WO2005082783A1 - Lithium-containing iron oxyhydroxide and method for producing nonaqueous electrolyte electrochemical cell containing same - Google Patents

Lithium-containing iron oxyhydroxide and method for producing nonaqueous electrolyte electrochemical cell containing same Download PDF

Info

Publication number
WO2005082783A1
WO2005082783A1 PCT/JP2005/003685 JP2005003685W WO2005082783A1 WO 2005082783 A1 WO2005082783 A1 WO 2005082783A1 JP 2005003685 W JP2005003685 W JP 2005003685W WO 2005082783 A1 WO2005082783 A1 WO 2005082783A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrode
iron oxyhydroxide
oxyhydroxide
producing
Prior art date
Application number
PCT/JP2005/003685
Other languages
French (fr)
Japanese (ja)
Inventor
Miki Yasutomi
Toru Tabuchi
Original Assignee
Japan Storage Battery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co., Ltd. filed Critical Japan Storage Battery Co., Ltd.
Publication of WO2005082783A1 publication Critical patent/WO2005082783A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium-containing iron oxyhydroxide and a nonaqueous electrolyte electrochemical cell containing the same.
  • lithium-ion secondary batteries have been widely used as power sources for electronic devices such as mobile phones and digital cameras.
  • the multifunctionality of such electronic devices is remarkably progressing, and the emergence of batteries having a high energy density in place of the currently used lithium ion secondary batteries is expected.
  • lithium that contributes to the redox reaction was not included. Therefore, the negative electrode active material combined with this was limited to metallic lithium and lithium alloy.
  • electrodes using these metallic lithium-lithium alloys could not be used due to poor thermal stability and cycle performance.
  • the Mn0 2 and V 2 0 5 of the positive electrode active material had to be containing lithium.
  • a conventional electrochemical method in which a force electrode is applied to electrodes using these active materials in a lithium ion-containing electrolyte using a counter electrode such as lithium metal.
  • an electrochemical control device is required and the manufacturing process becomes complicated.
  • lithium butyl lithium containing material such as LiCoO 2 and LiNi0 2, phenylalanine lithium, naphthyl lithium, there have the Li x Co0 2 ( ⁇ > 1 ) was immersed in a solution including lithium iodide and Li x Ni0
  • a method of synthesizing 2 ( ⁇ ⁇ > 1), which is described in Japanese Patent Application Laid-Open No. 05-135760.
  • a lithium-containing substance is immersed in a solution in which lithium ions and a polycyclic aromatic compound are dissolved to compensate for the irreversible capacity of the positive electrode, which is described in Japanese Patent Publication No. 3227771.
  • a first invention provides a method for producing lithium-containing iron oxyhydroxide, comprising: contacting a solution obtained by dissolving lithium metal and a polycyclic aromatic compound in a solvent with iron oxyhydroxide; In which lithium is absorbed.
  • the polycyclic aromatic compound is at least one of naphthalene, phenanthrene, and anthracene. Things.
  • the amount X of lithium stored in 1 mol of the oxyiron hydroxide is in the range of 0.5 mol ⁇ X ⁇ 2 mol. It is characterized by being within.
  • the oxyiron hydroxide is a J3 phase.
  • the fifth invention is directed to a method of manufacturing a nonaqueous electrolyte electrochemical cell, An electrode containing lithium-containing oxyiron hydroxide obtained by the method is used as a positive electrode.
  • a sixth invention is directed to a method for producing a nonaqueous electrolyte electrochemical cell, wherein the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the second invention is used as a positive electrode. .
  • a seventh invention is a method for producing a nonaqueous electrolyte electrochemical cell, characterized in that the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the third invention is used as a positive electrode. .
  • An eighth invention is directed to a method for producing a nonaqueous electrolyte electrochemical cell, wherein the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the fourth invention is used as a positive electrode. .
  • a ninth invention is directed to a method for producing a nonaqueous electrolyte electrochemical cell, wherein the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the first invention is used as a negative electrode. .
  • a tenth invention provides a method for producing a nonaqueous electrolyte electrochemical cell, characterized in that the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the second invention is used as a negative electrode. is there.
  • FIG. 1 shows (a) FeOOH-Li lo 0 (b) FeOOH 'Li 0 of the present invention. 5 and (c) X-ray diffraction patterns of FeOOH.
  • FIG. 2 shows the electrochemical potential behavior of the lithium-containing oxyiron hydroxide electrode of Example 1.
  • FIG. 3 shows the electrochemical potential behavior of the iron oxyhydroxide electrode of Comparative Example 1.
  • FIG. 4 shows the electrochemical potential behavior of the electrode of Example 6.
  • FIG. 5 shows the electrochemical potential behavior of the electrode of Example 13.
  • FIG. 6 shows the charge / discharge characteristics of the non-aqueous electrolyte secondary battery of Example 14.
  • FIG. 7 shows the charge / discharge characteristics of the non-aqueous electrolyte secondary battery of Example 15.
  • trifluorene anthanthrene, acenaphthene, acenaphthylene, benzopyrene, benzophnoleolene, benzophenanthrene, benzophnoleroacene, benzoperylene, coronene, chrysene, hexabenzoperylene or derivatives thereof.
  • oxyiron hydroxide of the present invention a part of the iron is replaced with at least one element selected from Co, Ti, V, Cr, Mn, M, Cu and Zn. (0 ⁇ a ⁇ 0.5, M is at least one selected from Co, Ti, V, Cr, Mn, Ni, Cu and Zn).
  • These oxyiron hydroxides are prepared by adding Li, Na, K, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Pb and Sn in an aqueous solution in which iron salts are dissolved.
  • the compound can be synthesized by adding a salt containing at least one element selected from the group consisting of and then hydrolyzing.
  • the iron oxyhydroxide of the present invention can be used in any of the following phases.
  • the lithium-containing oxyhydroxide of the present invention is prepared by preparing a complex solution in which metallic lithium and a polycyclic aromatic compound are dissolved in an organic solvent, and contacting the complex solution with powder of oxyiron hydroxide. Can be obtained by Further, it can also be obtained by a method in which this complex solution is brought into contact with an electrode containing iron oxyhydroxide. It can also be obtained by contacting an organic solvent with oxyiron hydroxide or an electrode containing the same, and then dissolving lithium metal and the polycyclic aromatic compound in the solvent.
  • the complex solution contains lithium ions, polycyclic aromatic compound, polycyclic aromatic compound anion, and solvent.
  • the solution contains metallic lithium, lithium ion, polycyclic aromatic compound, anion of polycyclic aromatic compound, and solvent. Electrons are transferred from the anion of the polycyclic aromatic compound to the iron oxyhydroxide, and at the same time, lithium ions are absorbed into the iron oxyhydroxide. At this time, the polycyclic aromatic compound, ayuon, returns to the polycyclic aromatic compound, and thus has a catalytic role in the lithium storage reaction.
  • the concentration of lithium ions in this complex solution is preferably in the range from 0.07 g dm " 3 to saturation. If the concentration is less than 0.07 g dnf 3 , the occlusion time will be longer, and the occlusion time will be shorter. For this purpose, it is more preferable to make the lithium ion concentration saturated.
  • the concentration of the polycyclic aromatic compound in the complex solution is preferably from 0.005 to 2.0 mol dm- 3 . More favorable Mashiku is 0. 005 ⁇ 025 mol dnf 3, more preferably 0. 005 ⁇ 0. 01 mol dnf 3 der The If the concentration of the polycyclic aromatic compound is less than 0.005 mol dm- 3 , the occlusion time is prolonged, and if the concentration is greater than 2.0 mol dm- 3 , the polycyclic aromatic compound precipitates in the solution.
  • the time for bringing the complex solution into contact with the oxyiron hydroxide is not particularly limited, but in order to occlude lithium sufficiently in the oxyhydroxide, 0.1 to 240 hours is preferable, and 0.1 to 72 hours. Time is more preferred.
  • the lithium storage rate can be increased by stirring the solution.
  • the occlusion rate can be increased.
  • the temperature be equal to or lower than the boiling point of the solvent to be used. It is more preferable to set the range in consideration of workability.
  • Solvents used in the complex solution of the present invention include getyl ether, 1-methoxypropane, 1-methoxybutane, 2-methoxybutane, 1-methoxypentane, 2-methoxypentane, 1-methoxyhexane, 2-Methoxyhexane, 3-methoxyhexane, 1-ethoxypropane, 2-ethoxybutane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,2-dimethyltetrahydrofuran, dimethylsulfoxide, etc. No.
  • the type of the solvent used for the complex solution is not particularly limited.
  • the lithium-containing oxyhydroxide obtained by the production method of the present invention is obtained by storing X moles of lithium with respect to 1 mole of oxyhydroxide.
  • the value of X can be controlled by the concentration of lithium ions and polycyclic aromatic compounds in the complex solution, reaction time, and temperature.
  • the molar number X of lithium can be determined by the amount of charge of the electrode containing the obtained lithium-containing oxyiron hydroxide.
  • the amount of charge electricity is defined as the electrode containing the lithium-containing oxyiron hydroxide as the working electrode, metallic lithium as the counter electrode and reference electrode, and ethylene carbonate (EC) and ethyl methyl carbonate (EMC) as the electrolyte.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the polycyclic aromatic compound functions as a catalyst for the reaction of storing lithium. In the course of the reaction, the polycyclic aromatic compound does not extract H from the iron oxide hydroxide. Therefore, since no by-product is generated, the desired lithium-containing iron oxyhydroxide can be obtained.
  • the crystal structure of the lithium-containing oxyiron hydroxide of the present invention is preferably amorphous.
  • the term “amorphous” refers to the case where the half-width of the peak at around 36.8 ⁇ 0.5 ° of lithium-containing oxyiron hydroxide in X-ray diffraction using CuKa is 1.0 ° or more.
  • FIG. 1 shows a typical X-ray diffraction pattern of the lithium-containing iron oxyhydroxide obtained by the production method of the present invention.
  • (a) is FeOOH ⁇ Li L.
  • C) of Fig. 5 is the result of FeOOH.
  • Fig. 1 is FeOOH ⁇ Li L.
  • the symbol ⁇ indicates the peak of FeOOH in the ⁇ phase
  • the symbol port indicates the peak of the nickel substrate
  • the symbol ⁇ indicates the peak of polyethylene force.
  • the lithium-containing oxyhydroxide having an X value of 0.5 the half width was 1.0 ° or more. Therefore, it was found that when the value of X was 0.5 or more, the lithium-containing iron oxyhydroxide became amorphous. In addition, since no peaks other than iron oxyhydroxide, nickel on the substrate, and polyethylene cover were observed, it was found that no by-product was generated.
  • the lithium-containing oxyiron hydroxide of the present invention can be used for both positive and negative electrodes.
  • the negative electrode active material is not particularly limited.
  • carbon materials such as graphite and amorphous carbon, oxides, nitrides, and the like can be used. Among these, carbon materials and oxides such as graphite and amorphous carbon are preferably used because of their excellent capacity / charge / discharge cycle performance.
  • the positive electrode active material is not particularly limited.
  • transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, and carbon materials such as activated carbon and graphite can be used.
  • Ethylene-propylene-diene terpolymer acrylonitrile-butadiene rubber, fluororubber, polyacetate
  • Polymethyl methacrylate Polyethylene, Nitrocellulose, Polyvinylidene fluoride, Polyethylene, Polypropylene, Polytetrafluoroethylene, Tetrafluoroethylene-Hexafluoropropylene copolymer, Polyvinylidene monochloride Trifluoroethylene copolymer
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • Either a non-aqueous solvent or an aqueous solution can be used as a solvent for mixing the binder.
  • Non-aqueous solvents include N-methyl- 2 -pyrrolidone, dimethyl'formamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, getyltriamine, N-N-dimethylamino Propylamine, ethylene oxide, tetrahydrofuran and the like can be used.
  • a dispersant, a thickener and the like can be added to the aqueous solution.
  • Iron, copper, stainless steel, nickel and aluminum can be used as current collectors for the electrodes. Further, as the shape, a sheet, a foam, a mesh, a porous expanded lattice, or the like can be used. Further, the current collector can be used with holes formed in any shape.
  • Organic solvents used for the electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, ⁇ -butyrolactone, sulfolane, 1,2-dimethoxetane, 1,2-jetoxetane, tetrahydrofuran, and tetrahydrofuran.
  • carbonate compounds such as vinylene carbonate and butylene carbonate, benzene compounds such as biphenyl and cyclohexylbenzene, and sulfur compounds such as propane sultone can be used alone or in the electrolyte.
  • the electrolyte solution and the solid electrolyte can be used in combination.
  • the solid electrolyte a crystalline or amorphous inorganic solid electrolyte can be used.
  • Li 4 _ x G ei - x P x S 4 to be able to use typified by Chio LISICON, the latter Li l-Li 2 0-B 2 0 5 system, Li 2 0- Si0 2 system, Lil- Li 2 S- B 2 S 3 type, Lil - Li 2 S- SiS 2 system, Li 2 S- SiS 2 - Li 3 P0 4 A system can be used.
  • LiPF 6 LiC10 4, LiBF 4, LiAsF 6, LiPF (CF 3) 5, LiPF 2 (CF 3) 4, LiPF 3 (CF 3) 3, LiPF 4 (CF 3 ) 2 , LiPF 5 (CF 3 ), LiPF 3 (C 2 F 5 ) 3 , LiCF 3 S0 3 , LiN (S0 2 CF 3 ) 2 , LiN (S0 2 CF 2 CF 3 ) 2 , LiN (C0CF 3) ) 2, LiN (C0CF 2 CF 3) 2, LiC 4 B0 8 walking alone and can be used as a mixture.
  • LiPF 6 is preferable as the lithium salt because the cycle performance is improved.
  • Microporous membranes such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride and polyolefin can be used as separators in non-aqueous electrolyte electrochemical cells.
  • the shape of the nonaqueous electrolyte electrochemical cell is not particularly limited, and may be a square, an ellipse, a coin, a button, a sheet, or the like.
  • this electrode as a working electrode, a metal lithium plate as the reference electrode contact Yopi counter, electrolytic EC and EMC and O volume ratio as solution 1: dissolve the LiC10 4 of 1 mol DNF 3 in a mixed solvent of 1
  • a three-electrode glass cell was fabricated using the above.
  • the electrochemical potential behavior of this electrode was investigated as follows. At 25 ° C, the battery was charged to 4.2 V vs. Li / Li + with a current of 0.01 CmA, and then discharged to 1.5 V vs. Li / Li +.
  • FIG. 2 shows the electrochemical potential behavior of this lithium-containing oxyiron hydroxide electrode. The potential of this electrode gradually shifted from 1.0 V vs. Li / Li + to 4.2 V vs.
  • Li / Li + Li / Li + . This is probably because lithium was electrochemically desorbed from lithium-containing iron oxyhydroxide by charging. It was found that a large value of 307 mAh g " 1 was obtained per unit mass of lithium-containing iron oxyhydroxide, and that the potential of the electrode during discharging was 4.2 V vs. Li I Li + Slowly shifted from 1.5 V to 1.5 V vs. Li I Li + , and the quantity of electricity (discharge capacity) was per unit mass of lithium-containing iron oxyhydroxide. A large capacity of 280 mAh g- 1 was obtained. This value was 93% of the theoretical capacity when 1 mol of Li was inserted into iron oxyhydroxide.
  • Example 1 As a reference example to prove the difficulty of the idea itself of the present invention, in Example 1, 1.0 ⁇ ⁇ phase was used. An electrode was prepared using a conventionally known 10 ⁇ m layered nickel oxyhydroxide instead of iron oxyhydroxide, and the electrochemical behavior was examined by applying the method of the present invention. The effect was investigated.
  • the values of the charge electricity and the discharge capacity of the obtained lithium-containing nickel oxyhydroxide electrode are the values described in the 44th Battery Symposium on Abstract No. 1C09 (2003), respectively. Since it was as small as 104 mAh g- 1 and 96 mAh g- 1, which are almost the same as above, it can not be foreseen that from this cited example, it is possible to obtain an actual capacity comparable to the theoretical capacity as in the present invention. Thus, in the case of nickel oxyhydroxide, the same effect as in the case of iron oxyhydroxide of the present invention cannot be obtained because the crystal structure of nickel oxyhydroxide is a layered structure.
  • lithium ion batteries is 2 V and a low operating voltage system as in the present invention
  • Lithium-containing oxyhydroxide / iron / C-based lithium-ion batteries practically require large capacities close to the theoretical capacities, so the effect of the present invention can be said to be remarkable.
  • a paste was prepared by mixing 80% by mass of the active material of the ⁇ -phase iron oxyhydroxide powder used in Example 1, 5% by mass of acetylene black, and 15% by mass of PVDF in a glass plate. This paste was applied on a 20-m-thick aluminum foil and dried under reduced pressure at 70. To evaporate the bandits P. This was pressurized with a roller, and then the size was adjusted to 10 mm WX 20 mmL X 100 ⁇ mT with a slitter to produce an electrode. The electrochemical potential behavior of this electrode was measured as follows.
  • a three-electrode glass cell was fabricated using this method.
  • the electrochemical potential behavior of this electrode was examined as follows. 4. At 25 ° C, current 0.01 C mA. After charging to 2 V vs. Li I Li + , the battery was discharged to 1.5 V vs. Li / Li +.
  • Figure 3 shows the electrochemical potential behavior of this oxyiron hydroxide electrode. Charging characteristics do not appear in the figure, the potential was immediately 4. Reached 2 V vs. Li I Li +.
  • the charged amount of electricity of this electrode was 0 niAh g- 1 per unit mass of iron oxyhydroxide.
  • the reason for this is that the electrochemical iron elimination reaction did not progress because the iron oxide hydroxide electrode did not contain lithium.
  • the potential of this electrode gradually shifted from 3.2 V vs. Li I Li + to 1.5 V vs. Li / Li + .
  • This electric quantity (discharge capacity) was 281 mAh per unit mass of iron oxyhydroxide.
  • lithium-containing oxyhydroxide prepared by a method in which conventional iron oxyhydroxide is brought into contact with a solution containing lithium metal and a polycyclic aromatic compound can be chemically synthesized and contained. That is, the electrode has a large charge amount and a large discharge capacity.
  • the amount of charge of the lithium-containing oxyiron hydroxide electrode of 307 mAh g— 1 means that x represented by the general formula Fe00H ′ Li x is a value of 1.
  • Example 2 a 1.6 mol dm- 3 n-butyllithium Jetyl ether solution was used, and a-phase oxyiron hydroxide powder was immersed in this solution. For 24 hours, filtered, and washed with dimethyl carbonate. This was dried under reduced pressure at room temperature to obtain a powder.
  • PVDF polyvinylidene fluoride
  • the NMP was evaporated by applying this paste on an aluminum foil having a thickness of 20 ⁇ and drying under reduced pressure at 70 ° C. This was pressurized with a roller, and then sized to 10 mmW ⁇ 20 mmL ⁇ 100 jumT with a slitter to produce an electrode.
  • this electrode as a working electrode, a metal lithium plate as the reference electrode contact Yopi counter, electrolytic volume ratio of EC and EMC as solution 1: dissolve LiC10 4 of 1 mol dm- 3 in a mixed solvent of 1
  • a three-electrode glass cell was fabricated using the resulting material.
  • the electrochemical potential behavior of this electrode was investigated as follows. At 25 ° C, charge up to 4.2 V vs. Li / Li + with a current of 0.01 C mA After charging, the battery was discharged to 1.5 V vs. Li I Li + . The charge and discharge capacity of the electrode in the first cycle were small, 72 mAh g- 1 and 65 mAh, respectively. The reason is considered to be that when n-butyllithium getyl ether solution was used, H was extracted from the oxyhydroxide and the crystal structure collapsed, and by-products such as iron oxide were generated. .
  • Example 1 the immersion time was changed to 30 minutes to obtain a lithium-containing oxyhydroxide powder according to the present invention.
  • an electrode B containing lithium-containing iron oxyhydroxide according to the present invention was obtained using the lithium-containing iron oxyhydroxide powder as an active material.
  • Example 1 the immersion time was changed to 1 hour to obtain a lithium-containing iron oxyhydroxide powder according to the present invention.
  • an electrode C containing lithium-containing iron oxyhydroxide according to the present invention was obtained by using the lithium-containing iron oxyhydroxide powder as an active material.
  • Example 1 the immersion time was set to 48 hours to obtain a lithium-containing oxyiron hydroxide powder according to the present invention.
  • an electrode D containing the lithium-containing iron oxyhydroxide according to the present invention was obtained by using the lithium-containing iron oxyhydroxide powder as an active material.
  • Example 1 the immersion time was set to 60 hours to obtain a lithium-containing oxyiron hydroxide powder according to the present invention.
  • the electrode E containing lithium-containing iron oxyhydroxide according to the present invention was obtained using the lithium-containing iron oxyhydroxide powder as the active material in Example 1.
  • Electrodes B, D and E containing these lithium-containing oxyiron hydroxides were examined for their electrochemical potential behavior as follows.
  • the lithium-containing iron oxyhydroxide electrode obtained as the working electrode, a metal lithium plate as the reference electrode and the counter electrode, and 1 mol dnf 3 in a 1: 1 mixed solvent of EC and EMC as the electrolyte solution. It used after dissolved LiC10 4 of 3 Gokukashoku shone ⁇ 1 ⁇ 1 ⁇ ! ⁇ We have manufactured a glass cell.
  • Example 1 the condition of standing for 24 hours was changed to stirring for 24 hours to obtain a lithium-containing oxyiron hydroxide powder according to the present invention.
  • the electrode F containing the lithium-containing iron oxyhydroxide according to the present invention was obtained using the lithium-containing iron oxyhydroxide powder as the active material.
  • the electrochemical potential behavior of this electrode was examined as follows. An electrode containing lithium-containing oxyhydroxide obtained as a working electrode, a metal lithium plate as a reference electrode and a counter electrode, and 1 mol in a mixed solvent of EC and EMC in a 1: 1 volume ratio of EC and EMC as an electrolyte. dm- 3 used after dissolved LiC10 4 of was fabricated glass cell three-electrode.
  • the battery was charged to 4.2 V vs. Li / Li + with a current of 0.01 CmA, and then discharged to 0.3 V vs. Li / Li + .
  • Figure 4 shows the electrochemical potential behavior of this electrode.
  • the amount of electricity charged per unit mass of the lithium-containing oxyiron hydroxide obtained by this method was 1210 mAh g- 1 .
  • the discharge capacity is 1112 mA. It has been found that the lithium-containing oxyiron hydroxide of the present invention can be charged and discharged even in a low potential region and can be used as a negative electrode active material of a nonaqueous electrolyte electrochemical cell.
  • Example 1 the solvent of the complex solution was 1-methoxybutane, and a lithium-containing oxyiron hydroxide powder according to the present invention was obtained.
  • An electrode G containing lithium-containing oxyiron hydroxide according to the present invention was obtained by using the lithium-containing oxyiron hydroxide powder as an active material in Example 1.
  • Example 1 the solvent of the complex solution was 1-methoxybutane, and the polycyclic aromatic compound was anthracene, whereby a lithium-containing oxyiron hydroxide powder according to the present invention was obtained.
  • the electrode H containing the lithium-containing oxyhydroxide according to the present invention was obtained using the lithium-containing oxyhydroxide as the active material.
  • Example 1 lithium-containing oxyiron hydroxide powder according to the present invention was obtained using 1-methoxybutane as the solvent of the complex solution and phenanthrene as the polycyclic aromatic compound.
  • Example 1 an electrode I containing the lithium-containing oxyhydroxide according to the present invention was obtained using the lithium-containing oxyhydroxide as the active material.
  • Example 1 a lithium-containing iron oxyhydroxide powder according to the present invention was obtained by using 1-methoxypropane as a solvent for the complex solution.
  • Example 1 an electrode J containing the lithium-containing iron oxyhydroxide according to the present invention was obtained by using the lithium-containing iron oxyhydroxide powder as the active material.
  • Example 1 a lithium-containing oxyiron hydroxide powder according to the present invention was obtained using 1-methoxypropane as the solvent of the complex solution and anthracene as the polycyclic aromatic compound.
  • an electrode ⁇ containing lithium-containing iron oxyhydroxide according to the present invention was obtained using the lithium-containing iron oxyhydroxide powder as an active material.
  • Example 1 a lithium-containing oxyiron hydroxide powder according to the present invention was obtained using 1-methoxypropane as the solvent of the complex solution and phenanthrene as the polycyclic aromatic compound.
  • the active material was the lithium-containing iron oxyhydroxide powder,
  • an electrode L containing a solution-containing oxyiron hydroxide was obtained.
  • - used after dissolved LiC10 4 of 3 were fabricated glass cell three-electrode.
  • the battery was charged to 4.2 V vs. Li I Li + with a current of 0.01 C mA, and then discharged to 1.5 V vs. Li I Li +.
  • Table 2 shows the values of the charge amount and the discharge capacity of the obtained electrode containing lithium-containing oxyiron hydroxide in the first cycle.
  • Example 1 By adding 0.033 mol of lithium sulfate to an aqueous solution in which 0.1 mol of ferric chloride was dissolved, an oxyiron hydroxide powder having an average particle size of 1.0 ⁇ m was synthesized. This
  • an electrode containing the lithium-containing oxyhydroxide according to the present invention was obtained by using the lithium-containing oxyhydroxide powder as the active material. This electrode was examined in the following manner.
  • the battery was charged to 4.2 V vs. Li / Li + with a current of 0.01 CmA, and then discharged to 1.5 V vs. Li / Li +.
  • Figure 5 shows its electrochemical potential behavior.
  • the amount of electricity charged per unit mass of the lithium-containing iron oxyhydroxide is 290 mAh g- 1 .
  • the discharge capacity was 351 mAh g- 1 . Therefore, it is preferable to use i3-phase iron oxyhydroxide powder.
  • a non-aqueous electrolyte secondary battery (Fe00H'Li / C system) using the lithium-containing oxyhydroxide obtained in Example 1 as a positive electrode active material and graphite as a negative electrode active material was produced.
  • the fabrication method is as follows. A paste was prepared by mixing 80% by mass of the lithium-containing oxyiron hydroxide powder obtained in Example 1, 5% by mass of acetylene black, and 15% by mass of PVDF in ⁇ P. This paste was applied on an aluminum foil having a thickness of 20 ⁇ and dried under reduced pressure at 70 ° C to evaporate NMP.
  • This battery was charged and discharged at 25 ° C. with a constant current of 0.1 C mA.
  • Figure 6 shows the charge / discharge characteristics.
  • This battery is capable of charging and discharging, the charge electrical quantity Contact Yopi discharge capacity was respectively 1 1. 3 mAh and I 5. 0 mAh.
  • the charge / discharge reaction of this battery is considered as in the following equation (1).
  • the right direction is the charging reaction, and the left direction is the discharging reaction.
  • the lithium-containing iron oxyhydroxide of the present invention is used as a positive electrode and contains no lithium.
  • a non-aqueous electrolyte electrochemical cell can be formed by combining with a carbon material such as graphite or amorphous carbon, and an anode such as an oxide or a nitride.
  • Vanadium pentoxide (V 2 0 5) as the positive electrode active material, to produce a nonaqueous electrolyte secondary battery using lithium-containing Okishi water iron oxide according to the present invention as a negative electrode active material (V ⁇ s / FeOOH 'Li system).
  • the fabrication method is as follows. V 2 0 5 powder 75 mass average particle diameter of 80 nm. /. And 5 mass of acetylene black. /. And PVDF20 mass ° /. And Paste were mixed in a corrupt P. The NMP was evaporated by applying this paste to aluminum foil ⁇ with a thickness of 20 ⁇ and drying under reduced pressure at ⁇ ° C.
  • the volume ratio of EC and EMC as the electrolytic solution using a 1: obtained by dissolving a LiC10 4 of 1 mol dm- 3 in a mixed solvent of 1 nominal capacity of Furaddeddo type 20 mAh Li-based non-aqueous electrolyte secondary batteries were fabricated.
  • This battery was charged and discharged at a constant current of 0.1 C mA at 25 ° C.
  • Fig. 7 shows the charge / discharge characteristics. This battery was chargeable and dischargeable, and the charged electricity and discharge capacity were 13.5 mAh and M. 7 mAh, respectively.
  • the charge / discharge reaction of this battery is considered as in the following equation (2). The right direction is the charging reaction, and the left direction is the discharging reaction.
  • a new secondary battery can be manufactured according to the present invention. Therefore, using the lithium-containing oxyhydroxide of the present invention as a negative electrode, a transition metal compound containing no lithium, such as manganese dioxide or vanadium pentoxide, or a transition metal chalcogen such as iron sulfide or titanium sulfide.
  • a non-aqueous electrolyte electrochemical cell can be obtained by combining the compound and a positive electrode such as activated carbon or graphite.

Abstract

A method for producing a lithium-containing iron oxyhydroxide is characterized in that a complex solution wherein metal lithium and a polycyclic aromatic compound are dissolved in a solvent is brought into contact with iron oxyhydroxide so that lithium is absorbed in iron oxyhydroxide. Also disclosed is a method for producing a nonaqueous electrolyte electrochemical cell using an electrode containing a lithium-containing iron oxyhydroxide obtained by such a method. By this method, there can be obtained a nonaqueous electrolyte secondary battery having a large discharge capacity and good cycle performance.

Description

明 細 書 リチウム含有ォキシ水酸化鉄およびそれを含む非水電解質電気化学セルの製造方法 技術分野  Description Lithium-containing iron oxyhydroxide and method for producing nonaqueous electrolyte electrochemical cell containing the same
本発明は、 リチウム含有ォキシ水酸化鉄おょぴそれを含む非水電解質電気化学セル の製造方法に関するものである。 背景技術  The present invention relates to a method for producing a lithium-containing iron oxyhydroxide and a nonaqueous electrolyte electrochemical cell containing the same. Background art
近年、 携帯電話およびデジタルカメラなどの電子機器の電源として、 小形で軽量な リチウムイオン二次電池が広く用いられている。 このような電子機器の多機能化は著 しく進み、 現在、 使用されているリチウムイオン二次電池に代わる高エネルギー密度 の電池の出現が期待されている。 そのためには大きな容量の正極活物質おょぴ負極活 物質の開発が必要である。 その大きな容量の正極活物質として、 Mn02や V205などが検 討されている。 しかしながら、 これらの活物質を合成した段階では、 レドックス反応 に寄与するリチウムが含まれていなかった。 したがって、 これと組み合わせる負極活 物質としては、 金属リチウムやリチウム合金に限られていた。 しかしながら、 これら の金属リチウムゃリチウム合金を用いた電極は、 熱安定性やサイクル性能が劣るため に使用することができなかった。 In recent years, small and lightweight lithium-ion secondary batteries have been widely used as power sources for electronic devices such as mobile phones and digital cameras. The multifunctionality of such electronic devices is remarkably progressing, and the emergence of batteries having a high energy density in place of the currently used lithium ion secondary batteries is expected. To that end, it is necessary to develop large-capacity positive and negative electrode active materials. As a cathode active material for its large capacity, such as Mn0 2 and V 2 0 5 is consider. However, at the stage of synthesizing these active materials, lithium that contributes to the redox reaction was not included. Therefore, the negative electrode active material combined with this was limited to metallic lithium and lithium alloy. However, electrodes using these metallic lithium-lithium alloys could not be used due to poor thermal stability and cycle performance.
一方、 従来のリチウムイオン電池の炭素負極を用いる場合、 正極活物質の Mn02や V205にはリチウムを含有させなければならなかった。 その方法としては、 リチウムィ オンを含む電解液中で、 金属リチウムなどの対極を使用して、 これらの活物質を用い た電極に力ソード通電する従来の電気化学的な方法がある。 しかしながら、 電気化学 的な制御装置が必要であり、 製造プロセスが複雑になる問題があった。 このほかに、 主に、 つぎの 4つのリチウムドープ方法があげられる。 まず、 LiCo02や LiNi02などの リチウム含有物質をブチルリチウム、 フエニルリチウム、 ナフチルリチウム、 あるい はヨウ化リチウムなどを含む溶液に浸漬して LixCo02 (χ>1)や LixNi02 (χ>1)を合成す る方法があり、 日本の特開平 05— 135760 号公開公報に記載されている。 つぎに、 リ チウムイオンと多環芳香族化合物とを溶解した溶液にリチウム含有物質を浸漬して、 正極の不可逆容量分のリチウムを補う方法があり、 日本の特許公報 3227771 号に記載 されている。 また、 ォキシ水酸化ニッケルおよぴ またはその誘導体に n-ブチルリチ ゥムを含む有機溶媒中で反応させる方法があり、 日本の特開 2000- 95525 号公開公報 に記載されている。 さらに、 また、 ォキシ水酸化ニッケルにリチウムをドープする方 法があり、 リチウムナフタレン有機錯溶液の還元機能を利用することが第 44 回電池 討論会ァブス トラク ト No. 1C09 (2003)に記載されている。 その場合、 容量は負極とし ては電位が 0. 6から 2. 4 V vs. Li I Li+で 1000 mAh g-1の大きな容量が得られるが、 正極としては約 90 mAh g— 1 の放電容量が得られているのみである。 一方、 上述した正 極活物質とは別に、 安価で環境負荷の軽い材料の鉄系活物質が最近注目されてきてお り、 その有力候補として最初からリチウムを含有した材料として、 従来の層状構造と は異なるオリビン構造の LiFeP04が提案され、 日本の特開平 9-134724号公開公報や日 本の特許公報 3484003 号などの報告例がある。 しかしながら、 同じ鉄系材料として、 Journal of Power Sources 81-81、 221 (1999)に報告されているように、 ォキシ水酸 化鉄が新たに見出されているが、 レドックス反応に寄与するリチウムが含まれていな いものであり、 負極にカーボンを用いたリチウムイオン電池とすることはできなかつ た。 しかも、 その構造が従来のものとは異なる トンネル構造をとるために、 この材料 にリチウムを含有させるという着想もなく、 また、 他の活物質に適用されている上述 の方法を適用可能であるかは全く予見できなかった。 発明の開示 On the other hand, when using a carbon negative electrode of a conventional lithium-ion batteries, the Mn0 2 and V 2 0 5 of the positive electrode active material had to be containing lithium. As a method therefor, there is a conventional electrochemical method in which a force electrode is applied to electrodes using these active materials in a lithium ion-containing electrolyte using a counter electrode such as lithium metal. However, there is a problem that an electrochemical control device is required and the manufacturing process becomes complicated. In addition to these, there are mainly the following four lithium doping methods. First, lithium butyl lithium containing material such as LiCoO 2 and LiNi0 2, phenylalanine lithium, naphthyl lithium, there have the Li x Co0 2 (χ> 1 ) was immersed in a solution including lithium iodide and Li x Ni0 There is a method of synthesizing 2 (日本 の> 1), which is described in Japanese Patent Application Laid-Open No. 05-135760. Next, there is a method in which a lithium-containing substance is immersed in a solution in which lithium ions and a polycyclic aromatic compound are dissolved to compensate for the irreversible capacity of the positive electrode, which is described in Japanese Patent Publication No. 3227771. There is also a method in which nickel oxyhydroxide and its derivatives are reacted in an organic solvent containing n-butyllithium. It is described in. Furthermore, also, there is way to dope the lithium Okishi nickel hydroxide, to utilize reduced function of the lithium naphthalene organic錯溶solution is described in the 44th Battery Symposium Abusu tractor preparative No. 1C0 9 (2003) ing. In this case, a large capacity of 1000 mAh g -1 is obtained with a potential of 0.6 to 2.4 V vs. Li I Li + for the negative electrode, but a discharge capacity of about 90 mAh g- 1 for the positive electrode Is only obtained. On the other hand, apart from the above-mentioned positive electrode active materials, iron-based active materials, which are inexpensive and have low environmental impact, have recently attracted attention. the been proposed LiFeP0 4 different olivine structure, there is reported an example of such Japanese Patent 9-134724 Patent Publication and Japan's patent publication 3,484,003. However, as reported in the Journal of Power Sources 81-81, 221 (1999), iron oxyhydroxide was newly discovered as the same iron-based material, but lithium, which contributes to the redox reaction, was not found. Since it is not included, a lithium ion battery using carbon for the negative electrode could not be obtained. Moreover, since the structure has a tunnel structure different from that of the conventional one, there is no idea to include lithium in this material, and is the above-mentioned method applied to other active materials applicable? Could not be foreseen at all. Disclosure of the invention
本発明の目的は、 大きな容量を発現可能なリチウム含有有ォキシ水酸化鉄にリチウ ムの新規な製造方法を提供することである。 また、 このリチウム含有ォキシ水酸化鉄 を用いた非水電解質電気化学セルの製造方法を提供することである。  An object of the present invention is to provide a novel method for producing lithium in lithium-containing oxyiron hydroxide having a large capacity. Another object of the present invention is to provide a method for manufacturing a non-aqueous electrolyte electrochemical cell using the lithium-containing oxyiron hydroxide.
第 1 の発明は、 リチウム含有ォキシ水酸化鉄の製造方法において、 金属リチウムと 多環芳香族化合物とを溶媒に溶解させた溶液とォキシ水酸化鉄とを接触させることに よって、 ォキシ水酸化鉄にリチウムを吸蔵させることを特徴とするものである。  A first invention provides a method for producing lithium-containing iron oxyhydroxide, comprising: contacting a solution obtained by dissolving lithium metal and a polycyclic aromatic compound in a solvent with iron oxyhydroxide; In which lithium is absorbed.
第 2 の発明は、 第 1 の発明のリチウム含有ォキシ水酸化鉄の製造方法において、 そ の多環芳香族化合物がナフタレン、 フエナンスレン、 およびアントラセンのうち少な く とも一つであることを特徴とするものである。  According to a second invention, in the method for producing a lithium-containing oxyiron hydroxide according to the first invention, the polycyclic aromatic compound is at least one of naphthalene, phenanthrene, and anthracene. Things.
第 3 の発明は、 第 1 の発明のリチウム含有ォキシ水酸化鉄の製造方法において、 そ のォキシ水酸化鉄 1 モルに吸蔵されるリチウムの量 Xが 0. 5 モル ≤ X ≤ 2 モルの 範囲内であることを特徴とするものである。  According to a third invention, in the method for producing lithium-containing oxyhydroxide of the first invention, the amount X of lithium stored in 1 mol of the oxyiron hydroxide is in the range of 0.5 mol ≤ X ≤ 2 mol. It is characterized by being within.
第 4の発明は第 1 の発明のリチウム含有ォキシ水酸化鉄の製造方法において、 その ォキシ水酸化鉄が J3 相であることを特徴とするとするものである。  According to a fourth aspect, in the method for producing a lithium-containing oxyhydroxide of the first aspect, the oxyiron hydroxide is a J3 phase.
第 5 の発明は、 非水電解質電気化学セルの製造方法において、 第 1 の発明の製造方 法で得られたリチウム含有ォキシ水酸化鉄を含む電極を正極とすることを特徴とする ものである。 The fifth invention is directed to a method of manufacturing a nonaqueous electrolyte electrochemical cell, An electrode containing lithium-containing oxyiron hydroxide obtained by the method is used as a positive electrode.
第 6の発明は、 非水電解質電気化学セルの製造方法において、 第 2 の発明の製造方 法で得られたリチウム含有ォキシ水酸化鉄を含む電極を正極とすることを特徴とする ものである。  A sixth invention is directed to a method for producing a nonaqueous electrolyte electrochemical cell, wherein the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the second invention is used as a positive electrode. .
第 7の発明は、 非水電解質電気化学セルの製造方法において、 第 3 の発明の製造方 法で得られたリチウム含有ォキシ水酸化鉄を含む電極を正極とすることを特徴とする ものである。  A seventh invention is a method for producing a nonaqueous electrolyte electrochemical cell, characterized in that the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the third invention is used as a positive electrode. .
第 8の発明は、 非水電解質電気化学セルの製造方法において、 第 4の発明の製造方 法で得られたリチウム含有ォキシ水酸化鉄を含む電極を正極とすることを特徴とする ものである。  An eighth invention is directed to a method for producing a nonaqueous electrolyte electrochemical cell, wherein the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the fourth invention is used as a positive electrode. .
第 9の発明は、 非水電解質電気化学セルの製造方法において、 第 1 の発明の製造方 法で得られたリチウム含有ォキシ水酸化鉄を含む電極を負極とすることを特徴とする ものである。  A ninth invention is directed to a method for producing a nonaqueous electrolyte electrochemical cell, wherein the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the first invention is used as a negative electrode. .
第 10 の発明は、 非水電解質電気化学セルの製造方法において、 第 2 の発明の製造 方法で得られたリチウム含有ォキシ水酸化鉄を含む電極を負極とすることを特徴とす _ るものである。 図面の簡単な説明  A tenth invention provides a method for producing a nonaqueous electrolyte electrochemical cell, characterized in that the electrode containing lithium-containing oxyiron hydroxide obtained by the production method according to the second invention is used as a negative electrode. is there. Brief Description of Drawings
第 1 図は、 本発明の(a) FeOOH- Lilo 0 (b) FeOOH' Li05および(c) FeOOH の X線回 折パターンである。 FIG. 1 shows (a) FeOOH-Li lo 0 (b) FeOOH 'Li 0 of the present invention. 5 and (c) X-ray diffraction patterns of FeOOH.
第 2図は、 実施例 1 のリチウム含有ォキシ水酸化鉄電極の電気化学的な電位挙動で ある。  FIG. 2 shows the electrochemical potential behavior of the lithium-containing oxyiron hydroxide electrode of Example 1.
第 3図は、 比較例 1のォキシ水酸化鉄電極の電気化学的な電位挙動である。  FIG. 3 shows the electrochemical potential behavior of the iron oxyhydroxide electrode of Comparative Example 1.
第 4図は、 実施例 6の電極の電気化学的な電位挙動である。  FIG. 4 shows the electrochemical potential behavior of the electrode of Example 6.
第 5図は、 実施例 13の電極の電気化学的な電位挙動である。  FIG. 5 shows the electrochemical potential behavior of the electrode of Example 13.
第 6図は、 実施例 14の非水電解質二次電池の充放電特性である。  FIG. 6 shows the charge / discharge characteristics of the non-aqueous electrolyte secondary battery of Example 14.
第 7図は、 実施例 15の非水電解質二次電池の充放電特性である。 発明を実施するための好ましい形態  FIG. 7 shows the charge / discharge characteristics of the non-aqueous electrolyte secondary battery of Example 15. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の多環芳香族化合物として、 ナフタレン、 アントラセン、 フエナンスレン メチノレナフタレン、 ェチノレナフタレン、 ナフタセン、 ペンタセン、 ピレン、 ピセン トリフエ-レン、 アンタンスレン、 ァセナフセン、 ァセナフチレン、 ベンゾピレン、 ベンゾフノレオレン、 ベンゾフエナンスレン、 ベンゾフノレオロア二セン、 ベンゾペリ レ ン、 コロネン、 ク リセン、 へキサベンゾペリ レンまたはこれらの誘導体を使用するこ とができる。 As the polycyclic aromatic compound of the present invention, naphthalene, anthracene, phenanthrene methinolenaphthalene, ethinolenaphthalene, naphthacene, pentacene, pyrene, picene Use of trifluorene, anthanthrene, acenaphthene, acenaphthylene, benzopyrene, benzophnoleolene, benzophenanthrene, benzophnoleroacene, benzoperylene, coronene, chrysene, hexabenzoperylene or derivatives thereof. Can be.
本発明のォキシ水酸化鉄は、 鉄の一部を Co、 Ti、 V、 Cr、 Mn、 M、 Cu および Zn から選ばれる少なく とも 1 種の元素で置換した
Figure imgf000006_0001
(0< a≤0. 5, M は Co、 Ti、 V、 Cr、 Mn、 Ni、 Cuおよび Znから選ばれる少なく とも一種)を含む。 これら のォキシ水酸化鉄は、 鉄塩が溶解した水溶液に Li、 Na、 K、 Mg、 Al、 Ca、 Sc、 Ti、 V、 Cr、 Mn、 Co、 Ni、 Cu、 Zn、 Zr、 Pb および Sn からなる群から選ばれ た少なく とも 1種の元素を含む塩を添加したのち、 加水分解する方法で合成すること ができる。 また、 本発明のォキシ水酸化鉄は "相、 相およびッ相のいずれも使用す ることができる。
In the oxyiron hydroxide of the present invention, a part of the iron is replaced with at least one element selected from Co, Ti, V, Cr, Mn, M, Cu and Zn.
Figure imgf000006_0001
(0 <a≤0.5, M is at least one selected from Co, Ti, V, Cr, Mn, Ni, Cu and Zn). These oxyiron hydroxides are prepared by adding Li, Na, K, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Pb and Sn in an aqueous solution in which iron salts are dissolved. The compound can be synthesized by adding a salt containing at least one element selected from the group consisting of and then hydrolyzing. The iron oxyhydroxide of the present invention can be used in any of the following phases.
本発明のリチウム含有ォキシ水酸化鉄は、 金属リチウムと多環芳香族化合物とを有 機溶媒に溶解させた錯溶液を作製し、 この錯溶液とォキシ水酸化鉄の粉末とを接触さ せる方法によって得ることができる。 また、 この錯溶液とォキシ水酸化鉄を含む電極 とを接触させる方法によっても得ることができる。 ォキシ水酸化鉄あるいはそれを含 む電極に有機溶媒を接触させたのちに、 金属リチウムと多環芳香族化合物とをその溶 媒に溶解させる方法によっても得ることができる。  The lithium-containing oxyhydroxide of the present invention is prepared by preparing a complex solution in which metallic lithium and a polycyclic aromatic compound are dissolved in an organic solvent, and contacting the complex solution with powder of oxyiron hydroxide. Can be obtained by Further, it can also be obtained by a method in which this complex solution is brought into contact with an electrode containing iron oxyhydroxide. It can also be obtained by contacting an organic solvent with oxyiron hydroxide or an electrode containing the same, and then dissolving lithium metal and the polycyclic aromatic compound in the solvent.
金属リチウムと多環芳香族化合物とを有機溶媒に溶解すると、 金属リチウムから多 環芳香族化合物に電子が移動してそのァニオンとリチウムイオンが生成して錯溶液と なる。 金属リチウムがすべて溶解した場合は、 この錯溶液にはリチウムイオン、 多環 芳香族化合物、 多環芳香族化合物のァニオン、 および溶媒を含む。 金属リチウムがー 部のみ溶解した場合は、 その溶液は、 金属リチウム、 リチウムイオン、 多環芳香族化 合物、 多環芳香族化合物のァニオン、 および溶媒を含む。 多環芳香族化合物のァニォ ンからォキシ水酸化鉄へ電子が移動すると同時にリチウムイオンがォキシ水酸化鉄へ 吸蔵される。 このとき、 多環芳香族化合物のァユオンは多環芳香族化合物へ戻ること から、 リチウムの吸蔵反応において触媒の役割をもつ。  When lithium metal and a polycyclic aromatic compound are dissolved in an organic solvent, electrons are transferred from the lithium metal to the polycyclic aromatic compound, and anions and lithium ions are formed to form a complex solution. When all of the metallic lithium is dissolved, the complex solution contains lithium ions, polycyclic aromatic compound, polycyclic aromatic compound anion, and solvent. When only a part of metallic lithium is dissolved, the solution contains metallic lithium, lithium ion, polycyclic aromatic compound, anion of polycyclic aromatic compound, and solvent. Electrons are transferred from the anion of the polycyclic aromatic compound to the iron oxyhydroxide, and at the same time, lithium ions are absorbed into the iron oxyhydroxide. At this time, the polycyclic aromatic compound, ayuon, returns to the polycyclic aromatic compound, and thus has a catalytic role in the lithium storage reaction.
この錯溶液のリチウムイオンの濃度は 0. 07 g dm"3から飽和までの範囲が好ましい 。 その濃度が 0. 07 g dnf3 よりも小さいと、 吸蔵時間が長くなる。 吸蔵時間を短くす るためには、 リチウムイオンの濃度を飽和とすることがより好ましい。 The concentration of lithium ions in this complex solution is preferably in the range from 0.07 g dm " 3 to saturation. If the concentration is less than 0.07 g dnf 3 , the occlusion time will be longer, and the occlusion time will be shorter. For this purpose, it is more preferable to make the lithium ion concentration saturated.
この錯溶液の多環芳香族化合物の濃度は 0. 005〜2. 0 mol dm— 3が好ましい。 より好 ましくは 0. 005〜025 mol dnf3であり、 さらに好ましくは 0. 005〜0. 01 mol dnf3であ る。 多環芳香族化合物の濃度が 0. 005 mol dm—3 より小さいと、 吸蔵時間が長くなり、 濃度が 2. 0 mol dm—3より大きいと、 多環芳香族化合物が溶液中に析出する。 The concentration of the polycyclic aromatic compound in the complex solution is preferably from 0.005 to 2.0 mol dm- 3 . More favorable Mashiku is 0. 005~025 mol dnf 3, more preferably 0. 005~0. 01 mol dnf 3 der The If the concentration of the polycyclic aromatic compound is less than 0.005 mol dm- 3 , the occlusion time is prolonged, and if the concentration is greater than 2.0 mol dm- 3 , the polycyclic aromatic compound precipitates in the solution.
この錯溶液とォキシ水酸化鉄とを接触させる時間は特に制限されないが、 ォキシ水 酸化鉄にリチウムを十分に吸蔵するためには、 0. 1〜240 時間が好ましく、 また、 0. 1 〜72 時間がより好ましい。 なお、 この錯溶液とォキシ水酸化鉄とを接触させる場合、 溶液を攪拌することによって、 リチウムの吸蔵速度を大きくすることができる。 また 、 溶液の温度を高くすることによって、 吸蔵速度を大きくすることができるが、 溶液 を沸騰させないためには、 用いる溶媒の沸点以下の温度とすることが好ましく、 また 、 25〜60 °Cの範囲とすることが作業性の面を考慮するとより好ましい。  The time for bringing the complex solution into contact with the oxyiron hydroxide is not particularly limited, but in order to occlude lithium sufficiently in the oxyhydroxide, 0.1 to 240 hours is preferable, and 0.1 to 72 hours. Time is more preferred. When the complex solution is contacted with iron oxyhydroxide, the lithium storage rate can be increased by stirring the solution. Also, by increasing the temperature of the solution, the occlusion rate can be increased. However, in order not to boil the solution, it is preferable that the temperature be equal to or lower than the boiling point of the solvent to be used. It is more preferable to set the range in consideration of workability.
本発明の錯溶液に使用する溶媒として、 ジェチルエーテル、 1ーメ トキシプロパン 、 1—メ トキシブタン、 2—メ トキシブタン、 1ーメ トキシペンタン、 2—メ トキシ ペンタン、 1—メ トキシへキサン、 2—メ トキシへキサン、 3—メ トキシへキサン、 1ーェトキシプロパン、 2 _エトキシブタン、 テ トラヒ ドロフラン、 2—メチルテ ト ラヒ ドロフラン、 1、 2—ジメチルテ トラヒ ドロフラン、 ジメチルスルフォォキシド などが挙げられる。 このように、 錯溶液に使用する溶媒の種類は特に限定されるもの ではない。 しかしながら、 溶媒が分解することによって生成した物質がォキシ水酸化 鉄の表面に付着するという問題が生じる。 あるいは、 その分解生成物とォキシ水酸化 鉄とが反応することによって、 その内部へのリチウムの吸蔵速度が小さくなるという 問題が生じる。 したがって、 錯溶液に使用する溶媒として、 分解しにくい鎖状モノェ 一テルが好ましい。  Solvents used in the complex solution of the present invention include getyl ether, 1-methoxypropane, 1-methoxybutane, 2-methoxybutane, 1-methoxypentane, 2-methoxypentane, 1-methoxyhexane, 2-Methoxyhexane, 3-methoxyhexane, 1-ethoxypropane, 2-ethoxybutane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,2-dimethyltetrahydrofuran, dimethylsulfoxide, etc. No. Thus, the type of the solvent used for the complex solution is not particularly limited. However, there is a problem that the substance generated by the decomposition of the solvent adheres to the surface of the iron oxyhydroxide. Alternatively, the decomposition product reacts with iron oxyhydroxide, causing a problem that the rate of insertion of lithium into the interior decreases. Therefore, as the solvent used for the complex solution, a chain-like monomer that is difficult to decompose is preferable.
本発明の製造方法によって得られたリチウム含有ォキシ水酸化鉄は、 ォキシ水酸化 鉄 1 モルに対しリチウムが X モル吸蔵されて得られる。 X の値は、 錯溶液中のリチウ ムイオンおよぴ多環芳香族化合物の濃度、 反応時間、 温度によって制御することでき る。 そのリチウムのモル数 X は得られたリチウム含有ォキシ水酸化鉄を含む電極の充 電電気量によって決定できる。 その充電電気量とは、 作用極としてそのリチウム含有 ォキシ水酸化鉄を含む電極を、 対極および参照極として金属リチウムを、 電解液とし てエチレンカーボネート (EC) とェチルメチルカーボネート (EMC) との体積比 1 : 1 の混合溶媒に 1 mol dm—3の LiC104を溶解させたものを用い、 25 °Cにおいて、 電流 0. 01C mA (C はォキシ水酸化鉄の 1 電子反応の理論容量を基準とする)相当の定電流で 4. 2 V vsD Li / Li+まで充電したときの電気量を示す。 x の値は 0. 5≤x≤2 であるこ とが好ましい。 この範囲では、 得られたリチウム含有ォキシ水酸化鉄を含む電極が良 好なサイクル性能を示すためである。 本発明の錯溶液とォキシ水酸化鉄とを接触させる方法では多環芳香族化合物はリチ ゥムを吸蔵する反応の触媒として機能する。 その反応過程では、 多環芳香族化合物が ォキシ水酸化鉄から H を引き抜かない。 したがって、 副生成物が生じないため、 目的 のリチウム含有ォキシ水酸化鉄を得ることができる。 The lithium-containing oxyhydroxide obtained by the production method of the present invention is obtained by storing X moles of lithium with respect to 1 mole of oxyhydroxide. The value of X can be controlled by the concentration of lithium ions and polycyclic aromatic compounds in the complex solution, reaction time, and temperature. The molar number X of lithium can be determined by the amount of charge of the electrode containing the obtained lithium-containing oxyiron hydroxide. The amount of charge electricity is defined as the electrode containing the lithium-containing oxyiron hydroxide as the working electrode, metallic lithium as the counter electrode and reference electrode, and ethylene carbonate (EC) and ethyl methyl carbonate (EMC) as the electrolyte. volume ratio of 1: used after dissolved 1 mol dm- 3 of LiC10 4 in a mixed solvent of 1, the 25 ° C, the theoretical capacity of the one-electron reaction of current 0. 01C mA (C is Okishi iron hydroxide Indicates the amount of electricity when charged to 4.2 V vs D Li / Li + with a considerable constant current. Preferably, the value of x is 0.5≤x≤2. This is because in this range, the obtained electrode containing the lithium-containing oxyiron hydroxide exhibits excellent cycle performance. In the method of contacting the complex solution of the present invention with iron oxyhydroxide, the polycyclic aromatic compound functions as a catalyst for the reaction of storing lithium. In the course of the reaction, the polycyclic aromatic compound does not extract H from the iron oxide hydroxide. Therefore, since no by-product is generated, the desired lithium-containing iron oxyhydroxide can be obtained.
本発明のリチウム含有ォキシ水酸化鉄の結晶構造は非晶質であることが好ましい。 ここで非晶質とは CuK aを用いた X線回折においてリチウム含有ォキシ水酸化鉄の 36. 8 ± 0. 5° 付近に見られるピークの半値幅が 1. 0° 以上の場合をいう。 本発明の製造 方法で得られたリチウム含有ォキシ水酸化鉄の代表的な X線回折パターンを第 1 図に 示す。 第 1 図において、 (a)は FeOOH · LiL。の、 (b)は FeOOH · Li。.5の、 (c)は FeOOH の結果である。 第 1図において、 記号 ·は α相の FeOOH のピーク、 記号口はニッケル 基板のピーク、 記号〇はポリエチレン力パーのピークを示す。 X の値が 0. 5 のリチウ ム含有ォキシ水酸化鉄では半値幅が 1. 0° 以上であった。 したがって、 X の値が 0. 5 以上では、 リチウム含有ォキシ水酸化鉄の非晶質化がおこることがわかった。 また、 ォキシ水酸化鉄、 基板のニッケルおよびポリエチレンカバー以外のピークが見られな いことから、 副生成物が生成していないことがわかった。 The crystal structure of the lithium-containing oxyiron hydroxide of the present invention is preferably amorphous. Here, the term “amorphous” refers to the case where the half-width of the peak at around 36.8 ± 0.5 ° of lithium-containing oxyiron hydroxide in X-ray diffraction using CuKa is 1.0 ° or more. FIG. 1 shows a typical X-ray diffraction pattern of the lithium-containing iron oxyhydroxide obtained by the production method of the present invention. In Fig. 1, (a) is FeOOH · Li L. (B) FeOOH · Li. (C) of Fig. 5 is the result of FeOOH. In Fig. 1, the symbol · indicates the peak of FeOOH in the α phase, the symbol port indicates the peak of the nickel substrate, and the symbol 〇 indicates the peak of polyethylene force. For the lithium-containing oxyhydroxide having an X value of 0.5, the half width was 1.0 ° or more. Therefore, it was found that when the value of X was 0.5 or more, the lithium-containing iron oxyhydroxide became amorphous. In addition, since no peaks other than iron oxyhydroxide, nickel on the substrate, and polyethylene cover were observed, it was found that no by-product was generated.
本発明のリチウム含有ォキシ水酸化鉄は、 正極および負極のいずれにも使用するこ とができる。 本発明のリチウム含有ォキシ水酸化鉄を非水電解質二次電池の正極活物 質として使用した場合は、 負極活物質には特に制限はない。 この負極活物質には黒鉛 や非晶質炭素などの炭素材料、 酸化物、 および窒化物などを使用できる。 これらの中 では、 容量ゃ充放電サイクル性能が優れていることから、 黒鉛や非晶質炭素などの炭 素材料や酸化物を使用することが好ましい。 本発明のリチウム含有ォキシ水酸化鉄を 非水電解質二次電池の負極活物質として使用した場合は、 正極活物質には特に制限は ない。 この正極活物質には二酸化マンガン、 五酸化バナジウムのような遷移金属化合 物や、 硫化鉄、 硫化チタンのような遷移金属カルコゲン化合物、 および活性炭や黒鉛 などの炭素材料などを使用できる。  The lithium-containing oxyiron hydroxide of the present invention can be used for both positive and negative electrodes. When the lithium-containing oxyiron hydroxide of the present invention is used as a positive electrode active material of a non-aqueous electrolyte secondary battery, the negative electrode active material is not particularly limited. As the negative electrode active material, carbon materials such as graphite and amorphous carbon, oxides, nitrides, and the like can be used. Among these, carbon materials and oxides such as graphite and amorphous carbon are preferably used because of their excellent capacity / charge / discharge cycle performance. When the lithium-containing iron oxyhydroxide of the present invention is used as a negative electrode active material of a non-aqueous electrolyte secondary battery, the positive electrode active material is not particularly limited. For the positive electrode active material, transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, and carbon materials such as activated carbon and graphite can be used.
正極おょぴ負極を作製するときに使用する結着剤として、 エチレン一プロピレンージ ェン三元共重合体、 アクリロニトリル一ブタジエンゴム、 フッ素ゴム、 ポリ酢酸ビュル Ethylene-propylene-diene terpolymer, acrylonitrile-butadiene rubber, fluororubber, polyacetate
、 ポリメチルメタクリレート、 ポリエチレン、 ニトロセルロース、 ポリフッ化ビニリデ ン、 ポリエチレン、 ポリプロピレン、 ポリテトラフルォロエチレン、 テトラフルォロェ チレン一へキサフルォロプロピレン共重合体、 ポリフッ化ビニリデン一クロ口 トリフル ォロェチレン共重合体、 スチレン一ブタジェンゴム(SBR)あるいはカルボキシメチルセ ルロース(CMC)などから選択される少なく とも 1種を用いることができる。 結着剤を混合するときに用いる溶媒として、 非水溶媒または水溶液のいずれも使用で きる。 非水溶媒として、 N—メチルー2—ピロリ ドン、 ジメチル'ホルムアミ ド、 ジメチル ァセトアミ ド、 メチルェチルケトン、 シクロへキサノン、 酢酸メチル、 アクリル酸メチ ル、 ジェチルトリアミン、 N— N—ジメチルァミノプロピルァミン、 エチレンォキシド、 テトラヒ ドロフランなどを使用できる。 一方、 水溶液には、 分散剤、 增粘剤などを加え て用いることができる。 , Polymethyl methacrylate, Polyethylene, Nitrocellulose, Polyvinylidene fluoride, Polyethylene, Polypropylene, Polytetrafluoroethylene, Tetrafluoroethylene-Hexafluoropropylene copolymer, Polyvinylidene monochloride Trifluoroethylene copolymer At least one selected from styrene-butadiene rubber (SBR) and carboxymethylcellulose (CMC) can be used. Either a non-aqueous solvent or an aqueous solution can be used as a solvent for mixing the binder. Non-aqueous solvents include N-methyl- 2 -pyrrolidone, dimethyl'formamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, getyltriamine, N-N-dimethylamino Propylamine, ethylene oxide, tetrahydrofuran and the like can be used. On the other hand, a dispersant, a thickener and the like can be added to the aqueous solution.
電極の集電体として、 鉄、 銅、 ステンレス、 ニッケルおよびアルミを用いることがで きる。 また、 その形状として、 シート、 発泡体、 メッシュ、 多孔体おょぴエキスパンド 格子などを用いることができる。 さらに、 集電体には任意の形状で穴を開けて用いるこ とができる。  Iron, copper, stainless steel, nickel and aluminum can be used as current collectors for the electrodes. Further, as the shape, a sheet, a foam, a mesh, a porous expanded lattice, or the like can be used. Further, the current collector can be used with holes formed in any shape.
電解液に使用する有機溶媒として、 エチレンカーボネート、 プロピレンカーボネート 、 ブチレンカーボネート、 トリフルォロプロピレンカーボネート、 γ -ブチロラク トン 、 スルホラン、 1、 2—ジメ トキシェタン、 1、 2-ジェトキシェタン、 テトラヒ ドロフラ ン、 2—メチルテトラヒ ドロフラン、 3—メチルー 1、 3—ジォキソラン、 酢酸メチノレ、 酢 酸ェチル、 プロピオン酸メチル、 プロピオン酸ェチル、 ジメチルカーボネート、 ジェチ ルカーボネート、 ェチルメチルカーボネート、 ジプロピルカーボネート、 メチルプロピ ルカーボネートなどを、 単独または混合して使用することができる。 また、 電解液中に ビニレンカーボネート、 ブチレンカーボネートなどのカーボネート系、 ビフエニル、 シ ク口へキシルベンゼンなどのベンゼン系、 プロパンスルトンなどの硫黄系の化合物を単 独または混合して使用できる。  Organic solvents used for the electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxetane, 1,2-jetoxetane, tetrahydrofuran, and tetrahydrofuran. Methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methynole acetate, ethyl acetate, methyl propionate, ethyl ethyl propionate, dimethyl carbonate, methyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, etc. Alternatively, they can be used in combination. In addition, carbonate compounds such as vinylene carbonate and butylene carbonate, benzene compounds such as biphenyl and cyclohexylbenzene, and sulfur compounds such as propane sultone can be used alone or in the electrolyte.
