JPS6337567A - Alkaline cell - Google Patents

Alkaline cell

Info

Publication number
JPS6337567A
JPS6337567A JP17861586A JP17861586A JPS6337567A JP S6337567 A JPS6337567 A JP S6337567A JP 17861586 A JP17861586 A JP 17861586A JP 17861586 A JP17861586 A JP 17861586A JP S6337567 A JPS6337567 A JP S6337567A
Authority
JP
Japan
Prior art keywords
negative electrode
zinc
current collector
electrode current
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17861586A
Other languages
Japanese (ja)
Inventor
Kenichi Shinoda
健一 篠田
Hirohiko Oota
太田 廣彦
Yoshihiro Maeda
義博 前田
Yuzo Tanaka
田中 雄三
Kiyohide Tsutsui
清英 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUKARI KANDENCHI GIJUTSU KENKYU KUMIAI
Original Assignee
ARUKARI KANDENCHI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUKARI KANDENCHI GIJUTSU KENKYU KUMIAI filed Critical ARUKARI KANDENCHI GIJUTSU KENKYU KUMIAI
Priority to JP17861586A priority Critical patent/JPS6337567A/en
Publication of JPS6337567A publication Critical patent/JPS6337567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips

Abstract

PURPOSE:To improve the storage performance by forming a negative electrode current collector with zinc alone or a zinc alloy containing a small amount of one or more elements among indium, gallium, lead, and bismuth. CONSTITUTION:A cylindrical positive electrode black mix 12 mixed and molded with manganese dioxide and carbon is arranged in a bottomed cylindrical positive electrode can 10, and a separator 14 formed with a polypropylene nonwoven fabric or the like into a bag shape is inserted along the inner periphery in the central space of the positive electrode black mix 12. The upper end opening section of the positive electrode can is sealed with a sealing gasket 18 and a negative electrode terminal plate 20, a bar-shaped negative electrode current collector 22 is inserted into the center of a negative electrode zinc 16, and its upper section penetrates the center of the sealing gasket 18 and is connected to the inner center section of the negative electrode terminal plate 20 by welding or the like. The negative electrode current collector 22 is formed with zinc alone or a zinc alloy containing a small amount of one or more elements among indium, gallium, lead, and bismuth. Accordingly, hydrogen gas is prevented from occurring, the leaktightness performance is improved, and the storage performance of a cell is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はアルカリ電池に関するもので、より具体的に
は、アルカリ電池に用いられる負極集電体の材質の改良
にともなう電池の貯蔵性能の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to alkaline batteries, and more specifically, improves the storage performance of batteries by improving the material of the negative electrode current collector used in alkaline batteries. Regarding.

(従来の技術) 従来この種のアルカリ電池は、良く知られているように
、有底円筒形の正極缶内に正極合剤、セパレータ、ゲル
状の負極亜鉛が同軸上に装填されるとともに、正極缶の
開口部が封口ガスケットと負極端子板とで密封され、か
つ、負極亜鉛の中心部に挿入された棒状の負極集電体の
上端が封口ガスケットの中心を貫通して負極端子板の内
面中央に溶接などで接合された構造となっている。
(Prior Art) As is well known, in conventional alkaline batteries of this type, a positive electrode mixture, a separator, and a gelled negative electrode zinc are coaxially loaded in a bottomed cylindrical positive electrode can. The opening of the positive electrode can is sealed with a sealing gasket and a negative terminal plate, and the upper end of a rod-shaped negative electrode current collector inserted into the center of the negative electrode zinc passes through the center of the sealing gasket and is sealed on the inner surface of the negative electrode terminal plate. It has a structure in which it is joined by welding in the center.

そして、負極亜鉛の粒子の表面は氷化されており、これ
により亜鉛粒子の腐蝕防止、アルカリ電解液中での水素
過電圧の増大による水素ガス発生の抑制といった面で大
きな効果が得られている。
The surface of the negative electrode zinc particles is iced, which has great effects in terms of preventing corrosion of the zinc particles and suppressing hydrogen gas generation due to an increase in hydrogen overvoltage in the alkaline electrolyte.

従って、氷化した粒状亜鉛を用いることで、アルカリ電
池の放電性能及び貯蔵性能が大いに向上した。
Therefore, by using frozen granular zinc, the discharge performance and storage performance of alkaline batteries were greatly improved.

また、上記負極集電体としては、銅や真鍮が一般的に用
いられている。そして、これらの金属は氷化されやすく
、これを氷化した負極亜鉛中に挿入すると、負極集電体
側へ水銀が移動し、負極集電体と負極亜鉛との接触面で
の局部電池反応の発生を抑制している。
Further, as the negative electrode current collector, copper or brass is generally used. These metals are easily frozen, and when they are inserted into frozen negative electrode zinc, mercury moves to the negative electrode current collector side, causing a local battery reaction at the contact surface between the negative electrode current collector and negative electrode zinc. The outbreak is being suppressed.

しかしながら、アルカリ電池の性能向上に大きく寄与し
た負極亜鉛を氷化する技術は、有害物質である水銀を用
いるという問題を内在している。
However, the technique of freezing negative electrode zinc, which has greatly contributed to improving the performance of alkaline batteries, has the inherent problem of using mercury, which is a harmful substance.

したがって、電池の水銀含有mは極力少ない方が望まし
い。そのため、負極亜鉛中の水銀含有率を低下させ、し
かも、電池の性能を低下させないようにする研究開発が
さかんになされている。
Therefore, it is desirable that the mercury content m of the battery be as small as possible. Therefore, research and development efforts are being made to reduce the mercury content in negative electrode zinc without deteriorating battery performance.

しかし、単に負極亜鉛の水化度をさげると、負極集電体
との関係で次のような問題を生ずる。
However, simply lowering the degree of hydration of negative electrode zinc causes the following problems in relation to the negative electrode current collector.

(発明が解決しようとする問題点) すなわち、上記したごとく、氷化した負極亜鉛中に負極
集電体を挿入すると、負極亜鉛表面の水銀が負極集電体
側へ移行し、負極集電体が氷化される。そして、負極集
電体の表面が充分に氷化されることで、水素過電圧が上
昇し、局部電池形成による水素ガスの発生を抑制でき、
亜鉛とのつながりも良好となる。しかし、負極集電体側
へ水銀が移行することにより亜鉛表面の水銀が失われる
ことになる。このことは、負極亜鉛の水化度が高ければ
、負極集電体側へ水銀が移行しても問題はなかったが、
負極亜鉛の水化度を、例えば1%程度以下にさげると従
来のように負極集電体が充分に氷化されず、亜鉛と集電
体間で局部電池を形成して多量の水素ガスを発生するな
どで、電池の貯蔵性能が低下するなどの悪影響が顕著に
なるという新たな問題を生じる。特に、負極亜鉛中に水
銀を添加しない無氷化アルカリ電池ではなおさらである
(Problems to be Solved by the Invention) That is, as described above, when a negative electrode current collector is inserted into frozen negative electrode zinc, mercury on the negative electrode zinc surface migrates to the negative electrode current collector side, and the negative electrode current collector becomes Becomes frozen. When the surface of the negative electrode current collector is sufficiently iced, the hydrogen overvoltage increases and the generation of hydrogen gas due to local battery formation can be suppressed.
It also has a good connection with zinc. However, as the mercury migrates to the negative electrode current collector side, the mercury on the zinc surface is lost. This means that if the degree of hydration of negative electrode zinc was high, there would be no problem even if mercury migrated to the negative electrode current collector side.
If the degree of hydration of the negative electrode zinc is reduced to, for example, 1% or less, the negative electrode current collector will not be sufficiently frozen as in the conventional case, and a local battery will be formed between the zinc and the current collector, causing a large amount of hydrogen gas to be generated. This creates a new problem in that negative effects such as a decrease in the storage performance of the battery become noticeable. This is especially true for ice-free alkaline batteries in which mercury is not added to the negative electrode zinc.

また、負極集電体として銅等を用いた場合には、氷化さ
れるまでにある程度時間を要し、集電体を挿入した初期
においては水素ガスが発生してしまう。従って、耐漏液
性能を向上させるために、負極亜鉛内に負極集電体を挿
入後ある程度水素ガスが発生するまでそのまま放置し、
その後、封口ガスケット等により電池を密封していたの
で、作業が煩雑であるとともに、製造時間が長くなると
いう問題もあった。
Furthermore, when copper or the like is used as the negative electrode current collector, it takes a certain amount of time for it to freeze, and hydrogen gas is generated in the initial stage after the current collector is inserted. Therefore, in order to improve leakage resistance, after inserting the negative electrode current collector into the negative electrode zinc, leave it as it is until a certain amount of hydrogen gas is generated.
Thereafter, the battery was sealed with a sealing gasket or the like, which caused problems in that the work was complicated and the manufacturing time was long.

本発明は上記した問題点に鑑みてなされたちので、その
目的とするところは、負極亜鉛と負極集電体との接触面
に生じる局部電池反応による水素ガス発生を抑制し、た
とえ無氷化であっても有効に電池の貯蔵性能を向上する
ことのできるアルカリ電池を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to suppress the generation of hydrogen gas due to local battery reactions occurring at the contact surface between the negative electrode zinc and the negative electrode current collector, even if ice-free It is an object of the present invention to provide an alkaline battery that can effectively improve the storage performance of the battery even if the batteries are used.

(問題点を解決するための手段) 上記した目的を達成するために、本発明に係るアルカリ
電池では、負極集電体を亜鉛単体あるいはインジウム、
ガリウム、鉛、ビスマスの内の一種以上の元素を少量含
有した亜鉛合金から形成した。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the alkaline battery according to the present invention, the negative electrode current collector is made of zinc alone, indium,
It was formed from a zinc alloy containing a small amount of one or more of the following elements: gallium, lead, and bismuth.

(作 用) 上記のごとく亜鉛若しくは亜鉛を主成分とする合金によ
り負極集電体を形成したために、その負極集電体を負極
亜鉛内に挿入配冒しても、負極集電体と負極亜鉛とはそ
の材質が同じであるので、両者間の接触面での接触電位
差はほぼOになる。
(Function) As described above, since the negative electrode current collector is formed from zinc or an alloy containing zinc as a main component, even if the negative electrode current collector is inserted into the negative electrode zinc, the negative electrode current collector and the negative electrode zinc do not interact. Since they are made of the same material, the contact potential difference at the contact surface between them is approximately O.

従って、氷化することなく両者の接触面で局部電池反応
を生じることを防止できる。その結果、無氷化アルカリ
電池としても貯蔵性能にmBを及ぼすほど水素ガスが発
生することはない。
Therefore, it is possible to prevent a local battery reaction from occurring at the contact surface between the two without causing ice formation. As a result, even in the case of an ice-free alkaline battery, hydrogen gas is not generated to the extent that it affects storage performance by mB.

(実 施 例) 以下、本考案に係るアルカリ電池の好適な実施例につい
て添付図面を参照にして説明する。
(Embodiments) Hereinafter, preferred embodiments of the alkaline battery according to the present invention will be described with reference to the accompanying drawings.

図は、本考案に係るアルカリ電池の断面図を示している
The figure shows a cross-sectional view of an alkaline battery according to the present invention.

同図に示すように、有底円筒形の正極缶10内に、二酸
化マンガンとカーボンを混合して成形した円筒状の正極
合剤12が配設されている。そして、この正極合剤12
の中央空間内には、その内周面に沿ってポリプロピレン
不織布等を袋状に形成したセパレータ14が挿入配設さ
れている。さらに、このセパレータ14の内側空間内は
粒状亜鉛を主体としこれにアルカリ電解液やゲル化剤を
加えて混練したゲル状の負極亜鉛16が充填されている
。そして、この負極亜鉛16は水銀が添加されていない
無氷化の粒状亜鉛を用いである。
As shown in the figure, a cylindrical positive electrode mixture 12 formed by mixing manganese dioxide and carbon is placed in a bottomed cylindrical positive electrode can 10 . Then, this positive electrode mixture 12
A separator 14 made of polypropylene non-woven fabric or the like is inserted into the central space along the inner circumferential surface of the separator 14. Further, the inner space of the separator 14 is filled with a gelled negative electrode zinc 16 which is mainly composed of granular zinc and kneaded with an alkaline electrolyte and a gelling agent. The negative electrode zinc 16 is made of ice-free granular zinc to which mercury is not added.

また、正極缶10の上端開口部は、封口ガスケット18
と負極端子板20とで密封されている。
Further, the upper end opening of the positive electrode can 10 is provided with a sealing gasket 18.
and the negative terminal plate 20.

さらに、負極亜鉛16の中心部には、棒状の負極集電体
22が挿入配設され、その上方部は封口ガスケット18
の中心を貫通して負極端子板20の内面中央部に溶接な
どで接合されている。
Furthermore, a rod-shaped negative electrode current collector 22 is inserted into the center of the negative electrode zinc 16, and its upper part is covered with a sealing gasket 18.
It penetrates through the center of the negative electrode terminal plate 20 and is joined to the center of the inner surface of the negative electrode terminal plate 20 by welding or the like.

ここで、本発明に係るアルカリ電池では、上記した負極
集電体22を亜鉛単体あるいは、インジウム、ガリウム
、鉛、ビスマスのうち1種以上を少量含有した亜鉛合金
により形成しである。具体的には、亜鉛に含有する元素
は1%以下になるようにするのが望ましい。また、亜鉛
を合金化するのは、亜鉛の腐蝕を抑制するためである。
Here, in the alkaline battery according to the present invention, the negative electrode current collector 22 described above is formed of zinc alone or a zinc alloy containing a small amount of one or more of indium, gallium, lead, and bismuth. Specifically, it is desirable that the element contained in zinc be 1% or less. Further, the purpose of alloying zinc is to suppress corrosion of zinc.

次に、本実施例における作用について説明すると、まず
、亜鉛単体を用いて負極集電体22を形成した場合には
、負極亜鉛16との接触面における電位差はOとなるの
で、接触面での局部電池反応を生じることはなく、それ
による水素ガス発生を防止できる。また、亜鉛合金を用
いて負極集電体22を形成した場合には添加金属が水素
過電圧の高い金属であるのでやはり漏液等の電池の性能
に問題を生じるほど水素ガスを生じるおそれはない。
Next, to explain the operation of this embodiment, first, when the negative electrode current collector 22 is formed using zinc alone, the potential difference at the contact surface with the negative electrode zinc 16 is O, so that the potential difference at the contact surface is O. Local battery reactions do not occur, and hydrogen gas generation thereby can be prevented. Further, when the negative electrode current collector 22 is formed using a zinc alloy, since the added metal is a metal with a high hydrogen overvoltage, there is no risk of generating hydrogen gas to the extent that it causes problems with battery performance such as leakage.

次に、LR6の電池を用い、本発明のアルカリ電池と従
来の真鍮により形成された負極集電体を用いたアルカリ
電池との耐漏液特性並びにガス発生量の比較を行った結
果、以下の表に示すようになった。ここで、ともに、負
極集電体は直径2 m 。
Next, using an LR6 battery, we compared the leakage resistance characteristics and gas generation amount between the alkaline battery of the present invention and a conventional alkaline battery using a negative electrode current collector made of brass, and the results are shown in the table below. It is now shown in Here, both negative electrode current collectors have a diameter of 2 m.

長さ40履のものを使用し、負極亜鉛の氷化度は0%と
した。そして、耐漏液性能は試料100個について60
℃の温度で40日間放置した後の漏液発生数を測定した
。また、ガス発生量は60℃の温度で30日間放置した
後の負極亜鉛1グラム当りの水素ガス発生量を測定した
A length of 40 shoes was used, and the degree of freezing of the negative electrode zinc was 0%. The leak resistance performance was 60 for 100 samples.
The number of occurrences of leakage was measured after being left for 40 days at a temperature of .degree. Further, the amount of gas generated was determined by measuring the amount of hydrogen gas generated per gram of negative electrode zinc after being left at a temperature of 60° C. for 30 days.

上記衣から明らかなように、本発明のアルカリ電池は耐
漏液性能では従来の真鍮により形成された負極集電体を
そのまま無氷化アルカリ電池に用いたものと比較すると
、ガス発生が減少し耐漏液性能は極めて向上することが
わかる。
As is clear from the above, the alkaline battery of the present invention has less leakage resistance than a conventional negative electrode current collector made of brass that is used as it is in an ice-free alkaline battery. It can be seen that the liquid performance is significantly improved.

なお、上記実施例では、無氷化アルカリ電池について説
明したが、本発明はこれに限らず、低汞化アルカリ電池
にも使用できることはいうまでもない。
In the above embodiments, an ice-free alkaline battery has been described, but the present invention is not limited to this, and it goes without saying that the present invention can also be used in a low-grade alkaline battery.

(発明の効果) 以上のように、本発明に係るアルカリ電池によれば、負
極集電体を亜鉛単体、あるいは亜鉛を主成分とする亜鉛
合金により形成したことにより、負極亜鉛と負極集電体
の材質が同じとなり、両者の接触部の接触電位差がほぼ
Oとなるので接触部における局部電池反応が生じるおそ
れはなく、それによる水素ガス発生を防止することがで
きる。
(Effects of the Invention) As described above, according to the alkaline battery according to the present invention, since the negative electrode current collector is formed of zinc alone or a zinc alloy containing zinc as a main component, the negative electrode current collector and the negative electrode current collector Since they are made of the same material and the contact potential difference between the two contact portions is approximately O, there is no possibility of local battery reaction occurring at the contact portion, and the generation of hydrogen gas due to this can be prevented.

従って、耐漏液性能が向上し、電池の貯蔵性能を向上す
ることができる。さらには、水素ガス発生を抑制するた
めに用いた水銀の添加量を低減することができ、電池の
貯蔵性能を向上させつつ、低汞化さらには無氷化アルカ
リ電池を製造することができる。さらにまた、水素ガス
発生を防止できるので、製造時に、負極亜鉛内に負極集
電体を挿大した後ある程度水素ガスが発生し終えるまで
封口ガスケット等の装着をまつ必要がないので、製造時
間を短縮することができる。
Therefore, leakage resistance is improved, and storage performance of the battery can be improved. Furthermore, the amount of mercury added to suppress hydrogen gas generation can be reduced, and while improving the storage performance of the battery, it is also possible to produce a low-grade, ice-free alkaline battery. Furthermore, since the generation of hydrogen gas can be prevented, there is no need to attach a sealing gasket etc. after inserting the negative electrode current collector into the negative electrode zinc during manufacturing until a certain amount of hydrogen gas has been generated, which reduces the manufacturing time. Can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係るアルカリ電池の一実施例を示す断面図
である。 10・・・正極缶    12・・・正極合剤14・・
・セパレータ  16・・・負極亜鉛22・・・負極集
電体
The figure is a sectional view showing an embodiment of an alkaline battery according to the present invention. 10... Positive electrode can 12... Positive electrode mixture 14...
・Separator 16...Negative electrode zinc 22...Negative electrode current collector

Claims (2)

【特許請求の範囲】[Claims] (1)筒状の正極缶内に配設する筒状の正極合剤と、該
正極合剤の中央空間内にセパレータを介装して充填され
る負極亜鉛と、該負極亜鉛内に挿入配設される負極集電
体とを有するアルカリ電池において、該負極集電体が亜
鉛単体あるいはインジウム、ガリウム、鉛、ビスマスの
内の一種以上の元素を少量含有した亜鉛から形成された
ことを特徴とするアルカリ電池。
(1) A cylindrical positive electrode mixture disposed in a cylindrical positive electrode can, a negative electrode zinc filled in the central space of the positive electrode mixture with a separator interposed therebetween, and a negative electrode zinc inserted into the negative electrode zinc. An alkaline battery having a negative electrode current collector, characterized in that the negative electrode current collector is formed from zinc alone or zinc containing a small amount of one or more elements selected from indium, gallium, lead, and bismuth. alkaline battery.
(2)前記負極亜鉛が無汞化であることを特徴とする特
許請求の範囲第1項記載のアルカリ電池。
(2) The alkaline battery according to claim 1, wherein the negative electrode zinc is non-oxidizing.
JP17861586A 1986-07-31 1986-07-31 Alkaline cell Pending JPS6337567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17861586A JPS6337567A (en) 1986-07-31 1986-07-31 Alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17861586A JPS6337567A (en) 1986-07-31 1986-07-31 Alkaline cell

Publications (1)

Publication Number Publication Date
JPS6337567A true JPS6337567A (en) 1988-02-18

Family

ID=16051539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17861586A Pending JPS6337567A (en) 1986-07-31 1986-07-31 Alkaline cell

Country Status (1)

Country Link
JP (1) JPS6337567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992343A (en) * 1989-08-17 1991-02-12 Eveready Battery Company, Inc. Lead-containing anode current collector for alkaline cells
US5112705A (en) * 1989-08-17 1992-05-12 Eveready Battery Company, Inc. Coated anode current collector for alkaline cells
US6906852B1 (en) 2003-12-31 2005-06-14 Texas Instruments Incorporated Wavelength discriminated image dithering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024069B2 (en) * 1976-09-21 1985-06-11 日ノ丸窯業株式会社 Method for manufacturing MgO-Al↓2O↓3 quality fireproof insulation brick
JPS6193558A (en) * 1984-09-26 1986-05-12 Toshiba Battery Co Ltd Negative electrode collection body for alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024069B2 (en) * 1976-09-21 1985-06-11 日ノ丸窯業株式会社 Method for manufacturing MgO-Al↓2O↓3 quality fireproof insulation brick
JPS6193558A (en) * 1984-09-26 1986-05-12 Toshiba Battery Co Ltd Negative electrode collection body for alkaline battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992343A (en) * 1989-08-17 1991-02-12 Eveready Battery Company, Inc. Lead-containing anode current collector for alkaline cells
US5112705A (en) * 1989-08-17 1992-05-12 Eveready Battery Company, Inc. Coated anode current collector for alkaline cells
US6906852B1 (en) 2003-12-31 2005-06-14 Texas Instruments Incorporated Wavelength discriminated image dithering

Similar Documents

Publication Publication Date Title
US3457112A (en) Lead-acid storage battery
US2960558A (en) Dry cell
US5489493A (en) Alkaline manganese dioxide cell
US3056849A (en) Primary cell with slurry electrolyteanode body
JP3215447B2 (en) Zinc alkaline battery
JPS6337567A (en) Alkaline cell
US2450472A (en) Alkaline primary battery
US2775534A (en) Primary dry cell
JPS6337568A (en) Alkaline cell
US2535742A (en) Primary cell with electrodes of magnesium and magnesium permanganate
JP2633733B2 (en) Non-aqueous electrolyte battery
JP3315530B2 (en) Alkaline battery
JPS6247952A (en) Alkaline battery
JPH0317182B2 (en)
JPS6247961A (en) Alkaline battery
US3926677A (en) Electric primary cells
JPH0711964B2 (en) Zinc chloride battery
JPS61285657A (en) Manufacture of manganese dioxide-lithium cell
JPS63285869A (en) Alkaline battery
JPS61218061A (en) Zinc chloride type dry battery
JPS58137962A (en) Sealed dry cell
JPS63200464A (en) Organic electrolyte battery
JPS5861572A (en) Production method of nonaqueous electrolyte cell
JPS6129071A (en) Nonaqueous electrolyte cell
JPS6222368A (en) Zinc-chloride dry cell