JPS58137962A - Sealed dry cell - Google Patents

Sealed dry cell

Info

Publication number
JPS58137962A
JPS58137962A JP2092482A JP2092482A JPS58137962A JP S58137962 A JPS58137962 A JP S58137962A JP 2092482 A JP2092482 A JP 2092482A JP 2092482 A JP2092482 A JP 2092482A JP S58137962 A JPS58137962 A JP S58137962A
Authority
JP
Japan
Prior art keywords
positive
dry cell
active material
powder
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2092482A
Other languages
Japanese (ja)
Inventor
Yuzuru Ito
譲 伊藤
Akio Takahashi
昭男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2092482A priority Critical patent/JPS58137962A/en
Publication of JPS58137962A publication Critical patent/JPS58137962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Abstract

PURPOSE:To suppress gas generation in a sealed dry cell, and suppress the capacity change and the dimensional change of the dry cell which are caused with the passing of time by using as a negative electrode, a mixture prepared by combining an amalgamated zinc powder with both a water-soluble macromolecular powder and ZnO. CONSTITUTION:A negative active material 2-a is prepared by mixing an amalgamated zinc powder with small amounts of at least one compound chosen from among sodium polyacrylate, carboxymethylcellulose and etherified starch, and adding ZnO to the mixture before thus obtained mixture is homogeneously mixed. Then, an amount corresponding to 60mAH theoretical capacity of the negative active material 2-a is packed into a sealed dry cell. A positive active material 4 is prepared by mixing 90 parts by weight of gamma-MnO2 powder with 10 parts by weight of acetylene black, combining 90 parts by weight of the mixture with 10 parts by weight of electrolyte prepared by saturating an aqueous solution containing 25% of ZnCl2 and 5% of NH4Cl with ZnO, and stirring and granulating thus obtained mixture before it is molded. After thus prepared positive pellet 4 and a positive seat 7 are pressed upon a positive can 5 so as to unify them with the positive can 5, a separator 3 is placed over the positive pellet 4, and the above mentioned negative active material 2-a is packed on the separator 3. Next, a negative can 1 to which a gasket 6 is attached is fitted inside the positive can 5 by pressure, and the opening end of the positive can 5 is inwardly caulked so as to seal the dry cell, thereby completing the assembly of a sealed dry cell.

Description

【発明の詳細な説明】 本発明は、密封製乾電池の負極の改良に関する奄のであ
る。近年、塩化亜鉛に少量の塩化アンモニウムを加えた
乾電池が、コスト、耐漏液性、及びハイパワーの点で他
の一次電池より使いやすい丸め、多くのIl費が得られ
ている。一方、小型電子横巻の発達に伴い、電池の小型
化−薄型化が進行しており、ボタン型あるいはコイン型
の各種電池がすぐれ九特性を発揮している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in negative electrodes for sealed dry batteries. In recent years, dry batteries made by adding a small amount of ammonium chloride to zinc chloride have become easier to use than other primary batteries in terms of cost, leakage resistance, and high power, and have yielded more Il costs. On the other hand, with the development of small electronic horizontal winding, batteries are becoming smaller and thinner, and various button-shaped or coin-shaped batteries are exhibiting excellent characteristics.

本発明の目的は、従来の筒形塩化亜鉛系乾電池を密封し
てボタン型乾電池とし、亜鉛板を氷化亜鉛粉末に変更し
て放電特性を向上させることにある。
An object of the present invention is to seal a conventional cylindrical zinc chloride dry cell to form a button-type dry cell, and to improve the discharge characteristics by replacing the zinc plate with frozen zinc powder.

従来の塩化亜鉛系乾電池は、2%板を筒型に成形して用
いるか、又は円板に打ち抜いて負極活物質として用いら
れてい友。こζでは、zn板のH。
Conventional zinc chloride dry batteries use 2% plates molded into cylinders or punched into disks and used as the negative electrode active material. In this ζ, H of the zn board.

ガス発生を防止するために、電解液中にHgCJl水溶
液を添加して、zn板の表面をアマルガム化することが
一般に行なわれている。しかしながら筒型からボタン型
に作シかえた場合、2%板のアマルガム化のみでは、H
lガスの発生は充分に防止できず、電池組立後に徐々に
電池缶のふくらみが発生することが明らかになった。
In order to prevent gas generation, it is common practice to add an aqueous HgCJl solution to the electrolytic solution to amalgamate the surface of the ZN plate. However, when changing from a cylinder type to a button type, it is difficult to make H
It has become clear that the generation of l gas cannot be sufficiently prevented, and that the battery can gradually bulges after the battery is assembled.

本発明は、この欠点を解消するものであプ、以下実施例
にもとすいて説明する。
The present invention is intended to eliminate this drawback, and will be explained below using examples.

第1図に本発明電池の構造を又、第2図に従来の横進を
比較して示す。次に第1図の電池の組立順序を説明する
。1,5はJI日x種規格のチタン材からなる負極缶、
正極缶であり、塩化亜鉛を主成分とする電解液の腐食を
完全に防止すると共に、集電端子の役割を兼ねている。
FIG. 1 shows the structure of the battery of the present invention, and FIG. 2 shows a comparison of the conventional lateral movement. Next, the assembly order of the battery shown in FIG. 1 will be explained. 1 and 5 are negative electrode cans made of titanium material of JI day x type standard,
It is a positive electrode can that completely prevents corrosion of the electrolyte whose main component is zinc chloride, and also serves as a current collector terminal.

2− aは負極活物質で、市販の氷水亜鉛粉末(30−
100メツシユ、 Hl−アマルガム品)K%ポリアリ
ル酸ソーダ、カルボキシメチルセルロース、エーテル化
フ゛ンプンのうち1種以上を少量添加し、更KZπ(J
を総hitの3%相当添加した後、均一混合して、理−
容:1160yxAH相当分を充填した。正極活物質4
は、市販の1−MgO,粉末とアセチレン・ブラックを
(イ)対10 (重量S)の割合で混合し、δ94 Z
@(:is + 5 % Nk14CJ水溶液にZ%O
を飽和させた電解液を、正極総重量に対して10fiを
加えて攪拌造粒した後、509/lsm”の荷重をかけ
て成形して、直径1(l wx s厚さ1.21Imの
ペレットを作成した。このペレットヲ正極台座7と一緒
に正極缶5に押し付け、正極缶と一体化させた。これを
正極ユニットと呼ぶ。正極ユニットは電解液が蒸発しや
すい状態のため、ただちにセパレータ3を載置し、先に
述べた負極活物質を充填し、ガスケット6を一体化した
負極缶を上部よシ押し込み、正極缶5の開口端を内方K
かしめて封止を行ない、直径1 ] 、66wm、厚さ
3.Omの電池を作った。
2-a is the negative electrode active material, commercially available ice water zinc powder (30-
100 mesh, Hl-amalgam product) K% Add a small amount of at least one of sodium polyallylate, carboxymethyl cellulose, and etherified starch, and further
After adding 3% of the total hit, mix uniformly and process.
Volume: Filled with an amount equivalent to 1160yxAH. Positive electrode active material 4
For this, commercially available 1-MgO powder and acetylene black were mixed in a ratio of (a) to 10 (weight S), and δ94 Z
@(:is + 5% Nk14CJ aqueous solution with Z%O
After adding 10fi to the total weight of the positive electrode and stirring and granulating the electrolytic solution saturated with This pellet was pressed together with the positive electrode pedestal 7 onto the positive electrode can 5 and integrated with the positive electrode can.This is called a positive electrode unit.Since the electrolyte in the positive electrode unit is in a state where it is easy to evaporate, the separator 3 was immediately removed. Place the anode can, fill it with the anode active material mentioned above, and push the anode can with the gasket 6 integrated into it from above, and push the open end of the cathode can 5 inward.
Seal by caulking, diameter 1], 66wm, thickness 3. I made a battery for Om.

又、従来の電池との比較を行うため、第2図に、示すよ
うに、0.05mの亜鉛板を円板状に打ち抜き、セパレ
ータと接する表面を316H9sCJ1m水溶液でアマ
ルガム化し、負極缶と接する面に、カーボンを主成分と
する導電性接着剤(商品名、ドータイト、原素化成)を
少量塗布して固定した。尚、接着後LCRメ−7Il−
で亜鉛板と負極缶との接触抵抗を測定したところ1.0
0であシ接触抵抗は全く問題ないレベルであることが確
認された。亜鉛板を使用する場合は水化亜鉛粉末に比べ
て、かさ密度が大きくエネルギー密度が大きく得られる
ので、負極は7011AHの理論容量を確保できる。電
解液組成は、先述の総量に、0.5 ’Ik Hffs
Cj!水溶液を0.03重量%添加したものを用いた。
In addition, in order to make a comparison with a conventional battery, as shown in Figure 2, a 0.05 m zinc plate was punched out into a disc shape, the surface in contact with the separator was amalgamated with a 316H9sCJ1m aqueous solution, and the surface in contact with the negative electrode can was amalgamated with a 316H9sCJ1m aqueous solution. A small amount of conductive adhesive (trade name: Dotite, Genji Kasei) containing carbon as the main component was applied and fixed. In addition, after adhesion, LCR Me-7Il-
When the contact resistance between the zinc plate and the negative electrode can was measured, it was 1.0.
It was confirmed that the contact resistance was at a completely acceptable level. When a zinc plate is used, it has a larger bulk density and a larger energy density than zinc hydrate powder, so the negative electrode can secure a theoretical capacity of 7011AH. The electrolyte composition is 0.5'Ik Hffs in addition to the above-mentioned total amount.
Cj! An aqueous solution containing 0.03% by weight was used.

他の組立方法は本発明電池と全く同様に行なった。この
ようにして得られたボタン型乾電池を60℃の乾燥雰囲
気下で1000時間保存した後、寸法変化や電気的特性
を比較調査した。サンプル数は、各点において110ケ
の平均値をとシ、第3,4図にプロットした。図中、ム
は本発明電池、Bは従来電池を示している。
Other assembly methods were carried out in exactly the same manner as for the battery of the present invention. The button-type dry battery thus obtained was stored in a dry atmosphere at 60° C. for 1000 hours, and then dimensional changes and electrical characteristics were compared and investigated. The average value of 110 samples at each point was plotted in Figures 3 and 4. In the figure, M indicates a battery of the present invention, and B indicates a conventional battery.

第3図は、初期の電池総厚(2,95m )をゼロとし
た場合、保存時間と総厚の変化量を調べたもので、本発
明電池がふくらみゼロに対して、従来型−池は、500
〜1000時間経過中にふくらみが烏激に増加している
。500時間未満では内圧増加よりも缶強度−が大きい
ため、ふくらみを抑制しているが、750時間を越える
と内圧が打ち勝って徐々にふくらみが増加する傾向があ
る。内圧増加の原因として(1)亜鉛板からのガス発生
、(21導電性接着剤中の不純物と亜鉛板との反応によ
るガス発生、が推定される。そζで、電解液と亜鉛円板
及び水化亜鉛粉末との反応によるガス発生の有無を調べ
るために第5図のようなガスメーター(I/Ik大目盛
、3cc)を用いて比較を行なった。測定は、全表面に
アマルガム化され九亜鉛円及び汞化亜鉛粉末の重量は、
電池1ケ中の量と同勢とし、電解液量は、電池1ケ中の
量の約20倍量をガスメーター中に注入し、減圧下で脱
ガスし死後、60℃のウォーターバス中に投入して、一
定時間毎の目盛の増加分を読みとった。第6図にガス発
生量の変化を示す。図中、ムは水化亜鉛粉末、Bは亜鉛
円板である。第6図から明らかなように、亜鉛円板の表
面にアマルガム化し、かつ電解液中にIIQzCJl液
を゛添加しているに4.かかわらず、高温保存中にガス
発生を生ずる。一方、汞化亜鉛粉末を用いた場合鉱、ガ
ス発生は皆無であシ、抑制効果が著しい。
Figure 3 shows the storage time and amount of change in total thickness when the initial battery total thickness (2.95 m) is set to zero.The battery of the present invention has no swell, while the conventional battery has no swell. , 500
After ~1000 hours, the swelling increased dramatically. If the time is less than 500 hours, the can strength is greater than the increase in internal pressure, so bulging is suppressed, but if it exceeds 750 hours, the internal pressure overcomes and the bulge tends to gradually increase. The causes of the increase in internal pressure are estimated to be (1) gas generation from the zinc plate, and gas generation due to the reaction between impurities in the conductive adhesive and the zinc plate. In order to investigate the presence or absence of gas generation due to the reaction with zinc hydride powder, a comparison was made using a gas meter (I/Ik large scale, 3cc) as shown in Figure 5. The weight of zinc yen and zinc chloride powder is
The amount of electrolyte is the same as that in one battery, and the amount of electrolyte is approximately 20 times the amount in one battery. The amount of electrolyte is injected into the gas meter, degassed under reduced pressure, and after death, it is placed in a water bath at 60 ° C. Then, the increment on the scale at fixed time intervals was read. Figure 6 shows changes in the amount of gas generated. In the figure, M is zinc hydrate powder and B is a zinc disk. As is clear from FIG. 6, the surface of the zinc disk is amalgamated and the IIQzCJl solution is added to the electrolyte. However, gas is generated during high temperature storage. On the other hand, when zinc chloride powder is used, there is no generation of ore or gas, and the suppressing effect is remarkable.

更に、第7図に示すように1永化亜鉛粉末単独の場合と
、水化亜鉛粉末にカルボキシメチルセルロースなど水溶
性高分子粉末を添加した場合とで、ガス発生量の比較を
行なった。
Furthermore, as shown in FIG. 7, the amount of gas generated was compared between the case of using the 1-Yonghwa zinc powder alone and the case of adding a water-soluble polymer powder such as carboxymethyl cellulose to the zinc hydrate powder.

この図において、ムは水化亜鉛粉末になにも添加しなか
った場合、Bは水溶性高分子粉末のみを添加した場合、
CはZ%Oとポリビニルアルコールを添加し九場合、D
IIiZKOと水溶性高分子粉末(ZsOとカルボキシ
メチルセルロース、Z%0とポリアクリル酸ソーダ、t
たは2@0とエーテル化デンプン)とを添加した場合の
特性を示している。とのように1カルボキシメチルセル
ロース、ポリアクリル酸ソーダ又はエーテル化デンプン
のいずれかとz霊Oを添加した場合、抑制効果が着しい
ことがわかった。
In this figure, M is when nothing is added to the zinc hydrate powder, B is when only water-soluble polymer powder is added,
C is Z%O and polyvinyl alcohol is added, D
IIiZKO and water-soluble polymer powder (ZsO and carboxymethylcellulose, Z%0 and sodium polyacrylate, t
2@0 and etherified starch) are added. It was found that when 1carboxymethyl cellulose, sodium polyacrylate or etherified starch was added with Zrei O, the suppressive effect was significant.

この抑制効果の生ずる理由は明らかではないが、高温下
で電解液のPR変化が生ずるが、znOの添加によ11
イオンを十分供給することが出来、更に、水溶性高分子
が、2%の溶解抑制に寄与していることが推察される。
The reason why this suppressing effect occurs is not clear, but the PR change of the electrolyte occurs at high temperatures, and the addition of ZnO causes 11
It is presumed that ions can be sufficiently supplied, and furthermore, the water-soluble polymer contributes to suppressing dissolution by 2%.

以上、詳細に述べたように、水溶性高分子粉末とZ%O
t−添加した汞化亜鉛粉末を負極に用いる ′ことによ
シ、ガス発生を抑制し、容量や寸法の経時変化を抑制し
た電池を製造することが出来るのでその工業的価値は極
めて大きい。
As described above in detail, water-soluble polymer powder and Z%O
By using t-added zinc chloride powder for the negative electrode, it is possible to produce a battery that suppresses gas generation and suppresses changes in capacity and dimensions over time, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図はそれぞれ本発明電池及び従来電池の縦断面
図、第3.4図は、電池ふくらみ量、電池容量の比較図
であシ、第5図はガスメータの概念図、第6,7図は同
ガスメータを用いた場合のガス発生抑制効果の比較を示
した図である。 l・・・負極毎 2a・・汞化亜鉛粉末を主とする負極 2h・・亜鉛円板を主とする負極 3・・・セパレータ 4・・・正極 5・・・正極缶 6・・eガスケット 7・・・正極台座 以   上 出願人 株式会社第二精工金 代理人 弁理士最 上  務
Figures 1 and 2 are longitudinal cross-sectional views of the battery of the present invention and a conventional battery, Figures 3 and 4 are comparison diagrams of battery swelling amount and battery capacity, Figure 5 is a conceptual diagram of a gas meter, Figure 6 FIG. 7 is a diagram showing a comparison of gas generation suppressing effects when using the same gas meter. l...Negative electrode 2a...Negative electrode mainly made of zinc oxide powder 2h...Negative electrode 3 mainly made of zinc disk...Separator 4...Positive electrode 5...Positive electrode can 6...E gasket 7...Positive electrode pedestal and above Applicant Daini Seikokin Co., Ltd. Agent Patent Attorney Mogami

Claims (1)

【特許請求の範囲】 口)二酸化マンガンを正極活物質とし、塩化亜鉛を電解
液に用いた電池において、負極活物質に汞化亜鉛粉末を
用いる電池において、負極に水溶性高分子粉末と2%0
粉末を添加した密封型乾電池。 121水溶性高分子粉末として、エーテル化デンプン、
カルボキシメチルセルロース、ポリアクリル酸ソーダの
いずれかであることを特徴とする特許請求の範囲第一項
記載の密封型乾電池。
[Claims] Ex) A battery using manganese dioxide as a positive electrode active material and zinc chloride as an electrolyte, and a battery using zinc chloride powder as a negative electrode active material, in which 2% water-soluble polymer powder and 2% water-soluble polymer powder are used in the negative electrode. 0
Sealed dry cell with added powder. 121 Etherified starch as water-soluble polymer powder,
The sealed dry battery according to claim 1, which is made of either carboxymethyl cellulose or sodium polyacrylate.
JP2092482A 1982-02-12 1982-02-12 Sealed dry cell Pending JPS58137962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2092482A JPS58137962A (en) 1982-02-12 1982-02-12 Sealed dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2092482A JPS58137962A (en) 1982-02-12 1982-02-12 Sealed dry cell

Publications (1)

Publication Number Publication Date
JPS58137962A true JPS58137962A (en) 1983-08-16

Family

ID=12040766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2092482A Pending JPS58137962A (en) 1982-02-12 1982-02-12 Sealed dry cell

Country Status (1)

Country Link
JP (1) JPS58137962A (en)

Similar Documents

Publication Publication Date Title
US6689514B2 (en) High-temperature Ni-MH battery and a method for making the same
WO2005104277A1 (en) Alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP2000294294A (en) Nonaqueous electrolyte secondary battery
US2775534A (en) Primary dry cell
CN101114710B (en) alkaline battery additive
JPS58137962A (en) Sealed dry cell
US2535742A (en) Primary cell with electrodes of magnesium and magnesium permanganate
JPH08222194A (en) Button type alkaline battery
JP2013246958A (en) Alkaline dry battery
JP3968248B2 (en) Aluminum battery
JPH0317181B2 (en)
JPH08279355A (en) Button type alkaline battery
US3088991A (en) Electric current producing cell
JP2000159522A (en) Magnesium-including lithium-manganese compound oxide having spinel structure, and production and use of the same compound oxide
JP2003142087A (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2563106B2 (en) Alkaline battery
KR800001519B1 (en) Polar plate of alkaline storage cell
JP3188652B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JP3474721B2 (en) Non-melonized air battery
JPH0317182B2 (en)
JP3330088B2 (en) Negative electrode for secondary battery
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same
JP2004164863A (en) Sealed type nickel zinc primary cell
CN115280548A (en) Alkaline dry cell