JP4565222B2 - Zinc alloy powder for alkaline battery and alkaline battery using the same - Google Patents
Zinc alloy powder for alkaline battery and alkaline battery using the same Download PDFInfo
- Publication number
- JP4565222B2 JP4565222B2 JP2003043077A JP2003043077A JP4565222B2 JP 4565222 B2 JP4565222 B2 JP 4565222B2 JP 2003043077 A JP2003043077 A JP 2003043077A JP 2003043077 A JP2003043077 A JP 2003043077A JP 4565222 B2 JP4565222 B2 JP 4565222B2
- Authority
- JP
- Japan
- Prior art keywords
- mesh
- powder
- zinc alloy
- weight
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y02E60/12—
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、亜鉛合金粉末の粒度分布を最適化することによって、重負荷(ハイレートともいう。)パルス放電性能に優れ、かつガス発生が抑制されたアルカリマンガン電池などのアルカリ電池用の亜鉛合金粉末とそれを用いたアルカリ電池に関するものである。
【0002】
【従来の技術】
近年、携帯用電子機器の大電流化に伴い、アルカリマンガン電池の重負荷パルス放電性能の向上要求が高まっている。重負荷パルス放電領域では負極材である亜鉛合金粉末の特性の寄与が大きいとされ、それに伴い亜鉛合金粉末の特性向上が望まれていた。
従来の方法としては亜鉛合金粉末の反応面積を増加するために、−200メッシュまたはそれよりも微細な亜鉛粉を増加して負極活物質に使用する技術が知られている。すなわち、−200メッシュの亜鉛微粉あるいは−325メッシュの亜鉛ダストなどの微細粉を負極活物質に含ませることにより、表面積を増加させて、連続負荷、高電流パルス試験などの放電性能を向上させるものがある(例えば、特許文献1参照。)。
【0003】
また、−200メッシュの微細亜鉛粉を20〜30重量%、35〜200メッシュを70〜80重量%とすることにより放電特性に優れたものとするものがある(例えば、特許文献2参照。)。これらは、粗粉の部分での効果が見えなくなっており、微細粉増=表面積増=反応面積増の関係での発明である。しかしながら、微細粉とガス発生量は比例する関係が確認されており、単なる混合による方法では、放電性能向上効果が不十分であり、電池の安全性の指標であるガス発生量の抑制との両立が困難であった。
【0004】
【特許文献1】
特表2001−512284号公報
【特許文献2】
特開2002−270164号公報
【0005】
【発明が解決しようとする課題】
従って本発明の目的は、従来以上に放電性能を向上させ、かつガス発生抑制も両立させたアルカリ電池用亜鉛合金粉末とそれを用いたアルカ電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記課題の解決にむけて鋭意検討を重ねた結果、−200メッシュの微細粉末の含有量と100メッシュ〜35メッシュの粗大粉の最適量を規定することにより、重負荷パルス放電性能とガス発生量抑制の両立が可能であることを見出し本発明に到達した。
【0007】
すなわち、本発明は第1に、−200メッシュ(200メッシュフルイのフルイ目を通過する粒径のもの、すなわち0.075mm以下の粒径のものをいう。)の粉体の比率が10〜40質量%、150〜100メッシュ(100メッシュフルイのフルイ目を通過するが、150メッシュフルイのフルイ目を通過しない粒径のもの、すなわち0.10〜0.15mmの粒径のものをいう。)の粉体の比率が15〜25質量%、100〜50メッシュ(50メッシュフルイのフルイ目を通過するが、100メッシュフルイのフルイ目を通過しない粒径のもの、すなわち0.15〜0.30mmの粒径のものをいう。)の粉体の比率が20〜45質量%、50〜35メッシュ(35メッシュフルイのフルイ目を通過するが、50メッシュフルイのフルイ目を通過しない粒径のもの、すなわち0.30〜0.50mmの粒径のものをいう。)の粉体の比率が3〜10質量%であって、粒度分布曲線(横軸を粒径、縦軸を分布比率とした場合の粒度分布曲線をいう。)において2つのピークが存在することを特徴とするアルカリ電池用亜鉛合金粉末を、第2に、前記亜鉛合金がビスマス(Biと表す。)0.001〜0.1質量%及びインジウム(Inと表す。)0.01〜0.1質量%からなる群から選ばれる1種以上と、アルカリ金属、アルカリ土類金属、アルミニウム(Alと表す。)及びガリウム(Gaと表す。)からなる群から選ばれる1種以上の金属0.0001〜0.1質量%とを含有し、残部が不可避不純物と亜鉛からなる亜鉛合金である、第1に記載のアルカリ電池用亜鉛合金粉末を提供するものである。
【0008】
また、本発明は第3に、第1または2に記載の亜鉛合金粉末が負極活物質として含有されていることを特徴とするアルカリ電池を提供するものである。
【0009】
【発明の実施の形態】
本発明における電池特性への効果としては以下のように推測される。本発明では、−200メッシュの微細粉と、100〜35メッシュの粗大粉を適当量含むため、全体の粒度分布としては見かけ上2山となる、すなわち、粒度分布曲線において2つのピークが存在するものであって、その分布に効果があると考えられる。
【0010】
−200メッシュの微粒子粉では表面積の増加とともに電解液との反応面積が増加するので放電特性は向上する。但し、放電性能は−200メッシュの微粒子粉の比率が10重量%以上必要であるが、40重量%以上では放電性能の効果は飽和してしまう。これは粒子間の電解液が不足し反応が進まなくなるためと考えられる。さらに100〜35メッシュの粗大粒子を適正量含むことにより、粒子間の隙間が増大し、物質拡散に有利な状態となって反応がスムーズに進むようになる。それとともに粗大粒子同士が接触してネットワークを形成し内部抵抗が低減される。このような機構で放電性能が向上すると考えられる。
一方、微粉は増加するが、粗大粒子も含まれているため、微粉量に比例したガス発生量とはならず、粗大粒子の分で緩和される。
【0011】
−200メッシュの微粉の比率が10重量%未満では放電性能向上の効果がほとんど無く、10重量%以上で放電性能が向上するが、40重量%以上でその効果が飽和する。微粉を単純に増加すると、水素ガス発生が直線的に増加してしまうので、放電性能と水素ガス発生のバランスを取るために、200メッシュ粒径以上の粗粉の割合も規定する必要がある。すなわち、亜鉛粉の表面積と水素ガス発生には比例関係があるので、ガス発生抑制のために粒径の比較的大きい粉末の量を規定する必要がある。その割合としては、100〜50メッシュの粉体の比率は20重量%未満では放電性能向上の効果が十分でなく、水素ガス発生抑制効果も十分でない。従って20重量%以上必要であるが、45重量%を超えると放電性能が悪化する。50〜35メッシュの粉体の比率は3重量%未満では放電性能向上の効果が十分でなく3重量%必要であるが、10重量%を超えると悪化する。
【0012】
なお、100〜35メッシュの粉体の比率について35〜50重量%とすれば放電性能向上の効果がさらに向上する。さらに、好ましくは、150〜100メッシュ(100メッシュフルイのフルイ目を通過するが、150メッシュフルイのフルイ目を通過しない粒径のもの、すなわち0.10〜0.15mmの粒径のものをいう。)の粉体の比率を15〜25重量%とすれば放電性能向上の効果が一段と向上し、200〜150メッシュ(150メッシュフルイのフルイ目を通過するが、200メッシュフルイのフルイ目を通過しない粒径のもの、すなわち0.075〜0.10mmの粒径のものをいう。)の粉体の比率を10〜20重量%にすれば放電性能向上の効果がさらに一段と向上する。また、亜鉛合金粉末全体を実質的に−35メッシュ(35メッシュフルイのフルイ目を通過する粒径のもの、すなわち0.50mm以下の粒径のものをいう。)とすれば、放電性能とガス発生抑制がより一層向上する。
【0013】
また本発明に係る亜鉛合金粉末の組成は特に限定されるものではないが、耐食性を向上させるために、亜鉛合金を所定の添加金属範囲とすれば電池として使用時のガス発生量がより抑制される。この場合の亜鉛合金組成は前記のとおりであるが、Al、Bi及びInを含有する亜鉛合金が特に好ましく、Alを0.0001〜0.1重量%、Biを0.001〜0.1重量%及びInを0.01〜0.1重量%含有し残部が不可避不純物と亜鉛からなる亜鉛合金がさらに好ましい。
【0014】
【実施例】
以下に実施例および比較例を記載し本発明をさらに具体的に示すが、本発明の技術的範囲はこれらの記載に限定されるものではない。
【0015】
[実施例1、2、3] 合金組成がAl:0.003重量%、Bi:0.015重量%、In:0.05重量%、残部が実質的に亜鉛からなる亜鉛合金の溶湯を450〜600℃とし、セラミックスノズルを用いて2〜4mmに細流化して滴下し、これに圧縮空気を噴射させて噴霧を行い、亜鉛合金粉末を得た。この亜鉛合金粉末を200メッシュ、150メッシュ、100メッシュ、50メッシュ、35メッシュでふるい分けを行い、それぞれ秤量、混合し、−200メッシュの比率をそれぞれ14.9重量%、20.4重量%、29.5重量%となる亜鉛合金粉末を作製した。このとき粒度分布曲線がみかけ上2山になるように(すなわち、粒度分布曲線において2つのピークが存在するように)+150メッシュ(150メッシュフルイのフルイ目を通過しない粒径のもの、すなわち0.10mm以上の粒径のものをいう。)の粗粉の含有率を調整した。微粒、粗粒の比率を変えて粉末を作製し、微粉の含まれる比率の少ない順から、実施例1、2、3とした。それぞれの粒度分布を表1に、粒度分布曲線を図2に記載する。
【0016】
【表1】
【0017】
各亜鉛合金粉末を5gとり、40%KOH水溶液に3重量%の酸化亜鉛を溶解した液に浸し、図1に示す装置を用いて60℃で3日間保持して発生したガス量から、ガス発生速度(μl/g・day)を求め、表1に記載した。
各亜鉛合金粉末、ポリアクリル酸1重量%、酸化亜鉛を3重量%溶解させた40%KOH水溶液を混合してゲル状負極活物質とした。正極を二酸化マンガンとしてLR6型試作電池を作製した。この試作電池の重負荷放電(ハイレートパルス放電)性能を1.2A3秒間放電、7秒間休止で測定した。この電池を当初1.6Vであったところ、上記のとおり連続して繰り返し放電させて1.0 Vまでの放電時間を測定し、後述する比較例1の放電時間を100とした場合の相対値で表し、その結果を表1に記載した。また、これらのハイレートパルス放電性能を図4に、ガス発生速度を図5に示した。
【0018】
[比較例1、2、3] 亜鉛合金組成をAl:0.003重量%、Bi:0.015重量%、In:0.05重量%とし、残部が実質的に亜鉛とし、−200メッシュの粒度の比率をそれぞれ13.6、26.1、36.0重量%とし、この微粉含有量の少ない順から、比較例1、2、3とした。このとき粒度分布曲線がみかけ上1山になるように(すなわち、粒度分布曲線において1つのピークが存在するように)+150メッシュの粗粉比率を調整した。しかし、比較例2は2山ではあるが、150〜100メッシュを27.5重量%、100〜50メッシュを26.3重量%、50〜35メッシュを1.8重量%とした。
実施例と同様に特性評価した結果を表1に示した。さらに、粒度分布曲線を図3に、ハイレートパルス放電性能を図4に、ガス発生速度を図5に示した。
【0019】
【発明の効果】
これらの結果から明らかなように、本発明に係る亜鉛合金粉末は、微粒子と粗粒部分の最適範囲を適正化することにより、アルカリ電池においてガス発生を抑制しつつ、ハイレートパルス放電性能を飛躍的に向上することができる。
【図面の簡単な説明】
【図1】 ガス発生測定装置の縦断面図
【図2】 各実施例の亜鉛合金粉末の粒度分布曲線図
【図3】 各比較例の亜鉛公金粉末の粒度分布曲線図
【図4】 各実施例及び各比較例の亜鉛合金粉末を用いた場合のハイレートパルス放電性能測定図
【図5】 各実施例及び各比較例の亜鉛合金粉末を用いた場合のガス発生速度測定図
【符号の説明】
1 亜鉛合金粉末
2 電解液
3 流動パラフィン
4 シリコン栓
5 メスピペット[0001]
BACKGROUND OF THE INVENTION
The present invention optimizes the particle size distribution of the zinc alloy powder, thereby improving the heavy load (also referred to as high rate) pulse discharge performance and suppressing the gas generation, and a zinc alloy powder for an alkaline battery such as an alkaline manganese battery. And an alkaline battery using the same.
[0002]
[Prior art]
In recent years, with the increase in current of portable electronic devices, there is an increasing demand for improvement of heavy load pulse discharge performance of alkaline manganese batteries. In the heavy load pulse discharge region, the contribution of the characteristics of the zinc alloy powder, which is a negative electrode material, is considered to be large, and accordingly, improvement of the characteristics of the zinc alloy powder has been desired.
As a conventional method, in order to increase the reaction area of the zinc alloy powder, a technique is known in which zinc powder finer than −200 mesh or finer is used as a negative electrode active material. That is, by adding fine powder such as -200 mesh zinc fine powder or -325 mesh zinc dust to the negative electrode active material, the surface area is increased and the discharge performance such as continuous load and high current pulse test is improved. (For example, refer to Patent Document 1).
[0003]
Moreover, there exists what makes the discharge characteristic excellent by making 20-30 weight% of 35-200 mesh fine zinc powder of -200 mesh, and 70-80 weight% (for example, refer patent document 2). . These effects are not visible in the portion of the coarse powder, and are inventions in the relationship of fine powder increase = surface area increase = reaction area increase. However, it has been confirmed that the fine powder and the amount of gas generated are proportional to each other. The simple mixing method is insufficient in improving the discharge performance, and is compatible with the suppression of the amount of gas generated, which is an indicator of battery safety. It was difficult.
[0004]
[Patent Document 1]
JP-T-2001-512284 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-270164
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a zinc alloy powder for an alkaline battery and an alkaline battery using the same, which have improved discharge performance and gas generation suppression more than ever.
[0006]
[Means for Solving the Problems]
As a result of intensive studies aimed at solving the above problems, the present inventors have determined that the content of a fine powder of −200 mesh and the optimum amount of coarse powder of 100 mesh to 35 mesh are determined, thereby providing a heavy load pulse discharge. It has been found that both performance and gas generation amount suppression can be achieved, and the present invention has been achieved.
[0007]
That is, the present invention is first, -200 mesh (200 intended particle size passing through a sieve of mesh sieve, i.e. refers to the particle size of not more than 0.075 mm.) Ratio of the powder of 10 to 40 Mass% , 150 to 100 mesh (refers to a particle size that passes through a 100 mesh sieve but does not pass through a 150 mesh sieve, that is, a particle size of 0.10 to 0.15 mm) The ratio of the powder is 15 to 25 % by mass , 100 to 50 mesh (having a particle size that passes through a 50 mesh sieve, but does not pass through a 100 mesh sieve, ie, 0.15 to 0.30 mm) It refers to the particle size. the ratio of the
[0008]
Further, the present invention in the third, there is provided an alkaline battery wherein the zinc alloy powder according to the first or 2 is contained as a negative electrode active material.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The effect on the battery characteristics in the present invention is estimated as follows. In the present invention, since an appropriate amount of fine powder of −200 mesh and coarse powder of 100 to 35 mesh are included, the total particle size distribution is apparently two peaks, that is, there are two peaks in the particle size distribution curve. And its distribution is considered to be effective.
[0010]
In the -200 mesh fine particle powder, the discharge area is improved because the reaction area with the electrolyte increases as the surface area increases. However, the discharge performance requires a ratio of the fine particle powder of −200 mesh to 10% by weight or more, but the effect of the discharge performance is saturated at 40% by weight or more. This is presumably because the electrolyte between particles is insufficient and the reaction does not proceed. Further, by including an appropriate amount of coarse particles of 100 to 35 mesh, the gaps between the particles are increased, and the reaction proceeds smoothly in an advantageous state for substance diffusion. At the same time, the coarse particles come into contact with each other to form a network, and the internal resistance is reduced. It is considered that the discharge performance is improved by such a mechanism.
On the other hand, although the fine powder increases, coarse particles are also included, so the amount of gas generated is not proportional to the fine powder amount, and is reduced by the coarse particles.
[0011]
When the ratio of the -200 mesh fine powder is less than 10% by weight, there is almost no effect of improving the discharge performance, and when it is 10% by weight or more, the discharge performance is improved, but when 40% by weight or more, the effect is saturated. If the fine powder is simply increased, the hydrogen gas generation will increase linearly. Therefore, in order to balance the discharge performance and the hydrogen gas generation, it is necessary to define the ratio of coarse powder having a particle size of 200 mesh or more. That is, since there is a proportional relationship between the surface area of zinc powder and the generation of hydrogen gas, it is necessary to regulate the amount of powder having a relatively large particle size in order to suppress gas generation. As the ratio, if the ratio of the powder of 100 to 50 mesh is less than 20% by weight, the effect of improving the discharge performance is not sufficient, and the effect of suppressing the generation of hydrogen gas is not sufficient. Therefore, 20% by weight or more is necessary, but if it exceeds 45% by weight, the discharge performance deteriorates. If the ratio of the powder of 50 to 35 mesh is less than 3% by weight, the effect of improving the discharge performance is not sufficient, and 3% by weight is necessary, but if it exceeds 10% by weight, it deteriorates.
[0012]
If the ratio of the powder of 100 to 35 mesh is 35 to 50% by weight, the effect of improving the discharge performance is further improved. More preferably, it has a particle diameter of 150 to 100 mesh (which passes through a 100 mesh sieve, but does not pass through a 150 mesh sieve, ie, a particle having a particle diameter of 0.10 to 0.15 mm. .) Is 15 to 25% by weight, the effect of improving the discharge performance is further improved, and 200 to 150 mesh (150 mesh sieve is passed through, but 200 mesh sieve is passed through). The effect of improving the discharge performance is further improved if the ratio of the powder having a particle size not to be measured, that is, a particle size of 0.075 to 0.10 mm) is 10 to 20% by weight. If the entire zinc alloy powder is substantially −35 mesh (having a particle size passing through a 35 mesh sieve, that is, a particle size of 0.50 mm or less), discharge performance and gas Generation suppression is further improved.
[0013]
Further, the composition of the zinc alloy powder according to the present invention is not particularly limited, but in order to improve the corrosion resistance, if the zinc alloy is in a predetermined additive metal range, the amount of gas generated during use as a battery is further suppressed. The The zinc alloy composition in this case is as described above, but a zinc alloy containing Al, Bi and In is particularly preferable, and Al is 0.0001 to 0.1% by weight and Bi is 0.001 to 0.1% by weight. More preferred is a zinc alloy containing 0.01% to 0.1% by weight of In and In, with the balance being inevitable impurities and zinc.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the technical scope of the present invention is not limited to these descriptions.
[0015]
[Examples 1, 2 and 3] An alloy composition of Al: 0.003% by weight, Bi: 0.015% by weight, In: 0.05% by weight, and a balance of 450 zinc alloy consisting essentially of zinc. The temperature was set to ˜600 ° C., and it was trickled to 2 to 4 mm using a ceramic nozzle and dropped, and compressed air was sprayed thereon to perform spraying to obtain a zinc alloy powder. This zinc alloy powder is sieved with 200 mesh, 150 mesh, 100 mesh, 50 mesh, and 35 mesh, weighed and mixed, respectively, and the ratio of -200 mesh is 14.9 wt%, 20.4 wt%, 29, respectively. A zinc alloy powder of 5% by weight was produced. At this time, the particle size distribution curve apparently has two peaks (that is, there are two peaks in the particle size distribution curve) +150 mesh (with a particle size that does not pass through the 150 mesh sieve, that is, .0. The content of coarse powder of 10 mm or more in diameter is adjusted. Powders were produced by changing the ratio of fine particles and coarse particles, and Examples 1, 2, and 3 were used in order of increasing proportion of fine powder. Each particle size distribution is shown in Table 1, and the particle size distribution curve is shown in FIG.
[0016]
[Table 1]
[0017]
Take 5g of each zinc alloy powder, immerse it in a solution of 3% by weight zinc oxide in 40% KOH aqueous solution, and hold the gas at 60 ° C for 3 days using the equipment shown in Fig. 1. The rate (μl / g · day) was determined and listed in Table 1.
Each zinc alloy powder, 1% by weight of polyacrylic acid, and 40% KOH aqueous solution in which 3% by weight of zinc oxide were dissolved were mixed to obtain a gelled negative electrode active material. An LR6 prototype battery was fabricated using manganese dioxide as the positive electrode. The heavy load discharge (high rate pulse discharge) performance of this prototype battery was measured with 1.2 A for 3 seconds of discharge and 7 seconds of rest. When this battery was initially 1.6 V, it was continuously discharged repeatedly as described above, the discharge time up to 1.0 V was measured, and the relative value when the discharge time of Comparative Example 1 described later was taken as 100. The results are shown in Table 1. These high-rate pulse discharge performances are shown in FIG. 4, and the gas generation speed is shown in FIG.
[0018]
[Comparative Examples 1, 2, 3] The zinc alloy composition was Al: 0.003% by weight, Bi: 0.015% by weight, In: 0.05% by weight, and the balance was substantially zinc. The ratios of particle sizes were 13.6, 26.1, and 36.0% by weight, respectively, and Comparative Examples 1, 2, and 3 were used in the order of decreasing fine powder content. At this time, the coarse particle ratio of +150 mesh was adjusted so that the particle size distribution curve apparently became one peak (that is, one peak existed in the particle size distribution curve). However, although the comparative example 2 is two crests, 150-100 mesh was 27.5 weight%, 100-50 mesh was 26.3% weight, and 50-35 mesh was 1.8 weight%.
The results of characteristic evaluation similar to the examples are shown in Table 1. Further, the particle size distribution curve is shown in FIG. 3, the high-rate pulse discharge performance is shown in FIG. 4, and the gas generation rate is shown in FIG.
[0019]
【The invention's effect】
As is clear from these results, the zinc alloy powder according to the present invention dramatically improves the high-rate pulse discharge performance while suppressing gas generation in an alkaline battery by optimizing the optimum range of fine particles and coarse particles. Can be improved.
[Brief description of the drawings]
1 is a longitudinal sectional view of a gas generation measuring apparatus. FIG. 2 is a particle size distribution curve diagram of zinc alloy powder of each example. FIG. 3 is a particle size distribution curve diagram of zinc alloy powder of each comparative example. Example of high rate pulse discharge performance measurement using the zinc alloy powder of each example and each comparative example [Fig. 5] Gas generation rate measurement diagram using the zinc alloy powder of each example and each comparative example [Explanation of symbols]
1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003043077A JP4565222B2 (en) | 2003-02-20 | 2003-02-20 | Zinc alloy powder for alkaline battery and alkaline battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003043077A JP4565222B2 (en) | 2003-02-20 | 2003-02-20 | Zinc alloy powder for alkaline battery and alkaline battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004253276A JP2004253276A (en) | 2004-09-09 |
JP4565222B2 true JP4565222B2 (en) | 2010-10-20 |
Family
ID=33026182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003043077A Expired - Lifetime JP4565222B2 (en) | 2003-02-20 | 2003-02-20 | Zinc alloy powder for alkaline battery and alkaline battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4565222B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7364819B2 (en) * | 2004-06-28 | 2008-04-29 | Eveready Battery Company, Inc. | Alkaline electrochemical cell with a blended zinc powder |
JP5152773B2 (en) * | 2005-02-03 | 2013-02-27 | 日立マクセルエナジー株式会社 | Alkaline battery |
JP5079218B2 (en) * | 2005-04-22 | 2012-11-21 | パナソニック株式会社 | Negative electrode active material and alkaline battery using the same |
JP5310334B2 (en) * | 2008-07-15 | 2013-10-09 | トヨタ自動車株式会社 | Anion conductive electrolyte resin |
JP4560129B1 (en) | 2009-09-07 | 2010-10-13 | パナソニック株式会社 | Alkaline battery |
CN115233036B (en) * | 2022-06-17 | 2023-06-02 | 广州湘龙高新材料科技股份有限公司 | 3D printing method for zinc alloy false tooth |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0441468B2 (en) * | 1982-10-27 | 1992-07-08 | Hitachi Maxell | |
JP2002367606A (en) * | 2001-06-11 | 2002-12-20 | Dowa Mining Co Ltd | Negative electrode component for alkali cell, zinc alloy powder used for the same, and alkali cell using the component |
JP2003017077A (en) * | 2001-06-29 | 2003-01-17 | Toshiba Battery Co Ltd | Sealed alkaline zinc primary battery |
-
2003
- 2003-02-20 JP JP2003043077A patent/JP4565222B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0441468B2 (en) * | 1982-10-27 | 1992-07-08 | Hitachi Maxell | |
JP2002367606A (en) * | 2001-06-11 | 2002-12-20 | Dowa Mining Co Ltd | Negative electrode component for alkali cell, zinc alloy powder used for the same, and alkali cell using the component |
JP2003017077A (en) * | 2001-06-29 | 2003-01-17 | Toshiba Battery Co Ltd | Sealed alkaline zinc primary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2004253276A (en) | 2004-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006040883A (en) | Zinc alloy powder for alkaline cell and method for producing same | |
JP2020092090A (en) | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery | |
JP3215448B2 (en) | Zinc alkaline battery | |
JP3215446B2 (en) | Zinc alkaline battery | |
JP5172181B2 (en) | Zinc alkaline battery | |
JP4565222B2 (en) | Zinc alloy powder for alkaline battery and alkaline battery using the same | |
JP3215447B2 (en) | Zinc alkaline battery | |
EP1539411B1 (en) | Use in electrochemical cells of a zinc powder | |
JP2009064756A (en) | Alkaline dry battery | |
JPH04237952A (en) | Manufacture of unamalgamated zinc alloy powder for alkaline dry battery | |
JP3617743B2 (en) | Negative electrode material for alkaline manganese battery and method for producing the same | |
KR101551700B1 (en) | Zinc air cell, anode for zinc air cell and method of preparing the same | |
JP5573083B2 (en) | Hydrogen storage alloy electrode for alkaline storage battery | |
JP2011021241A (en) | Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery | |
JP5769578B2 (en) | Method for producing negative electrode active material for lithium secondary battery | |
CA2306742A1 (en) | A zinc alloy powder for use in rechargeable cells | |
JP2001250544A (en) | Zinc alloy powder for alkaline battery and its preparation method | |
JP2000234134A (en) | Hydrogen storage alloy, and electrode using the same | |
JP2003272615A (en) | Zinc alloy powder and alkaline battery using the same | |
JP2007273406A (en) | Alkaline battery | |
JPH08321302A (en) | Hydrogen storage electrode | |
JP3322452B2 (en) | Rare earth hydrogen storage alloy for alkaline storage batteries | |
JP2796154B2 (en) | Zinc negative electrode for alkaline batteries | |
JP3056417B2 (en) | Negative electrode zinc base alloy powder for alkaline batteries | |
JP3584168B2 (en) | Negative electrode active material for alkaline battery and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100706 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100713 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4565222 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |