JPS60146456A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS60146456A
JPS60146456A JP59000972A JP97284A JPS60146456A JP S60146456 A JPS60146456 A JP S60146456A JP 59000972 A JP59000972 A JP 59000972A JP 97284 A JP97284 A JP 97284A JP S60146456 A JPS60146456 A JP S60146456A
Authority
JP
Japan
Prior art keywords
powder
alloy
zinc
alkaline battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000972A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Tsukasa Ohira
大平 司
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59000972A priority Critical patent/JPS60146456A/en
Publication of JPS60146456A publication Critical patent/JPS60146456A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a high-capacity zinc alkaline battery containing only a small amount of mercury by using as the negative active material a powder prepared by amalgamating an alloy principally composed of zinc and containing Ga and Tl. CONSTITUTION:A powder prepared by amalgamating an alloy (Zn-Ga-Tl) powder principally composed of Zn and containing Ga and Tl, is used as an active material for a negative electrode 5. It is preferable that the above powder be prepared by performing amalgamation by a wet method by dropping Hg into KOH solution of 30% concentration containing the alloy powder while stirring it to coat the surfaces of the alloy particles with Hg, followed by washing the amalgamated powder with water before drying the powder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、低水銀を指向したlll’i鉛アルカリアル
カリ電池用亜鉛負極関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a zinc anode for a lll'i lead-alkaline battery oriented towards low mercury.

従来例の構成とその問題点 従来、アルカリ電池、例えば1[極に酸化銀、二酸化マ
ンガン、酸化水銀などを用いるアルカリ電池の負極活物
質には、氷化亜鉛粉末が用いられている。この亜鉛アル
カリ電池は、中性電解液を用いるルクランシェ電池に比
較して電解液による亜鉛粉末の腐食溶解が激しく、それ
に伴う水素ガス発/Jミがあり、所謂、自己消耗が著し
くなる基本的な問題があった。
Structure of conventional example and its problems Conventionally, frozen zinc powder has been used as the negative electrode active material of alkaline batteries, for example, alkaline batteries that use silver oxide, manganese dioxide, mercury oxide, etc. in the electrode. Compared to Leclanchier batteries that use a neutral electrolyte, this zinc-alkaline battery suffers from severe corrosion and dissolution of the zinc powder by the electrolyte, resulting in the generation of hydrogen gas and a basic problem that causes significant self-depletion. There was a problem.

これを防ぐ対策としては、11鉛粉末の水素過電圧を高
く維持させる必要があり、一般的には水銀(Hq )に
よる氷化処理が行われている。
As a measure to prevent this, it is necessary to maintain the hydrogen overvoltage of the lead 11 powder at a high level, and icing treatment with mercury (Hq) is generally performed.

しかし、l)iに即鉛粉末の表面をH(Jで被覆しても
14期に亘る保存を続けた場合、亜鉛粉末の表面のHg
は、亜鉛の結晶粒界へ拡散浸透して粒子内部へ#動する
。このため当初粒子表面にあったHq濃度は次第に低下
し、表面の水素過電圧が下がり、水素ガス発生を伴って
自己消耗が進む。
However, even if the surface of the instant lead powder is coated with H (J) in i), if storage continues for 14 periods, the Hg on the surface of the zinc powder
diffuses into the grain boundaries of zinc and moves into the grain interior. Therefore, the Hq concentration initially on the particle surface gradually decreases, the hydrogen overvoltage on the surface decreases, and self-depletion progresses with the generation of hydrogen gas.

特許この現象は、高温保存を、4&けた場合に促進さね
パ・すい。この現象を抑制するため、従来は、Hgを予
め多く亜鉛粉末の表面に被覆し保持させていた。
This patented phenomenon promotes high-temperature storage in the case of 4+ digits. In order to suppress this phenomenon, conventionally, a large amount of Hg was coated and retained on the surface of the zinc powder in advance.

しかしこれは、亜鉛自体の活物質量の減少につながり、
実放電容量が減少するという欠点があった。従って、亜
鉛粉末に加えられるHq量は可能な限り制限することが
望ましい。
However, this leads to a decrease in the amount of active material of zinc itself,
There was a drawback that the actual discharge capacity decreased. Therefore, it is desirable to limit the amount of Hq added to the zinc powder as much as possible.

