can be used in charge / discharge from 3.0 V to 4.5 V for the reaction. it can.

【0024】しかし、負極に黒鉛を用いた比較例の電池
(a1)は、1サイクル目の充電容量が410mAhで
あるのに対し、放電容量は328mAhであり、充電と
放電の容量差が82mAhあった。この1サイクル目で
生じた充放電容量差82mAh分のリチウムは負極活物
質である黒鉛中に吸蔵され、以後の充放電反応にはには
関与しない。このため、2サイクル目の電池容量は32
7mAhとなった。この場合、1サイクル目の充電で
0.15電子分のリチウムが黒鉛に吸蔵されたまま、以
後の電池反応に関与しないので、充放電を行なうことに
よって、正極活物質LixMn24のX値は0.85か
ら0.3の範囲で変化し、充放電に使用されるリチウム
量は0.55電子となる。したがって、負極に黒鉛を用
いた場合、約20%の電池容量低下となる。正極活物質
としてLiMnO2,LiCoO2,LiNiO2,Li
FeO2あるいはr−LiV25を用いた比較例1の電
池(b1),(c1),(d1),(e1),(f1)
についても同様の理由で2サイクル目の電池容量が32
0mAh〜390mAh程度になってしまう。
However, the battery (a1) of the comparative example using graphite for the negative electrode had a charge capacity of 410 mAh at the first cycle, whereas the discharge capacity was 328 mAh, and the difference in capacity between charge and discharge was 82 mAh. It was The lithium having a charge / discharge capacity difference of 82 mAh generated in the first cycle is occluded in graphite, which is the negative electrode active material, and does not participate in the subsequent charge / discharge reaction. Therefore, the battery capacity in the second cycle is 32
It became 7 mAh. In this case, since the first cycle of charging does not participate in the subsequent battery reaction while the lithium of 0.15 electrons is occluded in the graphite, charging / discharging of the positive electrode active material Li x Mn 2 O 4 The X value varies from 0.85 to 0.3, and the amount of lithium used for charging and discharging is 0.55 electrons. Therefore, when graphite is used for the negative electrode, the battery capacity is reduced by about 20%. LiMnO 2 , LiCoO 2 , LiNiO 2 , Li as the positive electrode active material
Batteries (b1), (c1), (d1), (e1), (f1) of Comparative Example 1 using FeO 2 or r-LiV 2 O 5
For the same reason, the battery capacity of the second cycle is 32
It becomes about 0 mAh to 390 mAh.

【0025】これに対して本実施例の一つである電池
(A)は、正極活物質中に電池(a1)で発生した充放
電容量差分のリチウムをあらかじめ過剰に吸蔵させたL
xMn24(X=1.15)を用いている。実際に充
放電を行なうと電池(A)の1サイクル目の充電容量は
493mAhであり、放電容量は411mAhである。
この場合も1サイクル目に82mAhの充放電容量差が
発生し、この82mAh分のリチウムは、電池(a1)
と同様に負極活物質である黒鉛中に吸蔵され、以後の充
放電反応には関与しない。しかし、負極活物質の黒鉛中
に吸蔵された充放電に関与しないリチウムは正極活物質
中に過剰に吸蔵させた0.15電子分のリチウムで補わ
れ、2サイクル目の充放電では、正極活物質LixMn2
4のリチウム量Xは1.0から0.3の範囲で変化
し、充放電で使用されるリチウム量は0.7電子とな
る。したがって、負極活物質に起因する電池の容量低下
を解消することができる。また、電池(B),(C),
(D),(E),(F)についても同様で2サイクル目
の充放電容量を比較例1の電池(b1),(c1),
(d1),(e1),(f1)と比べると、どれも電池
容量が大きいことがわかる。
On the other hand, in the battery (A), which is one of the present embodiments, the positive electrode active material was prepared by previously absorbing excessively the lithium of the charge / discharge capacity difference generated in the battery (a1).
i x Mn 2 O 4 (X = 1.15) is used. When charging and discharging are actually performed, the charge capacity in the first cycle of the battery (A) is 493 mAh and the discharge capacity is 411 mAh.
In this case as well, a charge / discharge capacity difference of 82 mAh occurs in the first cycle, and this 82 mAh of lithium is used in the battery (a1).
Similarly to the above, it is occluded in graphite, which is the negative electrode active material, and does not participate in the subsequent charge / discharge reaction. However, the lithium stored in graphite of the negative electrode active material and not involved in charging / discharging is supplemented by 0.15 electron worth of lithium stored excessively in the positive electrode active material, and in the second cycle charging / discharging, the positive electrode active material is not charged. Material Li x Mn 2
The amount of lithium X in O 4 changes in the range of 1.0 to 0.3, and the amount of lithium used for charge and discharge is 0.7 electrons. Therefore, it is possible to eliminate the decrease in battery capacity due to the negative electrode active material. In addition, batteries (B), (C),
The same applies to (D), (E), and (F). The charge and discharge capacities in the second cycle are the batteries (b1), (c1), and
It can be seen that the battery capacities are large as compared with (d1), (e1), and (f1).

【0026】また、比較例2の電池(a2)〜(f2)
についてはリチウム化していない正極活物質を用いた電
池(a1)〜(f1)の電池と比較しても、さらに容量
が低下した。比較例2の電池(a2)に使用した正極板
のX線回折測定を行った結果を図4に示す。また、同時
に電池(a1)に使用した正極板のX線回折の結果も示
した。図4に示すように、(a1)に使用した電極板は
スピネル型のLiMn 24の回折図を示していることが
わかる。しかし、(a2)に使用した電極板は同じくスピ
ネル型のLiMn24の回析ピークを示すが、この他に
LiOHと思われる回折ピークを示した。これらのこと
から電池(a2)に用いた電極は過剰のリチウムを含ん
だLi1.15Mn24が極板作製時に使用した水と反応
し、LiMn24とLiOHに分割してしまったことが
考えられる。このように電池(a2)の電極中にLiO
Hが残留したために、電池容量が大きく低下したものと
思われる。電池(b2)〜(f2)についても同様の理
由で電池容量が低下していることがわかった。
The batteries (a2) to (f2) of Comparative Example 2 were also used.
Is a non-lithiated positive electrode active material.
Even more capacity than the batteries of ponds (a1) to (f1)
Has dropped. Positive electrode plate used for battery (a2) of Comparative Example 2
The results of X-ray diffraction measurement of are shown in FIG. Also, at the same time
The results of X-ray diffraction of the positive electrode plate used in the battery (a1) are also shown in
did. As shown in FIG. 4, the electrode plate used in (a1) is
Spinel type LiMn 2OFourCan show the diffractogram of
Recognize. However, the electrode plate used for (a2) also has the same spin rate.
Nell type LiMn2OFourShows the diffraction peak of
A diffraction peak which seems to be LiOH was shown. These things
The electrode used in the battery (a2) contains an excess of lithium.
Li1.15Mn2OFourReacts with the water used to make the electrode plate
And LiMn2OFourAnd it has been divided into LiOH
Conceivable. Thus, LiO is contained in the electrode of the battery (a2).
The battery capacity was greatly reduced due to the residual H.
Seem. The same applies to batteries (b2) to (f2).
It was found that the battery capacity had decreased due to the reason.

【0027】(実施例2)実施例1では負極活物質に黒
鉛材料を用いた場合について説明したが、本実施例では
負極活物質にさらに大きい充放電容量差を有するアルミ
ニウム粉末を用いた場合について説明する。
Example 2 In Example 1, the case where a graphite material was used as the negative electrode active material was explained, but in this Example, the case where aluminum powder having a larger charge / discharge capacity difference was used as the negative electrode active material. explain.

【0028】正極活物質にLiMn24を用いた電極板
は実施例1と同様に正極活物質100gに対して導電剤
として炭素粉末を10g,結着剤としてポリ4フッ化エ
チレンを5g加え、水を用いてペースト状にし、チタニ
ウムの芯材に塗布し、乾燥して作製した。この電極板を
n−ブチルリチウムのヘキサン溶液に浸漬し、電極中の
LixMn24の値が1.35になる正極板を作製し
た。
An electrode plate using LiMn 2 O 4 as the positive electrode active material was added to 100 g of the positive electrode active material in the same manner as in Example 1 by adding 10 g of carbon powder as a conductive agent and 5 g of polytetrafluoroethylene as a binder. It was made into a paste using water, applied to a titanium core material, and dried. This electrode plate was immersed in a hexane solution of n-butyllithium to prepare a positive electrode plate having a Li x Mn 2 O 4 value of 1.35 in the electrode.

【0029】負極としては活物質であるアルミニウム粉
末100gに対して結着剤としてポリフッ化エチレン1
0gを加え、水を用いてペースト状にし、これをニッケ
ルの芯材に塗布,乾燥したものを用いた。このようにし
て作製した正極板および負極板を用い、実施例1と同様
の方法で電池を組み立てた。この電池を(G)とする。
また比較例としてLiMn24を正極活物質に用い、リ
チウム化処理を行わない正極板と、負極活物質としてア
ルミニウム粉末を用いた負極板とで構成した電池を(g
1)とする。また、正極活物質粉末LiMn24をn−
ブチルリチウムを含むヘキサン溶液に浸漬して作製した
活物質Li1.35Mn24を用い、これと導電剤と結着剤
とを水を用いて混練して作製した正極板と上記負極板と
で作製した電池を(g2)とする。これらの電池
(G),(g1)および(g2)は電池範囲4.2V〜
3.0V,電流0.5mAh/cm2の条件で充放電を行
った。この結果を(表3)に示した。
As the negative electrode, 100 g of aluminum powder as an active material and 1 part of polyfluorinated ethylene as a binder were used.
0 g was added, water was used to form a paste, which was applied to a nickel core material and dried. A battery was assembled in the same manner as in Example 1 using the positive electrode plate and the negative electrode plate thus produced. This battery is referred to as (G).
As a comparative example, a battery composed of a positive electrode plate using LiMn 2 O 4 as a positive electrode active material and not subjected to lithiation treatment and a negative electrode plate using aluminum powder as a negative electrode active material (g
1). In addition, the positive electrode active material powder LiMn 2 O 4 was added to n-
An active material Li 1.35 Mn 2 O 4 prepared by immersing in a hexane solution containing butyllithium was used, and the positive electrode plate and the negative electrode plate were prepared by kneading the active material Li 1.35 Mn 2 O 4 with water and a binder. The prepared battery is referred to as (g2). These batteries (G), (g1) and (g2) have a battery range of 4.2V-
Charging and discharging were performed under the conditions of 3.0 V and current of 0.5 mAh / cm 2 . The results are shown in (Table 3).

【0030】[0030]

【表3】 [Table 3]

【0031】正極活物質にLiMn24を用いた比較例
の電池(g1)の1サイクル目の充電容量は412mA
hであり、これに対する放電容量は206mAhtと非
常に小さい容量しか得られない。これは負極活物質に使
用したアルミニウム粉末の充放電容量差が大きく、20
6mAhもあることに起因する。これに対して本実施例
の電池(G)は正極活物質中に負極の充放電容量差を考
慮して過剰にリチウムを吸蔵したLixMn24(X=
1.35)を用いているため、1サイクル目の充電容量
は614mAhで、これに対する放電容量は411mA
hとなった。2サイクル目の充放電容量を本実施例の電
池(G)と比較例1の電池(g1)で比較すると本実施
例の電池(G)の容量が約2倍大きいことがわかる。ま
た、電池(g2)は、実施例1と同様の理由により、3
つの電池のうちで最も容量が小さいものとなった。
The charge capacity in the first cycle of the battery (g1) of the comparative example using LiMn 2 O 4 as the positive electrode active material was 412 mA.
Therefore, the discharge capacity is 206 mAht, which is very small. This is because the difference in charge and discharge capacities of the aluminum powder used as the negative electrode active material is large.
Due to the presence of 6 mAh. On the other hand, in the battery (G) of this example, Li x Mn 2 O 4 (X =, in which the lithium was excessively occluded in the positive electrode active material in consideration of the charge / discharge capacity difference of the negative electrode).
1.35) is used, the charge capacity in the first cycle is 614 mAh, and the discharge capacity is 411 mAh.
It became h. Comparing the charge and discharge capacities in the second cycle between the battery (G) of this example and the battery (g1) of comparative example 1, it can be seen that the capacity of the battery (G) of this example is about twice as large. Further, the battery (g2) was 3% for the same reason as in Example 1.
It has the smallest capacity of the two batteries.

【0032】本実施例では正極活物質にLiMn24
用いた例について説明したが、実施例1で示した正極活物
質LiMnO2,LiCoO2,LiNiO2,LiFe
2あるいはγ−LiV25の群より選ばれる少なくと
も1つを正極活物質とした場合でも同様の結果が得られ
た。
In this embodiment, an example in which LiMn 2 O 4 is used as the positive electrode active material has been described, but the positive electrode active materials LiMnO 2 , LiCoO 2 , LiNiO 2 , LiFe shown in the first embodiment are used.
Similar results were obtained when at least one selected from the group consisting of O 2 and γ-LiV 2 O 5 was used as the positive electrode active material.

【0033】(実施例3)実施例1と同様に正極活物質
LiMn24100gと導電剤としての炭素粉末10g
と結着剤としてのポリフッ化エチレン10gを加え、水
を加えて、ペースト状にし、チタニウムの芯材に塗布
し、乾燥して電極とした。負極も実施例1と同様の方法
で作製した。さらに、正,負極との間に両極板より幅の
広い帯状のセパレータを介して全体を渦巻状に捲回して
構成したものを電極体とし、上記電極体の上下それぞれ
にポリプロピレン製の絶縁板を配して電槽に挿入し、n
−ブチルリチウムのヘキサン溶液を注入し所定の時間放
置した後、ヘキサン溶液を除去し、非水電解液として、
1モル/リットルの過塩素酸リチウムを溶解したプロピ
レンカーボネート溶液を注入し、封口板で密閉して電池
を構成した。この電池を(H)とする。 電池(H)の
充放電試験は、電圧範囲4.3〜3.0V,電波0.5
mAh/cmの条件で充放電を行った。本実施例の電池
(H)の1,2サイKル目の充放電容量を(表4)に示
した。
Example 3 As in Example 1, 100 g of positive electrode active material LiMn 2 O 4 and 10 g of carbon powder as a conductive agent were used.
Then, 10 g of polyfluoroethylene as a binder was added, and water was added to form a paste, which was applied to a titanium core material and dried to form an electrode. The negative electrode was also manufactured by the same method as in Example 1. Further, an electrode body is constructed by spirally winding the whole between a positive electrode and a negative electrode with a strip-shaped separator wider than both electrode plates, and polypropylene insulating plates are provided above and below the electrode body. Distribute and insert into battery case, n
-Inject a hexane solution of butyllithium and leave it for a predetermined time, then remove the hexane solution and use it as a non-aqueous electrolyte.
A propylene carbonate solution in which 1 mol / liter of lithium perchlorate was dissolved was injected and sealed with a sealing plate to form a battery. This battery is designated as (H). The battery (H) charge / discharge test was conducted in a voltage range of 4.3 to 3.0 V and a radio wave of 0.5
Charging / discharging was performed under the condition of mAh / cm 2 . The charging / discharging capacities of the batteries (H) of the present Example at the 1st and 2nd cycles are shown in (Table 4).

【0034】[0034]

【表4】 [Table 4]

【0035】1サイクル目の充電容量は494mAh
で、放電容量は413mAhとなった。2サイクル目の
充放電容量を比較例の電池(a1)および(a2)と比
べると本実施例の電池(H)の法がそれぞれ85mA
h,104mAh大きい。このような正極と負極をセパ
レータを介して渦巻状にしたものを電槽に挿入し、そこ
にブチルリチウムの液を注入する方法で作製した電池も
実施例1,2と同等の結果を得た。
The charge capacity in the first cycle is 494 mAh.
Then, the discharge capacity was 413 mAh. Comparing the charge and discharge capacities in the second cycle with the batteries (a1) and (a2) of the comparative example, the method of the battery (H) of the present example was 85 mA each.
h, 104 mAh large. A battery produced by a method in which such a positive electrode and a negative electrode were spirally inserted through a separator and was inserted into a battery case, and a liquid of butyllithium was injected therein also obtained the same results as in Examples 1 and 2. ..

【0036】また、電極板とセパレータを渦巻状に捲回
下ものをブチルリチウムやフェニルリチウムの液の浸漬
し、乾燥した後、電槽に挿入し、電解液を注入すること
によりより作製した電池も同様の効果があった。本実施
例の電池では、電極浸漬時の電極の膨潤による電極の緩
みがなく、電池組立時の作業性を向上させることができ
るなどの利点がある。
A battery prepared by winding an electrode plate and a separator wound in a spiral shape, immersing the solution in butyllithium or phenyllithium, drying it, inserting it into a battery case, and injecting an electrolytic solution. Had the same effect. The battery of this embodiment has advantages that the electrode is not loosened due to the swelling of the electrode when immersed in the electrode, and the workability during battery assembly can be improved.

【0037】なお、本実施例では正極活物質にLiMn
24を負極活物質に黒鉛を用いた例について説明した
が、正極活物質として、LiMnO2,LiCoO2,L
iNiO2,LiFeO2あるいはγ−LiV25、負極
活物質として第1目の充放電で容量差を有する負極例え
ば黒鉛材料やアルミニウムを用いるすべての組み合わせ
でも効果があることはいうまでもない。
In this example, LiMn was used as the positive electrode active material.
An example in which graphite is used as the negative electrode active material of 2 O 4 has been described, but as the positive electrode active material, LiMnO 2 , LiCoO 2 , L
iNiO 2, LiFeO 2 or γ-LiV 2 O 5, there are also the effects on all of the combinations using negative example graphite material or aluminum having a capacitance difference in first eye of charge and discharge as the negative electrode active material.

【0038】以上の実施例では、処理に用いるn−ブチ
ルリチウムの濃度と処理時間と化学的に定量した正極活
物質中のリチウム量を用いて検量線を作成し、これより
正極の活物質中のリチウム量を決定した。
In the above examples, a calibration curve was prepared using the concentration of n-butyllithium used for the treatment, the treatment time, and the amount of lithium in the positive electrode active material that was chemically quantified. Of lithium was determined.

【0039】なお、n−ブチルリチウムのみならず、s
ec−,tert−ブチルリチウムやフェニルリチウ
ム,ナフチルリチウム,ヨウ化リチウムなどのリチウム
化剤でも同様の効果が得られる。正極活物質との反応性
はtert−ブチルリチウム>sec−ブチルリチウム
>n−ブチルリチウム>フェニルリチウム>ナフチルリ
チウム>ヨウ化リチウムの順であった。ただし、作業上
取り扱いの最も容易なものはn−ブチルリチウムであっ
た。
Not only n-butyllithium but also s
Similar effects can be obtained with a lithiating agent such as ec-, tert-butyllithium, phenyllithium, naphthyllithium, or lithium iodide. The reactivity with the positive electrode active material was in the order of tert-butyllithium>sec-butyllithium>n-butyllithium>phenyllithium>naphthyllithium> lithium iodide. However, n-butyllithium was the easiest to handle in work.

【0040】さらに実施例では、電解液として1モル/
リットルの過塩素酸リチウムを溶解したプロピレンカー
ボネート溶液を用いた場合について説明したが、、溶質
として過塩素酸リチウム、6フッ化燐酸リチウムやトリ
フロロメタンスルフォン酸リチウム,ホウフッ化リチウ
ム、溶媒としてプロピレンカーボネート,エチレンカー
ボネートなどのカーボネート類、ガンマーブチルラクト
ン,酢酸メチルなどのエステル類を用いた電解液でも同
様の効果を得た。
Further, in the embodiment, the amount of the electrolyte is 1 mol / mol.
The case of using a propylene carbonate solution in which liter of lithium perchlorate is dissolved has been described. Similar effects were obtained with electrolytes containing carbonates such as ethylene carbonate and gamma-butyl lactone and esters such as methyl acetate.

【0041】なお、黒鉛,アルミニウム粉末に限らず、
充放電容量差を有するリチウムを吸蔵,放出する物質た
とえばアルミ合金,WO2,Fe23などにも、この発
明は有効であることはいうもでもない。
Not limited to graphite and aluminum powder,
It goes without saying that the present invention is also effective for substances that store and release lithium having different charge and discharge capacities, such as aluminum alloys, WO 2 and Fe 2 O 3 .

【0042】[0042]

【発明の効果】以上の実施例の説明から明らかなように
本発明によれば正極活物質LiMn24,LiMn
2,LiCoO2,LiNiO2,LiFeO2あるいは
γ−LiV25をブチルリチウムやフェニルリチウムな
どのリチウム化剤を含む液に浸漬することにより、以後
の製造工程で水を用いることができる。すなわちリチウ
ム化する工程を電極板作製後あるいは正極と負極をセパ
レータを介して対向させた電極体作製後に、さらにはこ
の電極体を電槽に挿入後などに行なうことにより、活物
質の粉砕,分級、さらに電極の作製時に、冷媒として水
を使用できる。また、これらの工程を湿気を取り除いた
不活性ガス雰囲気や乾燥空気中毒等で行なう必要なく、
作業効率が向上する。さらには、負極の充放電容量差に
起因する容量低下を伴うことがない電池を提供すること
ができ、産業上の意義は大きい。
As is apparent from the above description of the embodiments, according to the present invention, the positive electrode active materials LiMn 2 O 4 and LiMn
By dipping O 2 , LiCoO 2 , LiNiO 2 , LiFeO 2 or γ-LiV 2 O 5 in a liquid containing a lithiating agent such as butyllithium or phenyllithium, water can be used in the subsequent manufacturing steps. That is, the step of lithiation is performed after the electrode plate is manufactured or after the electrode body in which the positive electrode and the negative electrode are opposed to each other with the separator interposed therebetween, and further after the electrode body is inserted into the battery case, the active material is pulverized and classified. In addition, water can be used as a coolant during the production of the electrode. In addition, it is not necessary to perform these steps in an inert gas atmosphere from which moisture is removed or in a dry air poisoning,
Work efficiency is improved. Furthermore, it is possible to provide a battery that does not cause a decrease in capacity due to the difference in charge / discharge capacity of the negative electrode, which is of great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に用いた電池の構成を示す縦
断面図
FIG. 1 is a vertical cross-sectional view showing the structure of a battery used in an example of the present invention.

【図2】同正極活物質LixMn24の活物質中のLi
量Xと開路電位の関係を示す図
FIG. 2 shows the Li in the active material of the same positive electrode active material Li x Mn 2 O 4.
The figure which shows the relationship between quantity X and open circuit potential.

【図3】同正極活物質LixCoO2の活物質中のLi量
Xと開路電位の関係を示す図
FIG. 3 is a diagram showing the relationship between the Li amount X in the active material of the positive electrode active material Li x CoO 2 and the open circuit potential.

【図4】電池(a1)と電池(a2)に使用した正極板
のX線回折図
FIG. 4 is an X-ray diffraction diagram of a positive electrode plate used for a battery (a1) and a battery (a2).

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極リード板 5 負極リード板 6 上部絶縁板 7 下部絶縁板 8 電槽 9 封口板 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead plate 5 Negative electrode lead plate 6 Upper insulating plate 7 Lower insulating plate 8 Battery case 9 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 正樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Hasegawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質としてのLiMn24,Li
MnO2,LiCoO2,LiNiO2,LiFeO2ある
いはγ−LiV25の群より選ばれる少なくとも一つ
と、導電剤と結着剤とからなる電極を、n−ブチルリチ
ウム,sec−ブチルリチウム,tert−ブチルリチ
ウム,フェニルリチウム,ナフチルリチウムあるいはヨ
ウ化リチウムの群より選ばれる少なくとも一つを含む液
に浸漬することにより作製した正極と、充電でリチウム
を吸蔵し放電でリチウムを放出する負極とを備えた非水
電解液二次電池。
1. LiMn 2 O 4 , Li as a positive electrode active material
An electrode composed of at least one selected from the group of MnO 2 , LiCoO 2 , LiNiO 2 , LiFeO 2 or γ-LiV 2 O 5 , and a conductive agent and a binder is provided as n-butyllithium, sec-butyllithium, tert. A positive electrode prepared by immersing in a liquid containing at least one selected from the group consisting of butyllithium, phenyllithium, naphthyllithium, or lithium iodide; and a negative electrode that occludes lithium by charging and releases lithium by discharging. Non-aqueous electrolyte secondary battery.
【請求項2】 正極活物質としてのLiMn24,Li
MnO2,LiCoO2,LiNiO2,LiFeO2ある
いはγ−LiV25の群より選ばれる少なくとも一つを
用いた正極と、充電でリチウムを吸蔵し放電でリチウム
を放出する負極とをセパレータを介して対向させた後、
n−ブチルリチウム,sec−ブチルリチウム,ter
t−ブチルリチウム,フェニルリチウム,ナフチルリチ
ウムあるいはヨウ化リチウムの群から選ばれる少なくと
も一つを含む液に浸漬し、その後、前記正極と前記負極
を電槽内に入れ、さらに非水電解液を加える非水電解液
二次電池の製造法。
2. LiMn 2 O 4 , Li as a positive electrode active material
A positive electrode using at least one selected from the group of MnO 2 , LiCoO 2 , LiNiO 2 , LiFeO 2 or γ-LiV 2 O 5 , and a negative electrode which occludes lithium by charging and releases lithium by discharging via a separator. After facing each other,
n-butyllithium, sec-butyllithium, ter
It is immersed in a liquid containing at least one selected from the group consisting of t-butyllithium, phenyllithium, naphthyllithium, or lithium iodide, and then the positive electrode and the negative electrode are placed in a battery case, and a nonaqueous electrolytic solution is further added. Manufacturing method of non-aqueous electrolyte secondary battery.
【請求項3】 正極活物質としてのLiMn24,Li
MnO2,LiCoO2,LiNiO2,LiFeO2ある
いはγ−LiV25の群より選ばれる少なくとも一つを
用いた正極と、充電でリチウムを吸蔵し放電でリチウム
を放出する負極とをセパレータを介して対向させて電槽
内に入れ、n−ブチルリチウム,sec−ブチルリチウ
ム,tert−ブチルリチウム,フェニルリチウム,ナ
フチルリチウムあるいはヨウ化リチウムの群から選ばれ
る少なくとも一つを含む液を注入し、さらに非水電解液
を注入する非水電解液二次電池の製造法。
3. LiMn 2 O 4 , Li as a positive electrode active material
A positive electrode using at least one selected from the group of MnO 2 , LiCoO 2 , LiNiO 2 , LiFeO 2 or γ-LiV 2 O 5 , and a negative electrode which occludes lithium by charging and releases lithium by discharging via a separator. Facing each other and placed in a battery case, and a liquid containing at least one selected from the group of n-butyllithium, sec-butyllithium, tert-butyllithium, phenyllithium, naphthyllithium, or lithium iodide is injected, and A method for manufacturing a non-aqueous electrolyte secondary battery in which a non-aqueous electrolyte is injected.
JP08062492A 1991-07-19 1992-04-02 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Fee Related JP3227771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08062492A JP3227771B2 (en) 1991-07-19 1992-04-02 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-179319 1991-07-19
JP17931991 1991-07-19
JP08062492A JP3227771B2 (en) 1991-07-19 1992-04-02 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05135760A true JPH05135760A (en) 1993-06-01
JP3227771B2 JP3227771B2 (en) 2001-11-12

Family

ID=26421618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08062492A Expired - Fee Related JP3227771B2 (en) 1991-07-19 1992-04-02 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3227771B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643430B1 (en) * 1993-07-15 2000-01-26 Sumitomo Chemical Company, Limited Cathode material for lithium secondary battery and method for producing lithiated nickel dioxide and lithium secondary battery
JP2005112691A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Method of manufacturing lithium-containing nickel oxyhydroxide and non-aqueous electrolyte electrochemical cell provided with electrode containing the lithium-containing nickel oxyhydroxide
WO2005082783A1 (en) * 2004-03-01 2005-09-09 Japan Storage Battery Co., Ltd. Lithium-containing iron oxyhydroxide and method for producing nonaqueous electrolyte electrochemical cell containing same
JP2012195086A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Electrode active material, and positive electrode for secondary battery equipped with the same, as well as secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643430B1 (en) * 1993-07-15 2000-01-26 Sumitomo Chemical Company, Limited Cathode material for lithium secondary battery and method for producing lithiated nickel dioxide and lithium secondary battery
JP2005112691A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Method of manufacturing lithium-containing nickel oxyhydroxide and non-aqueous electrolyte electrochemical cell provided with electrode containing the lithium-containing nickel oxyhydroxide
WO2005082783A1 (en) * 2004-03-01 2005-09-09 Japan Storage Battery Co., Ltd. Lithium-containing iron oxyhydroxide and method for producing nonaqueous electrolyte electrochemical cell containing same
JP2012195086A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Electrode active material, and positive electrode for secondary battery equipped with the same, as well as secondary battery

Also Published As

Publication number Publication date
JP3227771B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
US5316875A (en) Secondary battery with nonaqueous electrolyte and method of manufacturing same
KR100670874B1 (en) Nonaqueous Electrolyte Secondary Battery
EP0720247A1 (en) Manufacturing processes of positive active materials for lithium secondary batteries and the same lithium secondary batteries
JP4411690B2 (en) Lithium ion secondary battery
JP2000502831A (en) Electrode materials for lithium interlayer electrochemical cells
JP2000353526A (en) Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
WO2000033399A1 (en) Non-aqueous electrolyte secondary cell
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3999890B2 (en) Lithium secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP3227771B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3475759B2 (en) Non-aqueous electrolyte secondary battery
JPH0644970A (en) Nonaqueous electrolyte lithium battery
JP3136679B2 (en) Non-aqueous electrolyte secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JPH04206267A (en) Nonaqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2002260661A (en) Negative electrode for nonaqueous electrolyte secondary battery
JPH0554912A (en) Nonaqueous electrolytic secondary battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees