JP2004265685A - Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic - Google Patents

Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic Download PDF

Info

Publication number
JP2004265685A
JP2004265685A JP2003053782A JP2003053782A JP2004265685A JP 2004265685 A JP2004265685 A JP 2004265685A JP 2003053782 A JP2003053782 A JP 2003053782A JP 2003053782 A JP2003053782 A JP 2003053782A JP 2004265685 A JP2004265685 A JP 2004265685A
Authority
JP
Japan
Prior art keywords
glass
ion conductive
lithium ion
sulfide glass
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003053782A
Other languages
Japanese (ja)
Other versions
JP2004265685A5 (en
Inventor
Yoshikatsu Kiyono
美勝 清野
Masahiro Tatsumisuna
昌弘 辰巳砂
Yasushi Shiraki
安司 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP2003053782A priority Critical patent/JP2004265685A/en
Publication of JP2004265685A publication Critical patent/JP2004265685A/en
Publication of JP2004265685A5 publication Critical patent/JP2004265685A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture lithium ion conductive sulfide glass and glass ceramic that have a high electric conductivity at room temperatures by a simple method from a material easily acquired and inexpensive. <P>SOLUTION: In manufacturing the lithium ion conductive sulfide glass, a material containing lithium sulfide with a crystal particle size of 140 nm or less is used as a starting raw material, and this raw material is vitrified by mechanical milling. Then, in the manufacturing method of the lithium ion conductive sulfide glass ceramic, the lithium ion conductive sulfide glass is fired at glass transition temperature or higher. Thereby, the electric conductivity at room temperature is improved to 10<SP>-4</SP>S/cm or more. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法並びに該ガラス又はガラスセラミックスを固体電解質として使用する全固体型電池に関するものである。
【0002】
【従来の技術】
リチウムイオン伝導性硫化物ガラス及びガラスセラミックスは、全固体型リチウム二次電池の電解質として利用可能であることが公知である。このような硫化物ガラスは、ガラス形成剤であるSiS、五硫化リン(P)及びB等と、ガラス修飾剤である硫化リチウム(LiS)を混合し加熱溶融した後、急冷することによって得られる(例えば、特許文献1参照)。
また、本発明者らは、このような硫化物ガラスが硫化物結晶を室温でメカニカルミリングすることにより得られることを開示している(特許文献2参照)。
【0003】
【発明が解決しようとする課題】
これらの方法では、ガラス修飾剤である硫化リチウムを出発原料の一つとして用いているが、硫化リチウムは反応性が低く、上記ガラス形成剤等と効率良く反応せず、未反応の硫化リチウムが多量に残存するため、目的とする硫化物ガラスを得ることができない。また、多量の未反応の硫化リチウムが残存すると、電解質としての性能が低くなり、全固体型リチウム電池の電解質として使用できなくなるという問題がある。
本発明者らは、より入手が容易で且つ安価な原料を出発物質とするリチウムイオン伝導性硫化物ガラスの製造法について検討を行ってきた。
例えば、本発明者らは、金属リチウム(Li)又は硫化リチウム(LiS)と単体ケイ素(Si)及び単体硫黄(S)を出発原料として、メカニカルミリングを行うことによりリチウムイオン伝導性硫化物ガラスが得られることを開示した(特許文献2参照)。
しかしながら、この硫化物ガラスは、硫化リチウムとSiSを原料とした場合に比べ、メカニカルミリングの時間が長くなり、得られる硫化物ガラスの電気伝導度も低いという問題点がある。
本発明者らは、より電気伝導度の高い硫化物ガラスの製造を目的に検討を続け、硫化リチウム及び五硫化リンを主成分とした硫化物セラミックスが高いリチウムイオン伝導性を示すことを見出した(特許文献3参照) 。
また、硫化リチウムと五硫化リンをメカニカルミリングすることにより得られる硫化物を、ガラス転移温度以上で焼成処理することにより、室温での電気伝導度が向上することも見出した(非特許文献1参照)。更に、より入手可能な原料として、単体リン(P)と単体硫黄(S)をメカニカルミリングによりガラス化したものに、金属リチウムを加え、更にメカニカルミリングすることによって、室温での電気伝導度が10−5S/cmオーダーの硫化物ガラスが得られることも見出した(非特許文献2参照)。
【0004】
【特許文献1】
特開平9−283156号公報
【特許文献2】
特開平11−134937号公報
【特許文献3】
特開2001−250580号公報
【非特許文献1】
Chemistry Letters 2001
【非特許文献2】
辰巳砂ら: 日本化学会2001年春季大会講演要旨集2E341
【0005】
【課題を解決するための手段】
本発明者らは、更に、簡便かつ入手が容易な原料を用いた製造方法について検討を行い、金属リチウム又は硫化リチウムと、単体硫黄(S)と単体リン(P)を出発原料として用い、メカニカルミリングにより得られた硫化物ガラスが、 硫化リチウムと五硫化リンを原料とし、メカニカルミリングにより製造したリチウムイオン伝導性硫化物ガラスと同等の性能を有することを見出した(特願2002−005855号)。更に、簡便かつ効率的な製造方法について検討を行い、特定の粒子径を有する硫化リチウム(LiS)を出発原料の一つとして用いることにより、固体電解質として有用な、硫化ガラスが得られることを見出し、本発明を完成するに至った。
更に、本発明で得られる硫化物ガラスは、ガラス転移温度以上で一旦焼成処理を行うことにより、室温での電気伝導度が10−4S/cm以上に向上することも見出した。
【0006】
すなわち、本発明は、
▲1▼ リチウムイオン伝導性硫化物ガラスを製造するにあたり、出発原料として、結晶粒子径が140nm以下の硫化リチウムを含む原料を用い、該原料をメカニカルミリングによりガラス化させることを特徴とする、リチウムイオン伝導性硫化物ガラスの製造方法、
▲2▼ 硫化リチウム以外の出発原料が、硫黄及びリンから選ばれる一種以上の元素を含むものである前記▲1▼に記載のリチウムイオン伝導性硫化物ガラスの製造方法、
▲3▼ 前記▲1▼又は▲2▼に記載の、メカニカルミリングによりガラス化したリチウムイオン伝導性硫化物ガラスをガラス転移温度以上で焼成することを特徴とする、リチウムイオン伝導性硫化物ガラスセラミックスの製造方法、
▲4▼ 150℃以上で焼成することを特徴とする前記▲3▼に記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法、
▲5▼ 前記焼成を真空下又は不活性ガス存在下で行なうことを特徴とする前記▲3▼又は▲4▼に記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法、
▲6▼ 前記硫化物ガラスの分解電圧が、少なくとも3Vであることを特徴とする前記▲1▼又は▲2▼に記載のリチウムイオン伝導性硫化物ガラスの製造方法、
▲7▼ 前記硫化物ガラスセラミックスの分解電圧が、少なくとも3Vであることを特徴とする前記▲3▼〜▲5▼のいずれかに記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法、
▲8▼ 前記▲1▼、▲2▼及び▲6▼のいずれかに記載の方法で製造されたリチウムイオン伝導性硫化物ガラスを固体電解質として用いることを特徴とする全固体型電池、
▲9▼ 前記▲3▼〜▲5▼及び▲7▼のいずれかに記載の方法で製造されたリチウムイオン伝導性硫化物ガラスセラミックスを固体電解質として用いることを特徴とする全固体型電池
を提供するものである。
【0007】
【発明の実施の形態】
本発明においては、出発原料として、結晶粒子径が140nm以下の硫化リチウム(LiS)を含む原料を用いる。硫化リチウム(LiS)の結晶粒子径は137nm以下が好ましく、135nm以下がより好ましい。結晶粒子径が140nmを超える硫化リチウム(LiS)を用いると、ガラス化が十分に進行しないため、目的物が得られない。
本発明で用いる硫化リチウム(LiS)は、いかなる製造方法により製造されたものでもよく、工業的に生産され、販売されているものであれば、特に限定なく使用することができるが、特開2000−247609号公報に記載された製造方法により製造されたものが好ましい。硫化リチウムの結晶粒子径は、X線回折装置を用いて測定した結果より、面指数(111)由来の結晶ピークからシェーラーの式により算出することができる。
【0008】
硫化リチウム(LiS)以外の出発原料については、特に限定されるものではないが、例えば、硫黄及びリンから選ばれる一種以上の元素を含むものが挙げられる。具体的には、単体硫黄、単体リン、SiS、五硫化リン(P)及びB等が挙げられる。単体硫黄及び単体リンは工業的に生産され、販売されているものであれば、特に限定なく使用することができる。更に、単体硫黄は、製油所等で生産される溶融硫黄をそのまま使用することもできる。
出発原料として、硫化リチウム(LiS)、単体硫黄(S)及び単体リン(P)を用いる場合、硫化リチウム単体硫黄及び単体リンの混合割合は特に限定されないが、モル比で硫化リチウム1に対して、単体硫黄0.5〜3.5、単体リン0.2〜1.5が好ましい。また、出発原料として、硫化リチウム(LiS)及び五硫化リン(P)を用いる場合、モル比で硫化リチウム1に対して、五硫化リン0.05〜1.0が好ましい。
【0009】
本発明では、硫化リチウム(LiS)を含む出発原料をガラス化するために、メカニカルミリングを用いる。メカニカルミリングによれば、室温付近でガラスを合成できるため、出発原料の熱分解が起らず、仕込み組成のガラスを得ることができるという利点がある。また、メカニカルミリングでは、ガラスの合成と同時に、ガラスを微粉末化できるという利点もある。
本発明の方法では、イオン伝導性硫化物ガラスを微粉末化するに際し、改めて粉砕することや、切削する必要がない。かかる微粉末化ガラスは、例えば、直接又はペレット状に加圧成形したものを全固体型電池に組み込み、固体電解質として用いることができる。
本発明の方法によれば、電池用固体電解質としてのイオン伝導性硫化物ガラスの製造工程を簡略化することができ、コストダウンも図れる。更に、メカニカルミリングによれば、微粉末で均一な粒子サイズを有するイオン伝導性硫化物ガラスを生成できる。
このようなガラスセラミックスを、固体電解質として用いれば、正極及び負極との接触界面の増大と密着性を向上できる。
【0010】
メカニカルミリングによる反応は不活性ガス(窒素ガス、アルゴンガス等)雰囲気下で行う。メカニカルミリングは種々の形式を用いることができるが、遊星型ボールミルを使用するのが特に好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができる。
メカニカルミリングの回転速度及び回転時間は特に限定されないが、回転速度が速いほど硫化物ガラスの生成速度は速くなり、回転時間が長いほど硫化物ガラスヘの出発原料の転化率は高くなる。
メカニカルミリングにより得られた硫化物ガラスをガラス転移温度(150℃)以上、好ましくは200〜500℃で焼成することにより、室温(25℃)での電気伝導度が向上した、硫化物ガラスセラミックスが得られる。焼成処理を行う硫化物ガラスの形状は特に限定されないが、粉末状のままでもよいし、ペレット状に加圧成形したものでもよい。
焼成処理は不活性ガス(窒素ガス、アルゴンガス等)存在下又は真空下で行うのが好ましい。焼成処理時の昇温速度、降温速度並びに焼成時間は特に限定されない。
このようにして得られた硫化物ガラスセラミックスは、固体電解質として好適なものである。
【0011】
【実施例】
次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
実施例1
出発原料として、結晶粒子径120nmの硫化リチウム結晶(LiS)及び五硫化リン(P)を用いた。ここで、結晶粒子径120nmの硫化リチウム結晶としては、フルウチ化学工業社製の硫化リチウムを用いた。
これらの粉末をアルゴンを雰囲気下のドライボックス中で、モル比8/2(LiS/P)の割合で秤量し、アルミナ製のポットに投入し、完全密閉した。このポットを遊星型ボールミル機に取り付け、初期は出発原料を十分混合する目的で数分間、低速回転(回転速度:85rpm)でミリングを行った。その後、徐々に回転数を増大させていき、370rpmで20時間メカニカルミリングを行った。なお、硫化リチウムの結晶粒子径は、X線回折装置(島津製作所製,XD−D1)を用いて測定した結果より、面指数(111)由来の結晶ピークからシェーラーの式により算出した。
得られた粉末ガラスのX線回折を行った結果、硫化リチウム(LiS)のピークは消失し、ガラス化が進行していることが確認された。
この粉末試料を不活性ガス(窒素)雰囲気下で370MPa(3700kg/cm)の加圧下でペレット状に成形後、電極としてカーボンペーストを塗布し、交流二端子法により電気伝導度の測定を行ったところ、室温(25℃)での電気伝導度は1.7×10−4S/cmであった。
【0012】
実施例2
結晶粒子径が120nmの硫化リチウム(LiS)の代わりに結晶粒子径が130nmの硫化リチウム(LiS)を用いた以外は、実施例1と同様にして粉末ガラスを得、ペレット状に加圧成形した。実施例1と同様の方法で電気伝導度を測定したところ、室温(25℃)での電気伝導度は8.0×10−5S/cmであった。ここで、結晶粒子径130nmの硫化リチウム結晶としては、アルドリッチ社製の硫化リチウムを用いた。
【0013】
実施例3
実施例1で得られたペレットを不活性ガス(窒素)の存在下で、250℃で焼成処理を行い、硫化物ガラスセラミックスを得た。冷却後、実施例1と同様の方法で電気伝導度を測定したところ、室温(25℃)での電気伝導度は7.2×10−4S/cmであり、焼成により電気伝導度が向上した。
【0014】
実施例4
実施例2で得られたペレットを不活性ガス(窒素)の存在下で、250℃で焼成処理を行い、硫化物ガラスセラミックスを得た。冷却後、実施例1と同様の方法で電気伝導度を測定したところ、室温(25℃)での電気伝導度は3.0×10−4S/cmであり、焼成により電気伝導度が向上した。
【0015】
比較例1
結晶粒子径が120nmの硫化リチウム(LiS)の代わりに結晶粒子径が275nmの硫化リチウム(LiS)を用いた以外は、実施例1と同様にして粉末ガラスを得た。得られた粉末ガラスのX線回折を行った結果、未反応硫化リチウム(LiS)の大きなピークが検出された。
この粉末ガラスを実施例1と同様にしてペレット状に加圧成形し、電極としてカーボンペーストを塗布し、実施例1と同じ方法で電気伝導度の測定を行ったところ、室温(25℃)での電気伝導度は1.0×10−5S/cmと非常に低い値であった。
【0016】
比較例2
結晶粒子径が120nmの硫化リチウム(LiS)の代わりに結晶粒子径が586nmの硫化リチウム(LiS)を用いた以外は、実施例1と同様にして粉末ガラスを得た。得られた粉末ガラスのX線回折を行った結果、未反応硫化リチウム(LiS)の大きなピークが検出された。
この粉末ガラスを実施例1と同様にしてペレット状に加圧成形し、電極としてカーボンペーストを塗布し、実施例1と同じ方法で電気伝導度の測定を行ったところ、室温(25℃)での電気伝導度は5.0×10−6S/cmと非常に低い値であった。
【0017】
実施例4
実施例3で得られたペレット状の硫化物ガラスセラミックスを固体電解質に用いて全固体型リチウム二次電池を作製した。
正極として4Vを超える電位を示すコバルト酸リチウム、負極にはインジウム金属を使用した。電流密度50μA/cmで、定電流放電測定を行ったところ、充放電が可能であった。また、充放電効率も100%であり、優れたサイクル特性を示すことが判明した。
【0018】
【発明の効果】
本発明によれば、入手が容易で且つ安価な原料を出発物質として、簡便な方法で室温での電気伝導度の高いリチウムイオン伝導性硫化物ガラス及びセラミックスを製造することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a lithium ion conductive sulfide glass and a glass ceramic, and an all-solid-state battery using the glass or the glass ceramic as a solid electrolyte.
[0002]
[Prior art]
It is known that lithium ion conductive sulfide glass and glass ceramics can be used as an electrolyte of an all-solid-state lithium secondary battery. Such a sulfide glass is prepared by mixing glass-forming agents such as SiS 2 , phosphorus pentasulfide (P 2 S 5 ) and B 2 S 3 with lithium sulfide (Li 2 S) as a glass modifier and melting by heating. After that, it is obtained by quenching (for example, see Patent Document 1).
The present inventors also disclose that such a sulfide glass can be obtained by mechanically milling a sulfide crystal at room temperature (see Patent Document 2).
[0003]
[Problems to be solved by the invention]
In these methods, lithium sulfide, which is a glass modifier, is used as one of the starting materials. However, lithium sulfide has low reactivity, does not efficiently react with the above-mentioned glass former, etc., and unreacted lithium sulfide is produced. Since a large amount remains, the target sulfide glass cannot be obtained. Further, when a large amount of unreacted lithium sulfide remains, the performance as an electrolyte is lowered, and there is a problem that it cannot be used as an electrolyte of an all-solid-state lithium battery.
The present inventors have been studying a method for producing a lithium ion conductive sulfide glass starting from a more easily available and inexpensive raw material.
For example, the present inventors have performed mechanical milling using metallic lithium (Li) or lithium sulfide (Li 2 S), elemental silicon (Si) and elemental sulfur (S) as starting materials, thereby obtaining lithium ion conductive sulfide. It has been disclosed that glass can be obtained (see Patent Document 2).
However, the sulfide glass has a problem that the mechanical milling time is longer and the electric conductivity of the obtained sulfide glass is lower than when lithium sulfide and SiS 2 are used as raw materials.
The present inventors have continued to study for the purpose of producing a sulfide glass having higher electric conductivity, and have found that a sulfide ceramic mainly containing lithium sulfide and phosphorus pentasulfide exhibits high lithium ion conductivity. (See Patent Document 3).
It has also been found that by subjecting a sulfide obtained by mechanical milling of lithium sulfide and phosphorus pentasulfide to a baking treatment at a temperature equal to or higher than the glass transition temperature, the electrical conductivity at room temperature is improved (see Non-Patent Document 1). ). Further, as a more available raw material, metallic phosphorus is added to vitrified elemental phosphorus (P) and elemental sulfur (S) by mechanical milling, and the resulting mixture is further mechanically milled to have an electric conductivity of 10 at room temperature. It was also found that a sulfide glass on the order of -5 S / cm was obtained (see Non-Patent Document 2).
[0004]
[Patent Document 1]
JP-A-9-283156 [Patent Document 2]
JP-A-11-134937 [Patent Document 3]
JP 2001-250580 A [Non-Patent Document 1]
Chemistry Letters 2001
[Non-patent document 2]
Tatsumi Sanda: Abstracts of the Chemical Society of Japan 2001 Spring Meeting Abstracts 2E341
[0005]
[Means for Solving the Problems]
The present inventors further studied a production method using a raw material which is simple and easily available, and using metallic lithium or lithium sulfide, elemental sulfur (S) and elemental phosphorus (P) as starting materials, It has been found that a sulfide glass obtained by milling has the same performance as a lithium ion conductive sulfide glass produced by mechanical milling using lithium sulfide and phosphorus pentasulfide as raw materials (Japanese Patent Application No. 2002-005855). . Furthermore, a simple and efficient manufacturing method was examined, and by using lithium sulfide (Li 2 S) having a specific particle size as one of the starting materials, a sulfide glass useful as a solid electrolyte could be obtained. And completed the present invention.
Furthermore, it has also been found that the sulfide glass obtained by the present invention is improved in electrical conductivity at room temperature to 10 −4 S / cm or more by performing a baking treatment once at a glass transition temperature or higher.
[0006]
That is, the present invention
(1) In producing a lithium ion conductive sulfide glass, a raw material containing lithium sulfide having a crystal particle diameter of 140 nm or less is used as a starting material, and the raw material is vitrified by mechanical milling. Method for producing ion-conductive sulfide glass,
(2) The method for producing a lithium ion conductive sulfide glass according to (1), wherein the starting material other than lithium sulfide contains one or more elements selected from sulfur and phosphorus.
(3) Lithium ion conductive sulfide glass ceramics, characterized in that the lithium ion conductive sulfide glass vitrified by mechanical milling described in (1) or (2) above is fired at a glass transition temperature or higher. Manufacturing method,
(4) The method for producing a lithium ion conductive sulfide glass-ceramic according to (3), wherein the firing is performed at 150 ° C. or more;
(5) The method for producing a lithium ion conductive sulfide glass ceramic according to (3) or (4), wherein the calcination is performed in a vacuum or in the presence of an inert gas.
(6) The method for producing a lithium ion conductive sulfide glass according to (1) or (2), wherein the decomposition voltage of the sulfide glass is at least 3 V;
(7) The method for producing a lithium ion conductive sulfide glass ceramic according to any of (3) to (5), wherein the decomposition voltage of the sulfide glass ceramic is at least 3 V;
(8) An all-solid-state battery using a lithium ion conductive sulfide glass produced by the method according to any of (1), (2), and (6) as a solid electrolyte;
(9) Provided is an all-solid-state battery using a lithium-ion conductive sulfide glass ceramics produced by the method according to any of (3) to (5) and (7) as a solid electrolyte. Is what you do.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a starting material containing lithium sulfide (Li 2 S) having a crystal particle diameter of 140 nm or less is used. The crystal particle diameter of lithium sulfide (Li 2 S) is preferably 137 nm or less, more preferably 135 nm or less. When lithium sulfide (Li 2 S) having a crystal particle diameter of more than 140 nm is used, vitrification does not sufficiently proceed, so that an intended product cannot be obtained.
Lithium sulfide (Li 2 S) used in the present invention may be produced by any production method, and may be used without particular limitation as long as it is industrially produced and sold. What was manufactured by the manufacturing method described in Unexamined-Japanese-Patent No. 2000-247609 is preferable. The crystal particle diameter of lithium sulfide can be calculated from the crystal peak derived from the plane index (111) by the Scherrer equation based on the result of measurement using an X-ray diffractometer.
[0008]
The starting material other than lithium sulfide (Li 2 S) is not particularly limited, but examples include a material containing one or more elements selected from sulfur and phosphorus. Specifically, elemental sulfur, elemental phosphorus, SiS 2 , phosphorus pentasulfide (P 2 S 5 ), B 2 S 3 and the like can be mentioned. Elemental sulfur and elemental phosphorus can be used without particular limitation as long as they are industrially produced and sold. Further, as the elemental sulfur, molten sulfur produced in a refinery or the like can be used as it is.
When lithium sulfide (Li 2 S), elemental sulfur (S) and elemental phosphorus (P) are used as a starting material, the mixing ratio of the elemental sulfur and the elemental phosphorus is not particularly limited. On the other hand, elemental sulfur of 0.5 to 3.5 and elemental phosphorus of 0.2 to 1.5 are preferred. When lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) are used as starting materials, the molar ratio of phosphorus pentasulfide to phosphorus pentasulfide is preferably 0.05 to 1.0.
[0009]
In the present invention, mechanical milling is used to vitrify a starting material containing lithium sulfide (Li 2 S). According to mechanical milling, since glass can be synthesized at around room temperature, there is an advantage that thermal decomposition of a starting material does not occur and a glass having a charged composition can be obtained. In addition, mechanical milling has an advantage that the glass can be finely divided at the same time as the synthesis of the glass.
In the method of the present invention, it is not necessary to pulverize or cut again when pulverizing the ion-conductive sulfide glass. Such a pulverized glass can be used as a solid electrolyte by, for example, directly or pressure-molding a pellet into a solid state battery.
ADVANTAGE OF THE INVENTION According to the method of this invention, the manufacturing process of the ion conductive sulfide glass as a solid electrolyte for batteries can be simplified, and the cost can be reduced. Further, according to the mechanical milling, an ion conductive sulfide glass having a fine powder and a uniform particle size can be produced.
If such a glass ceramic is used as a solid electrolyte, the contact interface between the positive electrode and the negative electrode can be increased and the adhesion can be improved.
[0010]
The reaction by mechanical milling is performed in an inert gas (nitrogen gas, argon gas, etc.) atmosphere. Although various types of mechanical milling can be used, it is particularly preferable to use a planetary ball mill. In a planetary ball mill, the base plate revolves while the pot rotates, and very high impact energy can be efficiently generated.
The rotation speed and rotation time of the mechanical milling are not particularly limited, but the higher the rotation speed, the higher the production speed of the sulfide glass, and the longer the rotation time, the higher the conversion of the starting material to the sulfide glass.
By baking the sulfide glass obtained by mechanical milling at a glass transition temperature (150 ° C.) or higher, preferably 200 to 500 ° C., the sulfide glass ceramics having improved electrical conductivity at room temperature (25 ° C.) is obtained. can get. The shape of the sulfide glass to be subjected to the firing treatment is not particularly limited, but it may be in the form of a powder or may be formed into a pellet by pressure.
The firing treatment is preferably performed in the presence of an inert gas (such as a nitrogen gas or an argon gas) or in a vacuum. The heating rate, the cooling rate, and the firing time during the firing process are not particularly limited.
The sulfide glass ceramics thus obtained is suitable as a solid electrolyte.
[0011]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
As starting materials, lithium sulfide crystals (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) having a crystal particle diameter of 120 nm were used. Here, as a lithium sulfide crystal having a crystal particle diameter of 120 nm, lithium sulfide manufactured by Furuuchi Chemical Industry Co., Ltd. was used.
These powders were weighed in a dry box under an atmosphere of argon at a molar ratio of 8/2 (Li 2 S / P 2 S 5 ), charged into an alumina pot, and completely sealed. This pot was attached to a planetary ball mill, and initially milled at low speed (rotational speed: 85 rpm) for several minutes in order to sufficiently mix the starting materials. Thereafter, the rotational speed was gradually increased, and mechanical milling was performed at 370 rpm for 20 hours. The crystal particle diameter of lithium sulfide was calculated from the crystal peak derived from the plane index (111) by the Scherrer equation based on the result of measurement using an X-ray diffractometer (XD-D1, manufactured by Shimadzu Corporation).
As a result of X-ray diffraction of the obtained powdered glass, the peak of lithium sulfide (Li 2 S) disappeared, and it was confirmed that vitrification had progressed.
This powder sample was formed into a pellet under an inert gas (nitrogen) atmosphere under a pressure of 370 MPa (3700 kg / cm 2 ), and then a carbon paste was applied as an electrode, and the electric conductivity was measured by an AC two-terminal method. As a result, the electrical conductivity at room temperature (25 ° C.) was 1.7 × 10 −4 S / cm.
[0012]
Example 2
Powdered glass was obtained and pelletized in the same manner as in Example 1 except that lithium sulfide (Li 2 S) having a crystal particle diameter of 130 nm was used instead of lithium sulfide (Li 2 S) having a crystal particle diameter of 120 nm. It was molded under pressure. When the electric conductivity was measured in the same manner as in Example 1, the electric conductivity at room temperature (25 ° C.) was 8.0 × 10 −5 S / cm. Here, as the lithium sulfide crystal having a crystal particle diameter of 130 nm, lithium sulfide manufactured by Aldrich was used.
[0013]
Example 3
The pellets obtained in Example 1 were calcined at 250 ° C. in the presence of an inert gas (nitrogen) to obtain sulfide glass ceramics. After cooling, the electric conductivity was measured in the same manner as in Example 1. The electric conductivity at room temperature (25 ° C.) was 7.2 × 10 −4 S / cm, and the electric conductivity was improved by firing. did.
[0014]
Example 4
The pellets obtained in Example 2 were calcined at 250 ° C. in the presence of an inert gas (nitrogen) to obtain sulfide glass ceramics. After cooling, the electric conductivity was measured in the same manner as in Example 1. The electric conductivity at room temperature (25 ° C.) was 3.0 × 10 −4 S / cm, and the electric conductivity was improved by firing. did.
[0015]
Comparative Example 1
A powdered glass was obtained in the same manner as in Example 1, except that lithium sulfide (Li 2 S) having a crystal particle size of 275 nm was used instead of lithium sulfide (Li 2 S) having a crystal particle size of 120 nm. As a result of X-ray diffraction of the obtained powder glass, a large peak of unreacted lithium sulfide (Li 2 S) was detected.
The powdered glass was pressed into a pellet in the same manner as in Example 1, a carbon paste was applied as an electrode, and the electrical conductivity was measured by the same method as in Example 1. As a result, at room temperature (25 ° C.) Had a very low electric conductivity of 1.0 × 10 −5 S / cm.
[0016]
Comparative Example 2
Powdered glass was obtained in the same manner as in Example 1 except that lithium sulfide (Li 2 S) having a crystal particle diameter of 586 nm was used instead of lithium sulfide (Li 2 S) having a crystal particle diameter of 120 nm. As a result of X-ray diffraction of the obtained powder glass, a large peak of unreacted lithium sulfide (Li 2 S) was detected.
The powdered glass was pressed into a pellet in the same manner as in Example 1, a carbon paste was applied as an electrode, and the electrical conductivity was measured by the same method as in Example 1. As a result, at room temperature (25 ° C.) Had a very low electric conductivity of 5.0 × 10 −6 S / cm.
[0017]
Example 4
An all-solid-state lithium secondary battery was manufactured using the pellet-shaped sulfide glass ceramics obtained in Example 3 as a solid electrolyte.
Lithium cobalt oxide showing a potential exceeding 4 V was used as a positive electrode, and indium metal was used as a negative electrode. When constant current discharge measurement was performed at a current density of 50 μA / cm 2 , charge and discharge were possible. In addition, the charge and discharge efficiency was 100%, and it was found that the battery exhibited excellent cycle characteristics.
[0018]
【The invention's effect】
According to the present invention, a lithium ion conductive sulfide glass and a ceramic having high electrical conductivity at room temperature can be produced by a simple method using easily available and inexpensive raw materials as starting materials.

Claims (9)

リチウムイオン伝導性硫化物ガラスを製造するにあたり、出発原料として、結晶粒子径が140nm以下の硫化リチウムを含む原料を用い、該原料をメカニカルミリングによりガラス化させることを特徴とする、リチウムイオン伝導性硫化物ガラスの製造方法。In producing a lithium ion conductive sulfide glass, a raw material containing lithium sulfide having a crystal particle diameter of 140 nm or less is used as a starting material, and the raw material is vitrified by mechanical milling. Manufacturing method of sulfide glass. 硫化リチウム以外の出発原料が、硫黄及びリンから選ばれる一種以上の元素を含むものである請求項1に記載のリチウムイオン伝導性硫化物ガラスの製造方法。The method for producing a lithium ion conductive sulfide glass according to claim 1, wherein the starting material other than lithium sulfide contains one or more elements selected from sulfur and phosphorus. 請求項1又は2に記載の、メカニカルミリングによりガラス化したリチウムイオン伝導性硫化物ガラスをガラス転移温度以上で焼成することを特徴とする、リチウムイオン伝導性硫化物ガラスセラミックスの製造方法。A method for producing a lithium ion conductive sulfide glass ceramic, comprising firing the lithium ion conductive sulfide glass vitrified by mechanical milling according to claim 1 or 2 at a glass transition temperature or higher. 150℃以上で焼成することを特徴とする請求項3に記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法。The method for producing a lithium ion conductive sulfide glass ceramic according to claim 3, wherein the firing is performed at 150 ° C or higher. 前記焼成を真空下又は不活性ガス存在下で行なうことを特徴とする請求項3又は4に記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法。5. The method for producing a lithium ion conductive sulfide glass ceramic according to claim 3, wherein the calcination is performed in a vacuum or in the presence of an inert gas. 前記硫化物ガラスの分解電圧が、少なくとも3Vであることを特徴とする請求項1又は2に記載のリチウムイオン伝導性硫化物ガラスの製造方法。The method for producing a lithium ion conductive sulfide glass according to claim 1 or 2, wherein the decomposition voltage of the sulfide glass is at least 3V. 前記硫化物ガラスセラミックスの分解電圧が、少なくとも3Vであることを特徴とする請求項3〜5のいずれかに記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法。The method for producing a lithium ion conductive sulfide glass ceramic according to any one of claims 3 to 5, wherein a decomposition voltage of the sulfide glass ceramic is at least 3V. 請求項1、2及び6のいずれかに記載の方法で製造されたリチウムイオン伝導性硫化物ガラスを固体電解質として用いることを特徴とする全固体型電池。An all-solid-state battery using a lithium-ion conductive sulfide glass produced by the method according to claim 1 as a solid electrolyte. 請求項3〜5及び7のいずれかに記載の方法で製造されたリチウムイオン伝導性硫化物ガラスセラミックスを固体電解質として用いることを特徴とする全固体型電池。An all-solid-state battery using a lithium-ion conductive sulfide glass-ceramic produced by the method according to any one of claims 3 to 5 and 7 as a solid electrolyte.
JP2003053782A 2003-02-28 2003-02-28 Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic Pending JP2004265685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053782A JP2004265685A (en) 2003-02-28 2003-02-28 Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053782A JP2004265685A (en) 2003-02-28 2003-02-28 Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic

Publications (2)

Publication Number Publication Date
JP2004265685A true JP2004265685A (en) 2004-09-24
JP2004265685A5 JP2004265685A5 (en) 2006-06-15

Family

ID=33118288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053782A Pending JP2004265685A (en) 2003-02-28 2003-02-28 Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic

Country Status (1)

Country Link
JP (1) JP2004265685A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet
JP2008103281A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte and solid secondary battery using the same
WO2008072685A1 (en) 2006-12-14 2008-06-19 Sumitomo Electric Industries, Ltd. Battery structure and lithium secondary battery using the same
WO2008117549A1 (en) 2007-03-23 2008-10-02 Toyota Jidosha Kabushiki Kaisha Solid battery and process for producing the same
WO2008123394A1 (en) 2007-03-23 2008-10-16 Toyota Jidosha Kabushiki Kaisha Mixed material layer, method for production of the mixed material layer, solid battery, and method for production of the solid battery
JP2009158476A (en) * 2007-12-03 2009-07-16 Seiko Epson Corp Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method of manufacturing all-solid lithium secondary battery
WO2010004401A1 (en) * 2008-07-07 2010-01-14 Toyota Jidosha Kabushiki Kaisha Process for producing sulfide-based solid electrolyte
JP2010030889A (en) * 2008-07-01 2010-02-12 Idemitsu Kosan Co Ltd Production method for lithium ion-conductive sulfide glass, production method for lithium ion-conductive sulfide glass ceramic, and mechanical milling apparatus for sulfide glass production
JP2010092828A (en) * 2008-09-11 2010-04-22 Toyota Motor Corp Sulfide-based solid electrolyte
WO2010084583A1 (en) * 2009-01-21 2010-07-29 トヨタ自動車株式会社 Sulfide solid electrolyte material
WO2010116732A1 (en) 2009-04-10 2010-10-14 出光興産株式会社 Glass comprising solid electrolyte particles and lithium battery
JP2011129312A (en) * 2009-12-16 2011-06-30 Toyota Motor Corp Method of manufacturing sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
JP2013020894A (en) * 2011-07-13 2013-01-31 Toyota Motor Corp Method for producing sulfide solid electrolyte material
US8637190B2 (en) 2008-09-19 2014-01-28 Toyota Jidosha Kabushiki Kaisha Battery unit
JP2015195155A (en) * 2014-03-19 2015-11-05 出光興産株式会社 solid electrolyte and battery
US9356315B2 (en) 2010-08-26 2016-05-31 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
WO2017107397A1 (en) * 2015-12-23 2017-06-29 山东玉皇新能源科技有限公司 Preparation of amorphous sulfide solid electrolyte

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet
JP2008103281A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte and solid secondary battery using the same
US8021790B2 (en) 2006-12-14 2011-09-20 Sumitomo Electric Industries, Ltd. Battery structure and lithium secondary battery using the same
WO2008072685A1 (en) 2006-12-14 2008-06-19 Sumitomo Electric Industries, Ltd. Battery structure and lithium secondary battery using the same
WO2008117549A1 (en) 2007-03-23 2008-10-02 Toyota Jidosha Kabushiki Kaisha Solid battery and process for producing the same
WO2008123394A1 (en) 2007-03-23 2008-10-16 Toyota Jidosha Kabushiki Kaisha Mixed material layer, method for production of the mixed material layer, solid battery, and method for production of the solid battery
JP2008270137A (en) * 2007-03-23 2008-11-06 Toyota Motor Corp Mixture layer and its manufacturing method as well as solid battery and its manufacturing method
US8574766B2 (en) 2007-03-23 2013-11-05 Toyota Jidosha Kabushiki Kaisha Composite material layer and method of producing the same, and solid state battery and method of producing the same
JP2009158476A (en) * 2007-12-03 2009-07-16 Seiko Epson Corp Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method of manufacturing all-solid lithium secondary battery
JP2010030889A (en) * 2008-07-01 2010-02-12 Idemitsu Kosan Co Ltd Production method for lithium ion-conductive sulfide glass, production method for lithium ion-conductive sulfide glass ceramic, and mechanical milling apparatus for sulfide glass production
KR101498849B1 (en) * 2008-07-07 2015-03-05 도요타지도샤가부시키가이샤 Process for producing sulfide-based solid electrolyte
US8556197B2 (en) 2008-07-07 2013-10-15 Toyota Jidosha Kabushiki Kaisha Process for producing sulfide-based solid electrolyte
WO2010004401A1 (en) * 2008-07-07 2010-01-14 Toyota Jidosha Kabushiki Kaisha Process for producing sulfide-based solid electrolyte
JP2010092828A (en) * 2008-09-11 2010-04-22 Toyota Motor Corp Sulfide-based solid electrolyte
US8637190B2 (en) 2008-09-19 2014-01-28 Toyota Jidosha Kabushiki Kaisha Battery unit
CN101861673A (en) * 2009-01-21 2010-10-13 丰田自动车株式会社 Sulfide solid electrolyte material
JP5110093B2 (en) * 2009-01-21 2012-12-26 トヨタ自動車株式会社 Sulfide solid electrolyte material
CN101861673B (en) * 2009-01-21 2013-06-12 丰田自动车株式会社 Sulfide solid electrolyte material
US20110274984A1 (en) * 2009-01-21 2011-11-10 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material
WO2010084583A1 (en) * 2009-01-21 2010-07-29 トヨタ自動車株式会社 Sulfide solid electrolyte material
US11075404B2 (en) 2009-04-10 2021-07-27 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
US9051201B2 (en) 2009-04-10 2015-06-09 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
EP3357875A1 (en) 2009-04-10 2018-08-08 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
US11431024B2 (en) 2009-04-10 2022-08-30 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
WO2010116732A1 (en) 2009-04-10 2010-10-14 出光興産株式会社 Glass comprising solid electrolyte particles and lithium battery
US20120301796A1 (en) * 2009-12-16 2012-11-29 Toyota Jidosha Kabushiki Kaisha Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
US10008735B2 (en) * 2009-12-16 2018-06-26 Toyota Jidosha Kabushiki Kaisha Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
US10707518B2 (en) 2009-12-16 2020-07-07 Toyota Jidosha Kabushiki Kaisha Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
CN102696141A (en) * 2009-12-16 2012-09-26 丰田自动车株式会社 Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
JP2011129312A (en) * 2009-12-16 2011-06-30 Toyota Motor Corp Method of manufacturing sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
US9356315B2 (en) 2010-08-26 2016-05-31 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
US10193185B2 (en) 2010-08-26 2019-01-29 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
JP2013020894A (en) * 2011-07-13 2013-01-31 Toyota Motor Corp Method for producing sulfide solid electrolyte material
JP2015195155A (en) * 2014-03-19 2015-11-05 出光興産株式会社 solid electrolyte and battery
WO2017107397A1 (en) * 2015-12-23 2017-06-29 山东玉皇新能源科技有限公司 Preparation of amorphous sulfide solid electrolyte

Similar Documents

Publication Publication Date Title
WO2003059810A1 (en) Method for producing sulfide glass or sulfide glass ceramic capable of conducing lithium ion, and whole solid type cell using said glass ceramic
JP4498688B2 (en) Method for producing lithium ion conductive sulfide glass and glass ceramics
JP6595152B2 (en) Solid electrolyte for lithium secondary battery and sulfide compound for solid electrolyte
JP6686860B2 (en) Method for producing sulfide solid electrolyte
JP4580149B2 (en) Lithium ion conductive sulfide glass manufacturing method and lithium ion conductive sulfide glass ceramic manufacturing method
JP5957144B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
JP2004265685A (en) Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic
JP5590836B2 (en) Sulfide solid electrolyte
JP3233345B2 (en) Method for producing ion-conductive sulfide glass fine powder for all-solid-state battery, ion-conductive sulfide glass fine powder for all-solid-state battery, solid electrolyte, and all-solid-state secondary battery
JP2016024874A (en) Sulfide-based solid electrolyte for lithium ion batteries
JP2010257878A (en) All-solid-state battery
JP2013075816A (en) Lithium sulfide, method for producing the lithium sulfide, and method for producing inorganic solid electrolyte
JP5561023B2 (en) Method for producing sulfide solid electrolyte material
JP2017091810A (en) Method for manufacturing positive electrode mixture
JP7176937B2 (en) Method for producing composite solid electrolyte
WO2012161055A1 (en) Production method for material employed in energy device and/or electrical storage device, and material employed in energy device and/or electrical storage device
JP2011150806A (en) Method of manufacturing sulfide solid electrolyte material
JP2020119845A (en) Production method of sulfide-based solid electrolyte particle
TWI415140B (en) Lithium-ion conductive sulfide glass and glass-ceramic manufacturing method, and a solid-state battery using the same
JP5036686B2 (en) Lithium copper sulfide and method for producing the same
JP2019071210A (en) Method for manufacturing inorganic material
JP6162981B2 (en) Method for producing lithium sulfide and method for producing inorganic solid electrolyte
JP6780479B2 (en) Method for producing sulfide solid electrolyte
JPH09156931A (en) Production of lithium nickelate
JPH0782857B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415