これは、実放電容量を大きくすることV外に、放電済の
電池を廃棄する場合、負4)ト中のHgによって、環境
を汚染し公害問題を引き起こす危険性が予想されるから
である。この/Cめ、亜鉛粉末の氷化率を低減化する提
案iJ従来から数多く々されている。
This is because, in addition to increasing the actual discharge capacity, when discarding a discharged battery, there is a risk that the Hg in the battery will contaminate the environment and cause pollution problems. Many proposals have been made to reduce the freezing rate of zinc powder.

例えば、特開昭48 7733 、;で示されている如
く、In又はIn化合物を予めHClに溶解させた後、
これを水で希釈し、この溶液により亜鉛粒子を処理して
、粒子表面J: リl1li鉛をIn合金化せしめるな
どの製法が提案さJ]ている。
For example, as shown in JP-A-48-7733, after In or In compound is dissolved in HCl in advance,
A manufacturing method has been proposed in which the zinc particles are diluted with water and the zinc particles are treated with this solution to form an In alloy on the particle surface.

又、特公昭33 3204 ”i’jで示されている如
く、Inを○、001〜2チ添加した電池用Zn−In
合金も提案されている。
In addition, as shown in Jpn. Pat.
Alloys have also been proposed.

このようにInをZnの表面に付着せしめるものや、Z
n−Inの合金としたものなどが既に知られている。こ
れらのInの添加効果は、アルカリ中での水素過電圧を
帽き上げることを目的としたものである。しかしIn添
加に、l:る水素過電圧の引き上げ効果はHqに比べて
小さくて亜鉛の結晶粒界へのHgの拡散移動を十分j1
1)制するものでは女い0 発明の目的 本発明は、上記の従来例の欠点を解消腰高容部で低水銀
の亜鉛アルカリ電池を提供することを目r自とする。
In this way, In is attached to the surface of Zn,
An alloy of n-In is already known. These effects of adding In are aimed at increasing the hydrogen overvoltage in an alkali. However, with the addition of In, the effect of raising the hydrogen overvoltage of l: is smaller than that of Hq, and the diffusion movement of Hg to the grain boundaries of zinc is sufficiently inhibited.
1) The object of the invention is to provide a zinc-alkaline battery with a high capacity and low mercury, which eliminates the drawbacks of the above-mentioned conventional examples.

発明の構成 本発明は、Znを主成分としこれに合金元素としてGa
 とTIを添加して合金化(Zn −Ga −T l 
)した粉末を氷化して用いるものであり、好ましくは氷
化をfki!式法により、30チ濃度のKOH中で撹拌
させなからHqを滴下して氷化処理し、粉末表面をHq
で被覆させた後、水洗、乾燥させたものである。
Structure of the Invention The present invention has Zn as a main component and Ga as an alloying element.
and TI to form an alloy (Zn-Ga-T l
) is used by freezing the powder, preferably fki! According to the formula method, Hq was added dropwise to the powder while stirring in KOH at a concentration of 30%, and the powder surface was treated with Hq.
After coating, it was washed with water and dried.

実施例の説明 純度99.99%のZnインゴットをベースにして、G
aとTI を各々○、l!wt%添加したZn −、G
a −T Iの三元合金を作る。この時の合金試作条件
は、黒鉛ルツボを用いて、不活性雰囲気中で予めZnイ
ンゴットを約600℃の電気炉中で加熱溶解して溶湯を
作り、との溶湯に添加元素でおるGa、T/を各々0.
2wt%投入し、十分に攪拌して均一組成とした後、噴
霧法によj’150〜150メツシュの三元合金粉末を
作る。
Description of Examples Based on a Zn ingot with a purity of 99.99%, G
○ and l for a and TI respectively! wt% added Zn −, G
Make a ternary alloy of a-T I. The alloy trial production conditions at this time were as follows: Using a graphite crucible, a Zn ingot was previously heated and melted in an electric furnace at about 600°C in an inert atmosphere to create a molten metal, and the molten metal was mixed with Ga and T as additive elements. / for each 0.
After adding 2 wt% and thoroughly stirring to obtain a uniform composition, a ternary alloy powder with a mesh of j'150 to 150 is produced by a spraying method.

この場合、必要ならげZnの溶湯の中にGa、TIと同
時にHqを混在せしめた、Zn−Ga−Tl−Hgの四
元合金を作り、これを噴霧法によって粉末にすることも
可能である。
In this case, it is also possible to create a quaternary alloy of Zn-Ga-Tl-Hg by mixing Ga, TI, and Hq in the necessary molten Zn, and then turn this into powder by a spraying method. .

この様にして作ったZn合金粉末を用いて、捷ずガス発
生量を測定し評価する方法と、ボタン型電池に適用して
その効果を確認l−だ。
Using the Zn alloy powder made in this way, we will evaluate the method of measuring and evaluating the amount of gas generated without stirring, and we will apply it to a button-type battery and confirm its effectiveness.

まず、ガス発生量の測定は、Zn粉末10.りをZnO
を溶解した40係濃度のKOH電解液1orneに入れ
、46℃で3ケ月間放置して発生した全ガス量を調べた
First, the amount of gas generated was measured using Zn powder 10. ZnO
The sample was placed in 1 volume of KOH electrolyte with a concentration of 40 parts dissolved therein and left at 46°C for 3 months, and the total amount of gas generated was investigated.

一万、電池評価は、ボタン型の酸化銀電池TIS公称 
5R44型を試作し、20’Cで500 !−)連続放
電時の放電持続時間をp+r4べた1゜本発明の実施例
を図面を参照し々がら説明する図中、1は正極端子を兼
ねるiE 4’?缶、2は酸化銀とM n 02と黒鉛
とを混合成型した正極合剤、3は正極と密接した微孔性
合成樹脂フィルムよりなるセパレータ、4は合成繊維の
不織布よりガる電解液保持祠、6は氷化亜鉛粉末と合成
糊剤とアルカJ IJ電解液とを混合したゲル状負極体
である。
10,000, battery evaluation is button type silver oxide battery TIS nominal
I made a prototype of 5R44 type and achieved 500 at 20'C! -) Discharge duration during continuous discharge p+r4 solid 1゜In the figures for explaining embodiments of the present invention with reference to the drawings, 1 is iE 4'?, which also serves as a positive terminal. 2 is a positive electrode mixture formed by mixing and molding silver oxide, M n 02, and graphite; 3 is a separator made of a microporous synthetic resin film that is in close contact with the positive electrode; 4 is an electrolyte holding shrine made of a synthetic nonwoven fabric. , 6 is a gel-like negative electrode body made of a mixture of frozen zinc powder, synthetic glue, and Alka J IJ electrolyte.

6は負極缶で負極端子を兼ねている。7は合成樹脂から
なる絶縁バッキングで、正極缶の目端部を内方に折曲し
て電池全体を締付ると共に密封口したものである。
6 is a negative electrode can which also serves as a negative electrode terminal. Reference numeral 7 denotes an insulating backing made of synthetic resin, which is made by bending the eye end of the positive electrode can inward to tighten the entire battery and seal the opening.

発明の効果 本発明の効果について従来例と比較して次表に示す1゜ ガス発生量及び放電時間 ノ 以上の様に本発明によるr A jの亜鉛合金粉末を1
係永化処理したものtl′、従来から適用されている氷
化率10係の亜鉛粉「C」と同等の特性が得られた。又
汞化率1チのZn−I−1g系の「DJでは、粉末表面
のHqj7’、が少なく保存中にHqが110鉛の結晶
粒界に拡散浸透1〜て行く/こめに、粒子表面のBq滑
が減少し、水素過電圧が低下してガス発生が促進される
Effects of the Invention Regarding the effects of the present invention, compared with the conventional example, the amount of gas generated and the discharge time shown in the following table are as follows.
The material tl' subjected to the aging treatment had properties equivalent to those of the conventionally applied zinc powder "C" with a freezing rate of 10. In addition, in DJ of the Zn-I-1g system with a conversion rate of 1, Hq7' on the powder surface is small, and during storage, Hq diffuses into the grain boundaries of 110 lead. Bq slippage is reduced, hydrogen overvoltage is reduced, and gas generation is promoted.

又、Zn−ln−Hg系の「B」でし1、Hqは1%で
あるが、Inを添加しているためにZn結晶粒界へのB
qの拡散移動が抑制され、亜鉛粉末表面のHqは高温保
存後でも比較的均一に残っており、その効果がある程度
表われている。なおIn単独の添加ではHgの拡散移動
を完全に抑えることができず、自己消耗が進むことが考
えられる。
In addition, the "B" of the Zn-ln-Hg system has 1% Hq, but since In is added, B does not reach the Zn grain boundaries.
The diffusion movement of q is suppressed, and Hq on the surface of the zinc powder remains relatively uniform even after high-temperature storage, and this effect is evident to some extent. Note that the addition of In alone may not be able to completely suppress the diffusion and movement of Hg, and self-depletion may proceed.

本発明のrA」は、有効添加元素としてGa、Tdの三
者を同時に添加し合金化せしめることにより、氷化処理
後のH(Jを如何に1111鉛粉末の表面に安定保持さ
せる効果がすぐれていることがわかる。
rA of the present invention has an excellent effect of stably retaining H (J) on the surface of 1111 lead powder after icing treatment by simultaneously adding Ga and Td as effective additive elements and alloying them. It can be seen that

この合金はアルカリ電解液に安定であり、Hqを最小限
に抑えることを可能ならしめたもので、従来の氷化亜鉛
の約犀のHq量に低減でき、しかも高官[11の亜鉛ア
ルカリ電池を提供することが可能である。
This alloy is stable in alkaline electrolytes, making it possible to minimize Hq, which is about the same as that of conventional frozen zinc. It is possible to provide

なお、前記の実施例ではボタン型酸化銀電池を例に説明
したが亜鉛を負極活物質とするアルカIJ −次電、1
ljLへ広く適用きれるものである。
In the above embodiments, a button-type silver oxide battery was explained as an example, but Alka IJ-N, 1, which uses zinc as the negative electrode active material,
This can be widely applied to ljL.

又、本発明の有効添加元素としてGa、Tlを各々、0
.2%添加した場合について説明したが、こf]より多
くても電池特性には余り有効でなかった。
In addition, Ga and Tl are each used as effective additive elements of the present invention.
.. The case where 2% was added was explained, but even if the amount was more than 2%, it was not very effective for improving the battery characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例におけるボタン型酸化銀電池の半断
面図である。 1・・・・・・正極缶、2・・・・・・正極合剤、3・
 ・セパレータ、4・・・・電解液保持材、6・・・・
・ゲル亜鉛9極、6・・・・・・負極端子、7・・・・
ガスケット、8・・・・・・正極集電リング。
The figure is a half-sectional view of a button-type silver oxide battery in an example of the present invention. 1...Positive electrode can, 2...Positive electrode mixture, 3.
・Separator, 4... Electrolyte holding material, 6...
・Gel zinc 9 poles, 6...Negative terminal, 7...
Gasket, 8... Positive electrode current collection ring.

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛を主成分とし有効添加元素としてGaとTt
とを添加した合金を水化して負極活物質に用いたことを
特徴とする11ト鉛アルカリ電池。
(1) Zinc is the main component, with Ga and Tt as effective additive elements.
11. A 11-top lead alkaline battery characterized in that an alloy to which is added is hydrated and used as a negative electrode active material.
(2)合金粉末を湿式法によりI−I qで氷化処理し
た特許請求の範囲第1項記+1あのili鉛アルカリ電
池。
(2) An ili lead-alkaline battery according to claim 1, in which alloy powder is subjected to freezing treatment using I-Iq by a wet method.
JP59000972A 1984-01-06 1984-01-06 Zinc alkaline battery Pending JPS60146456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000972A JPS60146456A (en) 1984-01-06 1984-01-06 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000972A JPS60146456A (en) 1984-01-06 1984-01-06 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPS60146456A true JPS60146456A (en) 1985-08-02

Family

ID=11488533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000972A Pending JPS60146456A (en) 1984-01-06 1984-01-06 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS60146456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Similar Documents

Publication Publication Date Title
EP0172255B1 (en) Zinc alkaline battery
EP0185497A1 (en) Zinc-alkaline battery
JPH056791B2 (en)
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP4049811B2 (en) Primary electrochemical cell
JP3215447B2 (en) Zinc alkaline battery
JPS60146456A (en) Zinc alkaline battery
JPH04237952A (en) Manufacture of unamalgamated zinc alloy powder for alkaline dry battery
JPH0317181B2 (en)
JPH0719604B2 (en) Alkaline battery manufacturing method
JPS60146455A (en) Zinc alkaline battery
JPS60163367A (en) Zinc alkaline battery
JPS59121780A (en) Cell
JP2737233B2 (en) Zinc alkaline battery
JPS59175557A (en) Alkali cell
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JPH0317182B2 (en)
JPS6188451A (en) Manganese dry battery
JP2798680B2 (en) Alkaline battery
JP2563106B2 (en) Alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPH03230476A (en) Negative electrode active material for alkaline battery
JPS60146454A (en) Zinc alkaline battery
JPS5966054A (en) Zinc alkaline battery