さらに、 電解液と固体電解質とを組み合わせて使用することができる。 固体電解質と して、 結晶質または非晶質の無機固体電解質を用いることができる。 前者には、 Li l、 Li3N、 Li1+xMxTi2x (P04) 3 (M = Al、 Sc、 Y、 La)、 Li。.5_3xR。.5+xTi03 ( R = La、 Pr、 Nd、 Sm) 、 または Li4_ xGei-xPxS4に代表されるチォ LISICONを用いることができ、 後者には Li l- Li20-B205系、 Li20- Si02系、 Lil- Li2S- B2S3系、 Lil - Li2S- SiS2系、 Li2S- SiS2- Li3P04系など を用いることができる。 Further, the electrolyte solution and the solid electrolyte can be used in combination. As the solid electrolyte, a crystalline or amorphous inorganic solid electrolyte can be used. The former, Li l, Li 3 N, Li 1 + x M x Ti 2 - x (P0 4) 3 (M = Al, Sc, Y, La), Li. . 5 _ 3x R. . 5 + x Ti0 3 (R = La, Pr, Nd, Sm), or Li 4 _ x G ei - x P x S 4 to be able to use typified by Chio LISICON, the latter Li l-Li 2 0-B 2 0 5 system, Li 2 0- Si0 2 system, Lil- Li 2 S- B 2 S 3 type, Lil - Li 2 S- SiS 2 system, Li 2 S- SiS 2 - Li 3 P0 4 A system can be used.
有機溶媒に溶解する塩と しては、 LiPF6、 LiC104、 LiBF4、 LiAsF6、 LiPF (CF3) 5、 LiPF2 (CF3) 4、 LiPF3 (CF3) 3、 LiPF4 (CF3) 2、 LiPF5 (CF3) 、 LiPF3 (C2F5) 3、 LiCF3S03、 LiN (S02CF3) 2、 LiN (S02CF2CF3) 2、 LiN (C0CF3) 2、 LiN (C0CF2CF3) 2、 LiC4B08などを単独あるい は混合して使用することができる。 これらのなかにおいて、 サイクル性能が良好になる ことから、 リチウム塩としては、 LiPF6が好ましい。 さらに、 これらのリチウム塩の濃度 は、 0. 5〜2. 0 moldnf3の範囲が好ましい。 非水電解質電気化学セルのセパレ—タとして、 ナイロン、 セルロースアセテート、 二 トロセルロース、 ポリスルホン、 ポリアクリロニトリル、 ポリフッ化ビニリデンおよび ポリオレフインなどの微多孔膜を使用できる。 Is a salt dissolved in an organic solvent, LiPF 6, LiC10 4, LiBF 4, LiAsF 6, LiPF (CF 3) 5, LiPF 2 (CF 3) 4, LiPF 3 (CF 3) 3, LiPF 4 (CF 3 ) 2 , LiPF 5 (CF 3 ), LiPF 3 (C 2 F 5 ) 3 , LiCF 3 S0 3 , LiN (S0 2 CF 3 ) 2 , LiN (S0 2 CF 2 CF 3 ) 2 , LiN (C0CF 3) ) 2, LiN (C0CF 2 CF 3) 2, LiC 4 B0 8 walking alone and can be used as a mixture. Among these, LiPF 6 is preferable as the lithium salt because the cycle performance is improved. Furthermore, the concentration of these lithium salts is 0.5 to 2.0 range Moldnf 3 are preferred. Microporous membranes such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride and polyolefin can be used as separators in non-aqueous electrolyte electrochemical cells.
非水電解質電気化学セルの形状は特に限定されるものではなく、 角形、 楕円形、 コィ ン形、 ボタン形、 シート形などを用いることができる。  The shape of the nonaqueous electrolyte electrochemical cell is not particularly limited, and may be a square, an ellipse, a coin, a button, a sheet, or the like.
実施例 Example
つぎに、 本発明を実施例に基づいて詳細に説明する。 しかしながら、 本発明は、 以 下の実施例によって限定されるものではない。  Next, the present invention will be described in detail based on examples. However, the present invention is not limited by the following examples.
[実施例 1 ]  [Example 1]
. 硫酸第二鉄が 4 質量。/。溶解した水溶液に 2 質量%の水酸化ナトリゥムを添加するこ とによって、 平均粒径 1. 0 μ mの α相のォキシ水酸化鉄粉末を合成した。 つぎに、 溶 媒としてのジェチルェ一テルに、 濃度 0. 25 mol dnT3の多環芳香族化合物としてのナ フタレンと飽和量の金属リチウムとを溶解させて錯溶液を作製した。 さらに、 この錯 溶液中にこのォキシ水酸化鉄粉末を浸漬し、 25 °Cで 24 時間静置して、 ろ過したのち 、 ジメチルカーボネートで洗浄した。 最後に室温で減圧乾燥して、 本発明によるリチ ゥム含有ォキシ水酸化鉄粉末を活物質として得た。 4 mass of ferric sulfate. /. By adding 2% by mass of sodium hydroxide to the dissolved aqueous solution, α- phase oxyiron hydroxide powder having an average particle size of 1.0 μm was synthesized. Next, a complex solution was prepared by dissolving naphthalene as a polycyclic aromatic compound having a concentration of 0.25 mol dnT 3 and a saturated amount of metallic lithium in geethylether as a solvent. Further, the oxyiron hydroxide powder was immersed in the complex solution, allowed to stand at 25 ° C. for 24 hours, filtered, and then washed with dimethyl carbonate. Finally, it was dried under reduced pressure at room temperature to obtain a lithium-containing oxyiron hydroxide powder according to the present invention as an active material.
この粉末の活物質 80質量。/。と、 アセチレンブラック 5質量%と、 ポリフッ化ビニリ デン(PVDF) 15 質量%とを N-メチル- 2-ピロリ ドン(匪 P)中で混合し、 ペース トを作製 した。 このペース トを厚さ 20 μ ια のアルミニウム箔上に塗布して、 70 °Cで減圧乾燥 することにより、 NMP を蒸発させた。 これをローラーで加圧したのち、 スリ ツターに て 10 mmW X 20 mmL X lOO μ ηιΤの大きさにして、 本発明によるリチウム含有ォキシ水酸 化鉄を含む電極 Αを製作した。  80 mass of active material of this powder. /. 5% by mass of acetylene black and 15% by mass of polyvinylidene fluoride (PVDF) were mixed in N-methyl-2-pyrrolidone (banded P) to prepare a paste. The paste was applied on an aluminum foil having a thickness of 20 μια and dried at 70 ° C under reduced pressure to evaporate NMP. This was pressurized by a roller, and then slitted to a size of 10 mmW × 20 mmL × 100 μηιΤ to produce an electrode containing lithium-containing oxyhydroxide according to the present invention.
つぎに、 作用極としてこの電極を、 参照極おょぴ対極として金属リチウム板を、 電 解液として EC と EMC と O体積比 1: 1の混合溶媒に 1 mol dnf3の LiC104を溶解させた ものを用い、 3 極式のガラスセルを製作した。 この電極の電気化学的な電位挙動はつ ぎのようにして調べた。 25 °Cにおいて、 電流 0. 01C mAで 4. 2 V vs. L i / Li+まで充 電したのち、 1. 5 V vs. Li / L i+まで放電をおこなった。 このリチウム含有ォキシ水 酸化鉄電極の電気化学的な電位挙動を第 2図に示す。 この電極の電位は 1. 0 V vs. L i / Li+から、 徐々に賁にシフトして 4. 2 V vs. Li / L i+になった。 この理由として、 充 電によって、 リチウム含有ォキシ水酸化鉄から電気化学的にリチウムが脱離したため と考えられる。 この充電電気量は、 リチウム含有ォキシ水酸化鉄の単位質量当り 307 mAh g"1 という大きな値が得られることがわかった。 また、 放電では、 電極の電位は 4. 2 V vs. Li I Li+から徐々に卑にシフ 卜して 1. 5 V vs. Li I Li+になり、 この電気 量(放電容量)は、 リチウム含有ォキシ水酸化鉄の単位質量当り 280 mAh g—1 という大 きな容量が得られた。 この値はォキシ水酸化鉄に 1モルの Li が挿入された場合にお ける理論容量の実に 93%という予見できない大きな値が得られた。 したがって、 金属 リチウムと多環芳香族化合物とを溶媒に溶解させた溶液とォキシ水酸化鉄とを接触さ せるという簡便な本発明による方法によって、 ォキシ水酸化鉄にリチウムを吸蔵させ 、 しかも、 理論容量に近い、 大きな実容量を得ることができるということがわかった なお、 本発明の着想自体の困難さを証明するための参考例として、 実施例 1におい て 1. 0 μ ηι の α相のォキシ水酸化鉄の代わりに、 従来から公知の 10 μ m の層状構造 のォキシ水酸化ニッケルを用いて電極を作製し、 本発明の方法を適用して、 電気化学 的な挙動を調べて、 その効果を調べた。 その結果、 得られたリチウム含有ォキシ水酸 化ニッケル電極の充電電気量おょぴ放電容量の値は、 それぞれ、 第 44 回電池討論会 ァブス トラク ト No. 1C09 (2003)に記載されている値と同じ程度の 104mAh g— 1および 96 mAh g—1 と小さかったことから、 この引用例から、 本発明のような理論容量に匹敵 する実容量が得られることは予見できないものといえる。 このように、 ォキシ水酸化 ニッケルの場合には、 本発明のォキシ水酸化鉄の場合のような効果が得られないのは 、 ォキシ水酸化ニッケルの結晶構造が層状構造であるために、 本発明のリチウム揷入 時にその層間が開きやすく、 そのために、 錯溶液の溶媒までも層間中に取り込んで、 電気化学的な活性度が低下するものであると推察される。 一方、 ォキシ水酸化鉄では 、 その結晶構造がトンネル構造であるので、 錯溶液の溶媒を層間中に取り込むことな く リチウム含有ォキシ水酸化鉄を作製することができたものと推察される。 したがつ て、 別の見方から言うと、 本発明の方法は、 とくに、 ォキシ水酸化鉄を用いることに よって大きな効果が発現するとも言える。 リチウム含有ォキジォキシ水酸化ニッケル /C系リチウムイオン電池の作動電圧が 3V、 LiFeP04/C系リチウムイオン電池の 3. 5 V と比較して、 本発明のように 2 V と低い作動電圧系であるリチウム含有ォキシ水酸化 · 鉄/ C 系リチウムイオン電池には、 実用的には、 理論容量に近い大きな容量が必要とな ることから、 本発明の効果が、 いちじるしいと言える。 Then, this electrode as a working electrode, a metal lithium plate as the reference electrode contact Yopi counter, electrolytic EC and EMC and O volume ratio as solution 1: dissolve the LiC10 4 of 1 mol DNF 3 in a mixed solvent of 1 A three-electrode glass cell was fabricated using the above. The electrochemical potential behavior of this electrode was investigated as follows. At 25 ° C, the battery was charged to 4.2 V vs. Li / Li + with a current of 0.01 CmA, and then discharged to 1.5 V vs. Li / Li +. FIG. 2 shows the electrochemical potential behavior of this lithium-containing oxyiron hydroxide electrode. The potential of this electrode gradually shifted from 1.0 V vs. Li / Li + to 4.2 V vs. Li / Li + . This is probably because lithium was electrochemically desorbed from lithium-containing iron oxyhydroxide by charging. It was found that a large value of 307 mAh g " 1 was obtained per unit mass of lithium-containing iron oxyhydroxide, and that the potential of the electrode during discharging was 4.2 V vs. Li I Li + Slowly shifted from 1.5 V to 1.5 V vs. Li I Li + , and the quantity of electricity (discharge capacity) was per unit mass of lithium-containing iron oxyhydroxide. A large capacity of 280 mAh g- 1 was obtained. This value was 93% of the theoretical capacity when 1 mol of Li was inserted into iron oxyhydroxide. Therefore, by a simple method according to the present invention in which a solution in which lithium metal and a polycyclic aromatic compound are dissolved in a solvent is brought into contact with iron oxyhydroxide, lithium is absorbed in iron oxyhydroxide. It was found that a large real capacity close to the capacity could be obtained. As a reference example to prove the difficulty of the idea itself of the present invention, in Example 1, 1.0 μηι α phase was used. An electrode was prepared using a conventionally known 10 μm layered nickel oxyhydroxide instead of iron oxyhydroxide, and the electrochemical behavior was examined by applying the method of the present invention. The effect was investigated. As a result, the values of the charge electricity and the discharge capacity of the obtained lithium-containing nickel oxyhydroxide electrode are the values described in the 44th Battery Symposium on Abstract No. 1C09 (2003), respectively. Since it was as small as 104 mAh g- 1 and 96 mAh g- 1, which are almost the same as above, it can not be foreseen that from this cited example, it is possible to obtain an actual capacity comparable to the theoretical capacity as in the present invention. Thus, in the case of nickel oxyhydroxide, the same effect as in the case of iron oxyhydroxide of the present invention cannot be obtained because the crystal structure of nickel oxyhydroxide is a layered structure. It is presumed that when lithium is introduced, the layers are easily opened, so that even the solvent of the complex solution is taken into the layers and the electrochemical activity is reduced. On the other hand, since the iron oxide hydroxide has a tunnel structure, it is presumed that lithium-containing iron oxide hydroxide could be produced without taking the solvent of the complex solution into the interlayer. Therefore, from another point of view, it can be said that the method of the present invention exerts a great effect particularly by using oxyiron hydroxide. Operating voltage of the lithium-containing Okijiokishi nickel hydroxide / C based lithium ion batteries compared to 3V, LiFeP0 4 / C system 3. 5 V lithium ion batteries, is 2 V and a low operating voltage system as in the present invention Lithium-containing oxyhydroxide / iron / C-based lithium-ion batteries practically require large capacities close to the theoretical capacities, so the effect of the present invention can be said to be remarkable.
[比較例 1 ]  [Comparative Example 1]
実施例 1 で用いた α相のォキシ水酸化鉄粉末の活物質 80 質量%と、 アセチレンブ ラック 5質量%と、 PVDF15質量%とを ΝΜΡ中で混合し、 ペース トを作製した。 このぺ ース 卜を厚さ 20 m のアルミニウム箔上に塗布して、 70 でで減圧乾燥することによ り、 匪 P を蒸発させた。 これをローラーで加圧したのち、 スリツターにて 10 瞧 W X 20 mmL X lOO μ mT の大きさにして電極を作製した。 この電極の電気化学的な電位挙動を 、 つぎのようにして測定した。 作用極としてこの電極を、 参照極おょぴ対極として金 属リチウム板を、 電解液として EC と EMC との体積比 1: 1の混合溶媒に 1 mol dnf3の LiC104を溶解させたものを用い、 3 極式のガラスセルを製作した。 この電極の電気化 学的な電位挙動はつぎのようにして調べた。 25 °Cにおいて、 電流 0. 01C mAで 4。 2 V vs. Li I Li+まで充電したのち、 1. 5 V vs. Li / Li+まで放電をおこなった。 このォ キシ水酸化鉄電極の電気化学的な電位挙動を第 3 図に示す。 図には充電特性が現れて いないが、 その電位はすぐに 4. 2 V vs. Li I Li+に到達した。 すなわち、 この電極の 充電電気量はォキシ水酸化鉄の単位質量当り 0 niAh g— 1であった。 この理由として、 ォキシ水酸化鉄電極はリチウムを含んでいないため、 電気化学的なリチウム脱離反応 が進行しなかったためである。 また、 放電では、 この電極の電位は 3. 2 V vs. Li I Li+から徐々に卑にシフ トして 1· 5 V vs. Li / Li+になった。 この電気量(放電容量)は 、 ォキシ水酸化鉄の単位質量当り 281 mAh きであった。 A paste was prepared by mixing 80% by mass of the active material of the α-phase iron oxyhydroxide powder used in Example 1, 5% by mass of acetylene black, and 15% by mass of PVDF in a glass plate. This paste was applied on a 20-m-thick aluminum foil and dried under reduced pressure at 70. To evaporate the bandits P. This was pressurized with a roller, and then the size was adjusted to 10 mm WX 20 mmL X 100 μmT with a slitter to produce an electrode. The electrochemical potential behavior of this electrode was measured as follows. The electrode as a working electrode, a metallic lithium plate as a reference electrode Contact Yopi counter, the volume ratio of EC and EMC as the electrolytic solution 1: obtained by dissolving a LiC10 4 of 1 mol DNF 3 in a mixed solvent of 1 A three-electrode glass cell was fabricated using this method. The electrochemical potential behavior of this electrode was examined as follows. 4. At 25 ° C, current 0.01 C mA. After charging to 2 V vs. Li I Li + , the battery was discharged to 1.5 V vs. Li / Li +. Figure 3 shows the electrochemical potential behavior of this oxyiron hydroxide electrode. Charging characteristics do not appear in the figure, the potential was immediately 4. Reached 2 V vs. Li I Li +. That is, the charged amount of electricity of this electrode was 0 niAh g- 1 per unit mass of iron oxyhydroxide. The reason for this is that the electrochemical iron elimination reaction did not progress because the iron oxide hydroxide electrode did not contain lithium. In the discharge, the potential of this electrode gradually shifted from 3.2 V vs. Li I Li + to 1.5 V vs. Li / Li + . This electric quantity (discharge capacity) was 281 mAh per unit mass of iron oxyhydroxide.
ここで、 重要な知見が見出された。 すなわち、 従来のォキシ水酸化鉄を金属リチウ ムと多環芳香族化合物とを含む溶液に接触する方法で作製したリチウム含有ォキシ水 酸鉄が、 化学的に合成することができて、 それを含む電極が大きな充電電気量と放電 容量とをもつことである。 そのリチウム含有ォキシ水酸化鉄電極の充電電気量 307 mAh g—1は、 一般式 Fe00H' Lixで表される xが 1の値であることを意味する。 Here, important findings were found. That is, lithium-containing oxyhydroxide prepared by a method in which conventional iron oxyhydroxide is brought into contact with a solution containing lithium metal and a polycyclic aromatic compound can be chemically synthesized and contained. That is, the electrode has a large charge amount and a large discharge capacity. The amount of charge of the lithium-containing oxyiron hydroxide electrode of 307 mAh g— 1 means that x represented by the general formula Fe00H ′ Li x is a value of 1.
[比較例 2]  [Comparative Example 2]
実施例 1で用いた錯溶液の代わりに 1. 6 mol dm—3の n -プチルリチウムのジェチルェ 一テル溶液を用いて、 この溶液中に a相のォキシ水酸化鉄粉末を浸漬し、 25 でで 24 時間静置して、 ろ過したのち、 ジメチルカーボネートで洗净した。 これを室温で減圧 乾燥して、 粉末を得た。 この粉末 80質量%と、 アセチレンブラック 5質量%と、 ポリ フッ化ビニリデン(PVDF) 15 質量0 /0とを N-メチル- 2 -ピロリ ドン(丽 P)中で混合し、 ぺ ース トを作製した。 このペース トを厚さ 20 μ πι のアルミニウム箔上に塗布して、 70 °Cで減圧乾燥することにより、 NMP を蒸発させた。 これをローラーで加圧したのち、 スリツターにて 10 mmW X 20 mmL X lOO ju mTの大きさにして、 電極を製作した。 Instead of the complex solution used in Example 1, a 1.6 mol dm- 3 n-butyllithium Jetyl ether solution was used, and a-phase oxyiron hydroxide powder was immersed in this solution. For 24 hours, filtered, and washed with dimethyl carbonate. This was dried under reduced pressure at room temperature to obtain a powder. The powder 80 wt%, and 5 wt% of acetylene black, polyvinylidene fluoride (PVDF) 15 weight 0/0 and the N- methyl - 2 - were mixed in pyrrolidone (丽P), the pace preparative Produced. The NMP was evaporated by applying this paste on an aluminum foil having a thickness of 20 μπι and drying under reduced pressure at 70 ° C. This was pressurized with a roller, and then sized to 10 mmW × 20 mmL × 100 jumT with a slitter to produce an electrode.
つぎに、 作用極としてこの電極を、 参照極おょぴ対極として金属リチウム板を、 電 解液として ECと EMCとの体積比 1: 1の混合溶媒に 1 mol dm— 3の LiC104を溶解させた ものを用い、 3 極式のガラスセルを製作した。 この電極の電気化学的な電位挙動はつ ぎのようにして調べた。 25 °Cにおいて、 電流 0. 01C mAで 4. 2 V vs. Li / Li+まで充 電したのち、 1. 5 V vs. Li I Li+まで放電をおこなった。 この電極の 1 サイクル目の 充電電気量および放電容量は小さく、 それぞれ 72 mAh g— 1および 65 mAh きであった 。 この理由として n-ブチルリチウムのジェチルエーテル溶液を用いた場合、 ォキシ水 酸化鉄から H が引き抜かれて、 結晶構造が崩壌し、 酸化鉄などの副生成物が生じたた めと考えられる。 Then, this electrode as a working electrode, a metal lithium plate as the reference electrode contact Yopi counter, electrolytic volume ratio of EC and EMC as solution 1: dissolve LiC10 4 of 1 mol dm- 3 in a mixed solvent of 1 A three-electrode glass cell was fabricated using the resulting material. The electrochemical potential behavior of this electrode was investigated as follows. At 25 ° C, charge up to 4.2 V vs. Li / Li + with a current of 0.01 C mA After charging, the battery was discharged to 1.5 V vs. Li I Li + . The charge and discharge capacity of the electrode in the first cycle were small, 72 mAh g- 1 and 65 mAh, respectively. The reason is considered to be that when n-butyllithium getyl ether solution was used, H was extracted from the oxyhydroxide and the crystal structure collapsed, and by-products such as iron oxide were generated. .
なお、 比較例 2に用いた n-プチルリチウムの代わりに、 s-ブチルリチウム、 t-プチ ルリチウム、 フエニルリチウム、 ヨウ化リチウム、 または水素化ホウ素リチウムを用 ' いてリチウム含有ォキシ水酸化鉄を作製した場合でも、 比較例 2 と同様に、 酸化鉄な どの副生成物が生じた。  Note that instead of n-butyllithium used in Comparative Example 2, s-butyllithium, t-butyllithium, phenyllithium, lithium iodide, or lithium borohydride was used and lithium-containing oxyiron hydroxide was used. Even in the case of the production, as in Comparative Example 2, by-products such as iron oxide were generated.
このことから、 ォキシ水酸化鉄と金属リチウムと多環芳香族化合物とを含む錯溶液 とを用いることが重要であり、 そのことによって大きな効果が得られることがわかつ た。  From this, it was found that it was important to use a complex solution containing iron oxyhydroxide, metallic lithium and a polycyclic aromatic compound, and that a great effect could be obtained.
[実施例 2]  [Example 2]
実施例 1 において浸漬時間を 30 分として、 本発明によるリチウム含有ォキシ水酸 化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォキシ水酸化鉄粉末と して、 本発明によるリチウム含有ォキシ水酸化鉄を含む電極 Bを得た。  In Example 1, the immersion time was changed to 30 minutes to obtain a lithium-containing oxyhydroxide powder according to the present invention. In Example 1, an electrode B containing lithium-containing iron oxyhydroxide according to the present invention was obtained using the lithium-containing iron oxyhydroxide powder as an active material.
[実施例 3]  [Example 3]
実施例 1 において浸漬時間を 1 時間として、 本発明によるリチウム含有ォキシ水酸 化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォキシ水酸化鉄粉末と して、 本発明によるリチウム含有ォキシ水酸化鉄を含む電極 Cを得た。  In Example 1, the immersion time was changed to 1 hour to obtain a lithium-containing iron oxyhydroxide powder according to the present invention. In Example 1, an electrode C containing lithium-containing iron oxyhydroxide according to the present invention was obtained by using the lithium-containing iron oxyhydroxide powder as an active material.
[実施例 4]  [Example 4]
実施例 1 において浸漬時間を 48 時間として、 本発明によるリチウム含有ォキシ水 酸化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォキシ水酸化鉄粉末 として、 本発明によるリチウム含有ォキシ水酸化鉄を含む電極 Dを得た。  In Example 1, the immersion time was set to 48 hours to obtain a lithium-containing oxyiron hydroxide powder according to the present invention. In Example 1, an electrode D containing the lithium-containing iron oxyhydroxide according to the present invention was obtained by using the lithium-containing iron oxyhydroxide powder as an active material.
[実施例 5]  [Example 5]
実施例 1 において浸漬時間を 60 時間として、 本発明によるリチウム含有ォキシ水 酸化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォキシ水酸化鉄粉末 として、 本発明によるリチウム含有ォキシ水酸化鉄を含む電極 Eを得た。  In Example 1, the immersion time was set to 60 hours to obtain a lithium-containing oxyiron hydroxide powder according to the present invention. The electrode E containing lithium-containing iron oxyhydroxide according to the present invention was obtained using the lithium-containing iron oxyhydroxide powder as the active material in Example 1.
これらのリチウム含有ォキシ水酸化鉄を含む電極 B、 Dおよび Eはそれぞれつぎ のようにして電気化学的な電位挙動を調べた。 作用極として得られたリチウム含有ォ キシ水酸化鉄の電極を、 参照極おょぴ対極として金属リチウム板を、 電解液として EC と EMC との体積比 1 : 1の混合溶媒に 1 mol dnf3の LiC104を溶解させたものを用い、 3 極霞震脣 ιϊ 1ϊ 1ϊ !ί式のガラスセルを製作した。 25 °Cにおいて、 電流 0. 01C mAで 4· 2 V vs. Li / Li+ 極極極極 Electrodes B, D and E containing these lithium-containing oxyiron hydroxides were examined for their electrochemical potential behavior as follows. The lithium-containing iron oxyhydroxide electrode obtained as the working electrode, a metal lithium plate as the reference electrode and the counter electrode, and 1 mol dnf 3 in a 1: 1 mixed solvent of EC and EMC as the electrolyte solution. It used after dissolved LiC10 4 of 3 Gokukashoku shone ιϊ 1ϊ 1ϊ! Ί We have manufactured a glass cell. 4.2 V vs. Li / Li + at 25 ° C at 0.01 C mA
まで充 B D E c電したのち、 1. 5 V vs. Li I Li+まで放電を 10サイ'クルおこなった。 充電電気 量から一般式 Fe00H' Lixで表されるリチウム含有ォキシ水酸化鉄の X の値を決定した 。 得られたリチウム含有ォキシ水酸化鉄を含む電極の 1 サイクル目の充電電気量およ ぴ放電容量を表 1にまとめて示す。 1サイクル目の放電容量に対する 10サイクル目の その割合を 「放電容量維持率 / %」 とする。 実施例 1 で得られたリチウム含有ォキシ 水酸化鉄を含む電極の電極放電容量維持率 / 。/。を測定した結果も表 1に示す。 After charging to BDE c, the battery was discharged to 1.5 V vs. Li I Li + for 10 cycles. And determining the value of X in the lithium-containing Okishi iron hydroxide represented by the general formula FE00H 'Li x from charge electricity quantity. Table 1 summarizes the charge amount and discharge capacity of the obtained electrode containing lithium-containing iron oxyhydroxide in the first cycle. The ratio of the discharge capacity at the 10th cycle to the discharge capacity at the 1st cycle is defined as “discharge capacity retention rate /%”. The electrode discharge capacity retention ratio / of the electrode containing lithium-containing oxyiron hydroxide obtained in Example 1. /. Table 1 also shows the measurement results.
表 1 table 1
― ―リチウム含有ォキシ水酸化 1サイクル目 1サイクル目 放電容量  --Lithium-containing oxyhydroxide 1st cycle 1st cycle Discharge capacity
鉄の Xの値 の充電電気量 の放電容量 維持率
Figure imgf000014_0001
X value of iron Discharge capacity of charged electricity Retention rate
Figure imgf000014_0001
表 1 から、 一般式 Fe00H' Lixで表されるリチウム含有ォキシ水酸化鉄の x の値が 0. 5≤x≤2. 0 の場合には、 それを用いた電極の放電容量維持率が 80%以上であり、 よ りすぐれた充放電サイクル性能を示すことがわかった。 したがって一般式 Fe00H' Lix で表されるリチウム含有ォキシ水酸化鉄の Xの値が 0. 5≤χ≤2· 0の場合がよいといえ る。 From Table 1, when the value of x of the lithium-containing oxyiron hydroxide represented by the general formula Fe00H 'Li x is 0.5≤x≤2.0, the discharge capacity retention rate of the electrode using it is It was found to be more than 80%, indicating better charge / discharge cycle performance. Therefore, it is preferable that the value of X of the lithium-containing oxyhydroxide represented by the general formula Fe00H 'Li x is 0.5≤χ≤2.0.
[実施例 6]  [Example 6]
実施例 1 において 24時間静置する条件を 24時間攪拌として、 本発明によるリチウ ム含有ォキシ水酸化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォキ シ水酸化鉄粉末として、 本発明によるリチウム含有ォキシ水酸化鉄を含む電極 F を得 た。 この電極はつぎのようにして電気化学的な電位挙動を調べた。 作用極として得ら れたリチウム含有ォキシ水酸化鉄を含む電極を、 参照極おょぴ対極として金属リチウ ム板を、 電解液として EC と EMCとの体積比 1 : 1の混合溶媒に 1 mol dm—3の LiC104を 溶解させたものを用い、 3 極式のガラスセルを製作した。 25 °Cにおいて、 電流 0. 01C mAで 4. 2 V vs. Li / Li+まで充電したのち、 0. 3 V vs. Li / Li+まで放電をおこなつ た。 この電極の電気化学的な電位挙動を第 4 図に示す。 この方法で得られたリチウム 含有ォキシ水酸化鉄の単位質量当りの充電電気量は 1210 mAh g—1であった。 これは、 一般式 Fe00H' Lixで表される Xが 4. 0挿入されたことを意味する。 また、 放電容量は 1112 mA きであった。 本発明のリチウム含有ォキシ水酸化鉄は、 卑な電位領域にお いても充放電することができて、 非水電解質電気化学セルの負極活物質としても利用 できることがわかった。 In Example 1, the condition of standing for 24 hours was changed to stirring for 24 hours to obtain a lithium-containing oxyiron hydroxide powder according to the present invention. In Example 1, the electrode F containing the lithium-containing iron oxyhydroxide according to the present invention was obtained using the lithium-containing iron oxyhydroxide powder as the active material. The electrochemical potential behavior of this electrode was examined as follows. An electrode containing lithium-containing oxyhydroxide obtained as a working electrode, a metal lithium plate as a reference electrode and a counter electrode, and 1 mol in a mixed solvent of EC and EMC in a 1: 1 volume ratio of EC and EMC as an electrolyte. dm- 3 used after dissolved LiC10 4 of was fabricated glass cell three-electrode. At 25 ° C, the battery was charged to 4.2 V vs. Li / Li + with a current of 0.01 CmA, and then discharged to 0.3 V vs. Li / Li + . Figure 4 shows the electrochemical potential behavior of this electrode. The amount of electricity charged per unit mass of the lithium-containing oxyiron hydroxide obtained by this method was 1210 mAh g- 1 . This means that X represented by the general formula Fe00H 'Li x was inserted 4.0. Also, the discharge capacity is 1112 mA. It has been found that the lithium-containing oxyiron hydroxide of the present invention can be charged and discharged even in a low potential region and can be used as a negative electrode active material of a nonaqueous electrolyte electrochemical cell.
[実施例 7]  [Example 7]
実施例 1において錯溶液の溶媒を 1 -メ トキシブタンとして、 本発明によるリチウム 含有ォキシ水酸化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォキシ 水酸化鉄粉末として、 本発明によるリチウム含有ォキシ水酸化鉄を含む電極 G を得た  In Example 1, the solvent of the complex solution was 1-methoxybutane, and a lithium-containing oxyiron hydroxide powder according to the present invention was obtained. An electrode G containing lithium-containing oxyiron hydroxide according to the present invention was obtained by using the lithium-containing oxyiron hydroxide powder as an active material in Example 1.
[実施例 8] [Example 8]
実施例 1において錯溶液の溶媒を 1-メ トキシブタン、 多環芳香族化合物をアントラ センとして、 本発明によるリチウム含有ォキシ水酸化鉄粉末を得た。 実施例 1 におい て活物質をこのリチウム含有ォキシ水酸化鉄粉末として、 本発明によるリチウム含有 ォキシ水酸化鉄を含む電極 Hを得た。  In Example 1, the solvent of the complex solution was 1-methoxybutane, and the polycyclic aromatic compound was anthracene, whereby a lithium-containing oxyiron hydroxide powder according to the present invention was obtained. In Example 1, the electrode H containing the lithium-containing oxyhydroxide according to the present invention was obtained using the lithium-containing oxyhydroxide as the active material.
[実施例 9]  [Example 9]
実施例 1において錯溶液の溶媒を 1-メ トキシブタン、 多環芳香族化合物をフエナン スレンとして、 本発明によるリチウム含有ォキシ水酸化鉄粉末を得た。 実施例 1 にお いて活物質をこのリチウム含有ォキシ水酸化鉄粉末として、 本発明によるリチウム含 有ォキシ水酸化鉄を含む電極 Iを得た。  In Example 1, lithium-containing oxyiron hydroxide powder according to the present invention was obtained using 1-methoxybutane as the solvent of the complex solution and phenanthrene as the polycyclic aromatic compound. In Example 1, an electrode I containing the lithium-containing oxyhydroxide according to the present invention was obtained using the lithium-containing oxyhydroxide as the active material.
[実施例 10]  [Example 10]
実施例 1において錯溶液の溶媒を 1—メ トキシプロパンとして、 本発明によるリチ ゥム含有ォキシ水酸化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォ キシ水酸化鉄粉末として、 本発明によるリチウム含有ォキシ水酸化鉄を含む電極 J を 得た。  In Example 1, a lithium-containing iron oxyhydroxide powder according to the present invention was obtained by using 1-methoxypropane as a solvent for the complex solution. In Example 1, an electrode J containing the lithium-containing iron oxyhydroxide according to the present invention was obtained by using the lithium-containing iron oxyhydroxide powder as the active material.
[実施例 11]  [Example 11]
実施例 1において錯溶液の溶媒を 1ーメ トキシプロパン、 多環芳香族化合物をアン トラセンとして、 本発明によるリチウム含有ォキシ水酸化鉄粉末を得た。 実施例 1 に おいて活物質をこのリチウム含有ォキシ水酸化鉄粉末として、 本発明によるリチウム 含有ォキシ水酸化鉄を含む電極 κを得た。  In Example 1, a lithium-containing oxyiron hydroxide powder according to the present invention was obtained using 1-methoxypropane as the solvent of the complex solution and anthracene as the polycyclic aromatic compound. In Example 1, an electrode κ containing lithium-containing iron oxyhydroxide according to the present invention was obtained using the lithium-containing iron oxyhydroxide powder as an active material.
[実施例 12]  [Example 12]
実施例 1において錯溶液の溶媒を 1ーメ トキシプロパン、 多環芳香族化合物をフエ ナンスレンとして、 本発明によるリチウム含有ォキシ水酸化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォキシ水酸化鉄粉末として、 本発明によるリチウ ム含有ォキシ水酸化鉄を含む電極 Lを得た。 In Example 1, a lithium-containing oxyiron hydroxide powder according to the present invention was obtained using 1-methoxypropane as the solvent of the complex solution and phenanthrene as the polycyclic aromatic compound. In Example 1, the active material was the lithium-containing iron oxyhydroxide powder, Thus, an electrode L containing a solution-containing oxyiron hydroxide was obtained.
極極極極極極  Pole pole pole pole pole
これ G H K L J Iらのリチウム含有ォキシ水酸化鉄を含む電極 G、 H、 I、 J、 Kおよび Lはそれぞ れつぎのようにして電気化学的な電位挙動を調べた。 作用極として得られたリチウム 含有ォキシ水酸化鉄の電極を、 参照極おょぴ対極として金属リチウム板を、 電解液と して ECと EMC との体積比 1 : 1の混合溶媒に 1 mol dm—3の LiC104を溶解させたものを 用い、 3 極式のガラスセルを製作した。 25 °Cにおいて、 電流 0. 01C mA で 4. 2 V vs. Li I Li+まで充電したのち、 1. 5 V vs. Li I Li+まで放電をおこなった。 得られたリ チウム含有ォキシ水酸化鉄を含む電極の 1 サイクル目の充電電気量および放電容量の 値を表 2に示す。 Electrodes G, H, I, J, K and L containing lithium-containing oxyiron hydroxide of GHKLJI et al. Were examined for electrochemical potential behavior as follows. A lithium-containing iron oxyhydroxide electrode obtained as a working electrode, a metal lithium plate as a reference electrode and a counter electrode, and an electrolyte of 1 mol dm in a mixed solvent of EC and EMC at a volume ratio of 1: 1. - used after dissolved LiC10 4 of 3, were fabricated glass cell three-electrode. At 25 ° C, the battery was charged to 4.2 V vs. Li I Li + with a current of 0.01 C mA, and then discharged to 1.5 V vs. Li I Li +. Table 2 shows the values of the charge amount and the discharge capacity of the obtained electrode containing lithium-containing oxyiron hydroxide in the first cycle.
表 2 Table 2
電極 溶媒 多環芳香族化合物 1 サイクル目 1 サイクル目  Electrode solvent Polycyclic aromatic compound 1st cycle 1st cycle
の充電電気 の放電容量 里  Charging electricity discharging capacity
I mAh g一1 I mAh g一1 I mAh g-1 1 I mAh g- 1
1-メトキシフ、タン ナフタレン 300 281  1-methoxyph, tan naphthalene 300 281
1-メトキシフ、、タン アントラセン 301 273  1-methoxyph, tan anthracene 301 273
1-メトキシフ、、タン フエナンスレン 297 286  1-methoxyph, tan fenanthrene 297 286
1-メトキシフ。ロハ。ン ナフタレン 296 272  1-methoxyph. Loha. Naphthalene 296 272
1 -メトキシフ。ロハ。ン アントラセン 295 267  1-methoxyv. Loha. Anthracene 295 267
1 -メトキシフ。ロハ。ン フエナンスレン 287 261 表 2から、 実施例 1 の錯溶液の溶媒や多環芳香族化合物の種類を変えた場合でも、 1 サイクル目に約 300 mAh g—1の充電電気量が得られた。 これは一般式 Fe00H' Lixで表 されるリチウム含有ォキシ水酸化鉄の Xの値がほぼ 1 のリチウム含有ォキシ水酸化鉄 が得られたことを示す。 このことは、 実施例 1 の錯溶液の溶媒や多環芳香族化合物の 種類を変えた場合でも Fe00H- Lix (0. 5 ≤ X ≤ 2)を作製することができることを意 眛する。 したがって、 錯溶液に用いる多環芳香族化合物にはナフタレン、 フエナンス レンおょぴアントラセンを用いるとよい。 1-methoxyv. Loha. Table 2 shows that even when the solvent of the complex solution of Example 1 and the type of the polycyclic aromatic compound were changed, about 300 mAhg- 1 of charge electricity was obtained in the first cycle. This indicates that the general formula FE00H 'Li x in the lithium-containing Okishi X of approximately 1 of the lithium-containing Okishi iron hydroxide value of iron hydroxide to be the table were obtained. This means that Fe00H-Li x (0.5 ≤ X ≤ 2) can be produced even when the solvent of the complex solution of Example 1 and the type of polycyclic aromatic compound are changed. Therefore, naphthalene, phenanthrene and anthracene may be used as the polycyclic aromatic compound used for the complex solution.
[実施例 13]  [Example 13]
0. 1 モルの塩化第二鉄が溶解した水溶液に 0. 033 モルの硫酸リチウム塩を添加する ことによって、 平均粒径 1. 0 μ mの 相のォキシ水酸化鉄粉末を合成した。 この |3相 のォキシ水酸化鉄を実施例 1 と同じ錯溶液中に浸漬し、 25 でで 24時間静置して、 ろ 過したのち、 洗浄した。 これを室温で減圧乾燥して、 本発明によるリチウム含有ォキ シ水酸化鉄粉末を得た。 実施例 1 において活物質をこのリチウム含有ォキシ水酸化鉄 粉末として、 本発明によるリチウム含有ォキシ水酸化鉄を含む電極を得た。 この電極 の電気化学的な電位挙動をつぎのようにして調べた。 作用極として得られたリチウム 含有ォキシ水酸化鉄の電極を、 参照極おょぴ対極として金属リチウム板を、 電解液と レて EC と EMCとの体積比 1: 1の混合溶媒に 1 mol dm—3の LiCl04を溶解させたものを 用い、 3 極式のガラスセルを製作した。 25 °Cにおいて、 電流 0. 01C mA で 4. 2 V vs. L i / Li+まで充電したのち、 1. 5 V vs. L i / Li+まで放電をおこなった。 その電気化 学的な電位挙動を第 5 図に示す。 そのリチウム含有ォキシ水酸化鉄の単位質量当りの 充電電気量は 290 mAh g—1であつ†こ。 これは、 一般式 FeOOH' Lixで表される x が 0. 9 挿入されたことを意味する。 また、 その放電容量は大きく 351 mAh g—1を示した。 し たがって i3相のォキシ水酸化鉄粉末を用いるとよい。 By adding 0.033 mol of lithium sulfate to an aqueous solution in which 0.1 mol of ferric chloride was dissolved, an oxyiron hydroxide powder having an average particle size of 1.0 μm was synthesized. This | 3-phase iron oxyhydroxide was immersed in the same complex solution as in Example 1, allowed to stand at 25 for 24 hours, filtered, and washed. This was dried under reduced pressure at room temperature to obtain a lithium-containing iron oxide hydroxide powder according to the present invention. In Example 1, an electrode containing the lithium-containing oxyhydroxide according to the present invention was obtained by using the lithium-containing oxyhydroxide powder as the active material. This electrode Was examined in the following manner. An electrode of lithium-containing iron oxyhydroxide obtained as a working electrode, a metal lithium plate as a reference electrode and a counter electrode, and 1 mol dm in a mixed solvent of EC and EMC in a 1: 1 volume ratio with an electrolyte. - used after dissolved LiCl0 4 of 3, were fabricated glass cell three-electrode. At 25 ° C, the battery was charged to 4.2 V vs. Li / Li + with a current of 0.01 CmA, and then discharged to 1.5 V vs. Li / Li +. Figure 5 shows its electrochemical potential behavior. The amount of electricity charged per unit mass of the lithium-containing iron oxyhydroxide is 290 mAh g- 1 . This means that x represented by the general formula FeOOH 'Li x was inserted by 0.9. The discharge capacity was 351 mAh g- 1 . Therefore, it is preferable to use i3-phase iron oxyhydroxide powder.
[実施例 14]  [Example 14]
実施例 1で得られたリチウム含有ォキシ水酸化鉄を正極活物質とし、 黒鉛を負極活 物質とする非水電解質二次電池 (Fe00H' Li/C 系) を作製した。 その作製方法はつぎの とおりである。 実施例 1で得られたリチウム含有ォキシ水酸化鉄粉末 80 質量 ¾と、 ァ セチレンブラック 5質量%と、 PVDF15質量%とを丽 P中で混合し、 ペース トを作製した 。 このペース トを厚さ 20 μ ια のアルミニウム箔上に塗布して、 70 °Cで減圧乾燥する ことにより、 NMP を蒸発させた。 これをローラーで加圧したのち、 スリ ッターで 10 mmW X 20 mmL X lOO μ mTの大きさに切断し、 公称容量 14. 2 mAhの正極を作製した。 つ ぎに、 平均粒径 10 μ mの鱗片状黒鉛 80質量。/。と PVDF20質量%とを NMP 中で混合して ペース トを作製した。 このペース トを厚さ 15 μ mの銅箔上に塗布して、 150 °Cで乾 燥することにより、 NMP を蒸発させた。 これを、 ロールプレスで圧縮成型し、 スリ ツ ターで 10 mmW X 20 mmL X lOO μ mT の大きさに切断し、 公称容量 18 mAh の負極を作製 した。  A non-aqueous electrolyte secondary battery (Fe00H'Li / C system) using the lithium-containing oxyhydroxide obtained in Example 1 as a positive electrode active material and graphite as a negative electrode active material was produced. The fabrication method is as follows. A paste was prepared by mixing 80% by mass of the lithium-containing oxyiron hydroxide powder obtained in Example 1, 5% by mass of acetylene black, and 15% by mass of PVDF in 丽 P. This paste was applied on an aluminum foil having a thickness of 20 μια and dried under reduced pressure at 70 ° C to evaporate NMP. This was pressurized with a roller, and then cut into a size of 10 mmW × 20 mmL × 100 μmT with a slitter to produce a positive electrode having a nominal capacity of 14.2 mAh. Next, 80 mass of flaky graphite with average particle size of 10 μm. /. And 20% by mass of PVDF were mixed in NMP to prepare a paste. This paste was applied on a 15-μm-thick copper foil and dried at 150 ° C to evaporate NMP. This was compression-molded by a roll press and cut into a size of 10 mmW x 20 mmL x 100 µmT with a slitter to produce a negative electrode with a nominal capacity of 18 mAh.
これらの正極おょぴ負極を用いて、 電解液として EC と EMC との体積比 1: 1 の混合 溶媒に 1 mol dm— 3の LiC104を溶解させたものを用いて、 公称容量が 14. 2 mAh のフ ラッデッ ドタイプの FeOOH' L i /C.系非水電解質二次電池を製作した。 Using these positive electrodes Contact Yopi negative electrode, a volume ratio of EC and EMC as the electrolytic solution using a 1: obtained by dissolving a LiC10 4 of 1 mol dm- 3 in a mixed solvent of 1, nominal capacity 14. A 2 mAh flooded FeOOH'Li / C. Nonaqueous electrolyte secondary battery was fabricated.
この電池を、 25 °Cにおいて、 0. 1 C mA の定電流で充放電をおこなった。 その充放電 特性を第 6 図に示す。 この電池は充放電が可能であり、 充電電気量おょぴ放電容量は それぞれ 1 1. 3 mAh および I 5. 0 mAh であった。 この電池の充放電反応は、 つぎの (1 ) 式のように考えられる。 右向きが充電反応、 左向きが放電反応である。 This battery was charged and discharged at 25 ° C. with a constant current of 0.1 C mA. Figure 6 shows the charge / discharge characteristics. This battery is capable of charging and discharging, the charge electrical quantity Contact Yopi discharge capacity was respectively 1 1. 3 mAh and I 5. 0 mAh. The charge / discharge reaction of this battery is considered as in the following equation (1). The right direction is the charging reaction, and the left direction is the discharging reaction.
FeOOH- Li + 6C = FeOOH + LiC6 ( 1) FeOOH- Li + 6C = FeOOH + LiC 6 (1)
このことから、 本発明によって、 新しい二次電池を作製できることがわかった。 した がって本発明のリチウム含有ォキシ水酸化鉄を正極として、 リチウムを含有していな い黒鉛や非晶質炭素などの炭素材料、 酸化物、 および窒化物などの負極と組みあわせ て非水電解質電気化学セルとすることができる。 From this, it was found that a new secondary battery can be manufactured according to the present invention. Therefore, the lithium-containing iron oxyhydroxide of the present invention is used as a positive electrode and contains no lithium. A non-aqueous electrolyte electrochemical cell can be formed by combining with a carbon material such as graphite or amorphous carbon, and an anode such as an oxide or a nitride.
[実施例 15]  [Example 15]
五酸化バナジウム (V205) を正極活物質とし、 本発明によるリチウム含有ォキシ水 酸化鉄を負極活物質とする非水電解質二次電池 (V^s/FeOOH' Li 系) を作製した。 そ の作製方法はつぎのとおりである。 平均粒径が 80 nmの V205粉末 75質量。/。と、 ァセチ レンブラック 5質量。/。と、 PVDF20質量 °/。とを墮 P中で混合してペース トを作製した。 こ のペース トを厚さ 20 μ πι のアルミニウム箔 ±に塗布して、 ΙδΟ °Cで減圧乾燥するこ とにより、 NMP を蒸発させた。 これを、 ローラーで加圧したのち、 スリ ツターで 10 mmW X 20 mmL X lOO /i mT の大きさに切断して、 公称容量 20 mAhの正極を作製した。 ま た、 実施例 6で得られたリチウム含有ォキシ水酸化鉄の粉末 80質量%と、 アセチレン ブラック 5質量。/。と、 PVDF15質量。/。とを NMP中で混合してペース トを作製した。 このべ ース トを厚さ 20 m のアルミニウム箔上に塗布して、 70 °Cで減圧乾燥することによ り、 NMP を蒸発させた。 これをローラーで加圧したのち、 スリ ツターで 10 mmW X 20 mmL X lOO mTの大きさに切断して公称容量 74 mAhの負極を作製した。 Vanadium pentoxide (V 2 0 5) as the positive electrode active material, to produce a nonaqueous electrolyte secondary battery using lithium-containing Okishi water iron oxide according to the present invention as a negative electrode active material (V ^ s / FeOOH 'Li system). The fabrication method is as follows. V 2 0 5 powder 75 mass average particle diameter of 80 nm. /. And 5 mass of acetylene black. /. And PVDF20 mass ° /. And Paste were mixed in a corrupt P. The NMP was evaporated by applying this paste to aluminum foil ± with a thickness of 20 μπι and drying under reduced pressure at ΙδΟ ° C. This was pressurized by a roller, and then cut into a size of 10 mmW × 20 mmL × 100 / imT with a slitter to produce a positive electrode having a nominal capacity of 20 mAh. Further, 80% by mass of the lithium-containing iron oxyhydroxide powder obtained in Example 6 and 5% by mass of acetylene black. /. And, PVDF15 mass. /. And were mixed in NMP to make a paste. This base was applied on a 20-m-thick aluminum foil and dried at 70 ° C under reduced pressure to evaporate NMP. This was pressurized with a roller, and then cut into a size of 10 mmW × 20 mmL × 100 mT with a slitter to produce a negative electrode having a nominal capacity of 74 mAh.
これらの正極および負極と、 電解液として EC と EMC との体積比 1: 1の混合溶媒に 1 mol dm— 3の LiC104を溶解させたものを用いて、 公称容量が 20 mAh のフラッデッド タイプの
Figure imgf000018_0001
Li系非水電解質二次電池を作製した。
With these positive and negative electrodes, the volume ratio of EC and EMC as the electrolytic solution using a 1: obtained by dissolving a LiC10 4 of 1 mol dm- 3 in a mixed solvent of 1 nominal capacity of Furaddeddo type 20 mAh
Figure imgf000018_0001
Li-based non-aqueous electrolyte secondary batteries were fabricated.
この電池を、 25 °Cにおいて、 0. 1C mA の定電流で充放電をおこなった。 その充放電 特性を第 7 図に示す。 この電池は充放電が可能であり、 充電電気量おょぴ放電容量は それぞれ 13. 5 mAh およぴ M. 7 mAh であった。 この電池の充放電反応は、 つぎの (2 ) 式のように考えられる。 右向きが充電反応、 左向きが放電反応である。  This battery was charged and discharged at a constant current of 0.1 C mA at 25 ° C. Fig. 7 shows the charge / discharge characteristics. This battery was chargeable and dischargeable, and the charged electricity and discharge capacity were 13.5 mAh and M. 7 mAh, respectively. The charge / discharge reaction of this battery is considered as in the following equation (2). The right direction is the charging reaction, and the left direction is the discharging reaction.
V205 + l/2Fe00H- Li4 = Li2V205 + l/2Fe00H (2) V 2 0 5 + l / 2Fe00H- Li 4 = Li 2 V 2 0 5 + l / 2Fe00H (2)
このことから、 本発明によって、 新しい二次電池を作製できることがわかった。 した がって本発明のリチウム含有ォキシ水酸化鉄を負極として、 リチウムを含有していな い二酸化マンガン、 五酸化バナジウムのような遷移金属化合物や、 硫化鉄、 硫化チタ ンのような遷移金属カルコゲン化合物、 および活性炭や黒鉛などの正極と組みあわせ て非水電解質電気化学セルとすることができる。 From this, it was found that a new secondary battery can be manufactured according to the present invention. Therefore, using the lithium-containing oxyhydroxide of the present invention as a negative electrode, a transition metal compound containing no lithium, such as manganese dioxide or vanadium pentoxide, or a transition metal chalcogen such as iron sulfide or titanium sulfide. A non-aqueous electrolyte electrochemical cell can be obtained by combining the compound and a positive electrode such as activated carbon or graphite.
本出願は、 2004年 3月 1日出願の日本特許出願 (特願 2004- 055705) に基づくものであ り、 それらの内容はここに参照として取.り込まれる。  This application is based on Japanese Patent Application (No. 2004-055705) filed on March 1, 2004, the contents of which are incorporated herein by reference.

Claims

請 求 の 範 囲 The scope of the claims
1. リチウム含有ォキシ水酸化鉄の製造方法において、 金属リチウムと多環芳香族 化合物とを溶媒に溶解させた溶液とォキシ水酸化鉄とを接触させることによって、 ォ キシ水酸化鉄にリチウムを吸蔵させることを特徴とする方法。 1. In a method for producing lithium-containing iron oxyhydroxide, a solution in which lithium metal and a polycyclic aromatic compound are dissolved in a solvent is brought into contact with iron oxyhydroxide to absorb lithium into the iron oxyhydroxide. The method characterized by making it.
2. 請求の範囲第 1項に記載のリチウム含有ォキシ水酸化鉄の製造方法において、 その多環芳香族化合物がナフタレン、 フエナンスレン、 およびアントラセンのうち少 なく とも一つであることを特徴とする方法。 2. The process for producing lithium-containing iron oxyhydroxide according to claim 1, wherein the polycyclic aromatic compound is at least one of naphthalene, phenanthrene, and anthracene. .
3. 請求の範囲第 1項に記載のリチウム含有ォキシ水酸化鉄の製造方法において、 そのォキシ水酸化鉄 1 モルに吸蔵されるリチウムの量 X が 0. 5 モル X ^ 2 モル の範囲内であることを特徴とする方法。 3. The method for producing lithium-containing oxyhydroxide according to claim 1, wherein the amount X of lithium stored in 1 mol of the oxyiron hydroxide is within a range of 0.5 mol X ^ 2 mol. A method characterized by:
4. 請求の範囲第 1項に記載のリチウム含有ォキシ水酸化鉄の製造方法において、 そのォキシ水酸化鉄が 相であることを特徴とする方法。 4. The method for producing lithium-containing iron oxyhydroxide according to claim 1, wherein the iron oxyhydroxide is a phase.
5. 非水電解質電気化学セルの製造方法において、 請求の範囲第 1項に記載の方法 によって製造されたリチウム含有ォキシ水酸化鉄を含む電極を正極とすることを特徴 とする方法。 5. A method for producing a non-aqueous electrolyte electrochemical cell, characterized in that an electrode containing lithium-containing oxyiron hydroxide produced by the method according to claim 1 is used as a positive electrode.
6. 請求の範囲第 5項に記載の非水電解質電気化学セルの製造方法において、 請求 の範囲第 2項に記載の方法によって製造されたリチウム含有ォキシ水酸化鉄を含む電 極を正極とすることを特徴とする方法。 6. The method for producing a non-aqueous electrolyte electrochemical cell according to claim 5, wherein the electrode including lithium-containing oxyiron hydroxide produced by the method according to claim 2 is used as a positive electrode. A method comprising:
7. 請求の範囲第 5項に記載の非水電解質電気化学セルの製造方法において、 請求 の範囲第 3項に記載の方法によって製造されたリチウム含有ォキシ水酸化鉄を含む電 極を正極とすることを特徴とする方法。 7. The method for producing a non-aqueous electrolyte electrochemical cell according to claim 5, wherein the electrode containing lithium-containing oxyiron hydroxide produced by the method according to claim 3 is used as a positive electrode. A method comprising:
8. 請求の範囲第 5項に記載の非水電解質電気化学セルの製造方法において、 請求 ' の範囲第 4項に記載の方法によって製造されたリチウム含有ォキシ水酸化鉄を含む電 極を正極とすることを特徴とする方法。 8. The method for producing a non-aqueous electrolyte electrochemical cell according to claim 5, wherein the electrode containing lithium-containing oxyiron hydroxide produced by the method according to claim 4 is referred to as a positive electrode. A method comprising:
9. 非水電解質電気化学セルの製造方法において、 請求の範囲第 1項に記載の方法 によって製造されたリチウム含有ォキシ水酸化鉄を含む電極を負極とすることを特徴 とする方法。 9. A method for producing a nonaqueous electrolyte electrochemical cell, wherein an electrode containing lithium-containing oxyiron hydroxide produced by the method according to claim 1 is used as a negative electrode.
10. 請求の範囲第 9項に記載の非水電解質電気化学セルの製造方法において、 請求 の範囲第 2項に記載の方法によつて製造されたリチウム含有ォキシ水酸化鉄を含む電 極を負極とすることを特徴とする方法。 10. The method for producing a non-aqueous electrolyte electrochemical cell according to claim 9, wherein the electrode containing lithium-containing oxyiron hydroxide produced by the method according to claim 2 is a negative electrode. A method characterized in that:
PCT/JP2005/003685 2004-03-01 2005-02-25 Lithium-containing iron oxyhydroxide and method for producing nonaqueous electrolyte electrochemical cell containing same WO2005082783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-055705 2004-03-01
JP2004055705 2004-03-01

Publications (1)

Publication Number Publication Date
WO2005082783A1 true WO2005082783A1 (en) 2005-09-09

Family

ID=34908878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003685 WO2005082783A1 (en) 2004-03-01 2005-02-25 Lithium-containing iron oxyhydroxide and method for producing nonaqueous electrolyte electrochemical cell containing same

Country Status (1)

Country Link
WO (1) WO2005082783A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160012973A1 (en) * 2013-03-29 2016-01-14 Panasonic Intellectual Property Management Co., Ltd. Conductive polymer particle dispersion, electrolytic capacitor using same, and method of producing these
CN110268555A (en) * 2017-11-08 2019-09-20 株式会社Lg化学 Lithium-sulfur cell anode comprising maghemite and the lithium-sulfur cell comprising the anode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135760A (en) * 1991-07-19 1993-06-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JP2000095525A (en) * 1998-06-12 2000-04-04 Japan Storage Battery Co Ltd Production of lithium/nickel-containing compound
WO2001080337A1 (en) * 2000-04-19 2001-10-25 Japan Storage Battery Co., Ltd. Positive electrode active material for secondary cell, method for producing the same and nonaqueous electrolyte secondary cell comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135760A (en) * 1991-07-19 1993-06-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JP2000095525A (en) * 1998-06-12 2000-04-04 Japan Storage Battery Co Ltd Production of lithium/nickel-containing compound
WO2001080337A1 (en) * 2000-04-19 2001-10-25 Japan Storage Battery Co., Ltd. Positive electrode active material for secondary cell, method for producing the same and nonaqueous electrolyte secondary cell comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160012973A1 (en) * 2013-03-29 2016-01-14 Panasonic Intellectual Property Management Co., Ltd. Conductive polymer particle dispersion, electrolytic capacitor using same, and method of producing these
US10147552B2 (en) * 2013-03-29 2018-12-04 Panasonic Intellectual Property Management Co., Ltd. Conductive polymer particle dispersion, electrolytic capacitor using same, and method of producing these
CN110268555A (en) * 2017-11-08 2019-09-20 株式会社Lg化学 Lithium-sulfur cell anode comprising maghemite and the lithium-sulfur cell comprising the anode

Similar Documents

Publication Publication Date Title
KR101558535B1 (en) Negative active material negative electrode comrprising same method of preparing negative electrodee and lithium battery
KR101264332B1 (en) Cathode active material and lithium battery using the same
JP5808073B2 (en) Positive electrode active material and positive electrode and lithium battery employing the same
KR101444189B1 (en) Nagative active material for sodium ion battery, method of preparing elecrode using thereof and sodium ion battery comprising same
US11569492B2 (en) Positive-electrode active material and battery
US10854876B2 (en) Positive electrode active material and battery using positive electrode active material
JP5897971B2 (en) Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery
WO2014028219A1 (en) Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
JP6394253B2 (en) Non-aqueous secondary battery electrode, method for producing the same, and non-aqueous secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
KR20160081692A (en) Silicon-based anode active material, method of preparing the same, anode including the silicon-based anode active material, and lithium secondary battery including the anode
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
CN112313817A (en) Positive electrode material and secondary battery
JP2012181975A (en) Nonaqueous secondary battery
EP2607319B1 (en) H4V3O8, a new vanadium(IV) oxide electroactive material for aqueous and non aqueous batteries
JP2005108826A (en) Lithium-containing substance and method of manufacturing non-aqueous electrolyte electrochemical cell
JP2012146650A (en) Negative electrode active material composition, method for manufacturing negative electrode plate using the same, and lithium secondary battery
JP4447880B2 (en) Method for producing lithium-containing nickel oxyhydroxide and non-aqueous electrolyte electrochemical cell equipped with an electrode containing the same
US10446834B2 (en) Positive active material, manufacturing method thereof, and positive electrode and lithium battery including the material
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP2002175836A (en) Nonaqueous electrolyte battery
JP2015187929A (en) Nonaqueous electrolyte secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
WO2005082783A1 (en) Lithium-containing iron oxyhydroxide and method for producing nonaqueous electrolyte electrochemical cell containing same
US8741480B2 (en) Non-aqueous secondary battery comprising a polyvalent organic lithium salt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase