JP2009158476A - Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method of manufacturing all-solid lithium secondary battery - Google Patents

Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method of manufacturing all-solid lithium secondary battery Download PDF

Info

Publication number
JP2009158476A
JP2009158476A JP2008270610A JP2008270610A JP2009158476A JP 2009158476 A JP2009158476 A JP 2009158476A JP 2008270610 A JP2008270610 A JP 2008270610A JP 2008270610 A JP2008270610 A JP 2008270610A JP 2009158476 A JP2009158476 A JP 2009158476A
Authority
JP
Japan
Prior art keywords
sulfide
secondary battery
solid
electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008270610A
Other languages
Japanese (ja)
Other versions
JP2009158476A5 (en
JP5277859B2 (en
Inventor
Yuji Shinohara
祐治 篠原
Takeo Kawase
健夫 川瀬
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008270610A priority Critical patent/JP5277859B2/en
Priority to US12/327,343 priority patent/US8778543B2/en
Publication of JP2009158476A publication Critical patent/JP2009158476A/en
Publication of JP2009158476A5 publication Critical patent/JP2009158476A5/ja
Application granted granted Critical
Publication of JP5277859B2 publication Critical patent/JP5277859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily inexpensively manufacture an all-solid lithium secondary battery having high charge discharge output current density. <P>SOLUTION: The method of manufacturing the all-solid lithium secondary battery is that a mixed electrolyte formed by mixing various sulfide-based lithium ion conductive solid electrolytes with α-alumina is vitrified to form a new lithium ion conductor having improved conductivity. An electrolyte layer 8 using the lithium ion conductor, a positive electrode (I) comprising a positive mix material 3, and a negative electrode (II) comprising negative mix material 7 are composed. At least one of the positive electrode (I) and the negatived electrode (II) and the electrolyte layer 8 are stacked, heated and compressed under conditions in which the electrolyte is not crystallized to integrate them and manufacture the battery. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、硫化物系リチウムイオン伝導性固体電解質ガラス、全固体リチウム二次電池および全固体リチウム二次電池の製造方法に関する。   The present invention relates to a sulfide-based lithium ion conductive solid electrolyte glass, an all-solid lithium secondary battery, and a method for producing an all-solid lithium secondary battery.

近年、パーソナルコンピュータや携帯電話等のポータブル機器の開発に伴い、その電源として、小型軽量の二次電池の需要は非常に大きくなっている。二次電池の中でも、特に、リチウム二次電池は、リチウムの原子量が小さく、かつイオン化エネルギーが大きい為、エネルギー密度が高い。従って、このような電池に関する研究が盛んに行われ、現在では、ポータブル機器の電源を始めとする広範囲な用途に用いられている。
このようなリチウム二次電池は、電解質の種類によって、液体電解質を用いたリチウムイオン電池と、高分子固体電解質を用いるリチウムイオンポリマー電池あるいは無機系のリチウムイオン伝導性固体電解質を用いたリチウムイオン電池等に大きく区分できる。
In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for small and lightweight secondary batteries as the power source has become very large. Among the secondary batteries, in particular, the lithium secondary battery has a high energy density because the atomic weight of lithium is small and the ionization energy is large. Therefore, research on such a battery has been actively conducted, and at present, it is used for a wide range of applications such as a power source of a portable device.
Depending on the type of electrolyte, such lithium secondary batteries include a lithium ion battery using a liquid electrolyte, a lithium ion polymer battery using a polymer solid electrolyte, or a lithium ion battery using an inorganic lithium ion conductive solid electrolyte. Etc. can be broadly classified.

この中で、全固体リチウム二次電池は、図1に示すような構造を有している。即ち、ポリプロピレン樹脂からなる絶縁性円筒管104の中に正極(I)が挿入され、この正極(I)は、正極活物質と固体電解質粉末からなる正極合材103を、金型により約4トン/cm2の圧力で加圧成型し、その際、正極リード板101と電気的接合をした正極集電体102を正極(I)内部に挿入して作成される。
また、負極(II)は、負極活物質と電解質粉末からなる負極合材107を作成し、負極集電体106を挿入し、これを加圧成型して作成される。そして、これらの正極(I)、負極(II)間には、リチウムイオン伝導性固体電解質層108を中間に介在させ、全体を加圧プレスすることで、正極層、電解質層、負極層を一体化して、全固体リチウム二次電池素子が作成される。
Among these, the all-solid lithium secondary battery has a structure as shown in FIG. That is, the positive electrode (I) is inserted into the insulating cylindrical tube 104 made of polypropylene resin, and the positive electrode (I) is formed by adding about 4 tons of a positive electrode mixture 103 made of a positive electrode active material and a solid electrolyte powder by a mold. In this case, the positive electrode current collector 102 that is pressure-molded with a pressure of / cm 2 and electrically connected to the positive electrode lead plate 101 is inserted into the positive electrode (I).
The negative electrode (II) is prepared by preparing a negative electrode mixture 107 made of a negative electrode active material and an electrolyte powder, inserting a negative electrode current collector 106, and press-molding it. The lithium ion conductive solid electrolyte layer 108 is interposed between the positive electrode (I) and the negative electrode (II), and the whole is press-pressed to integrate the positive electrode layer, the electrolyte layer, and the negative electrode layer. Thus, an all solid lithium secondary battery element is produced.

この中で、リチウムイオン伝導性固体電解質層108は、硫化物系リチウムイオン伝導性固体電解質にα−アルミナ(Al23)を混合させることで、母体である硫化物系リチウムイオン伝導性固体電解質の持つイオン伝導性が改善される材料を用いる。このような電解質層を用いた全固体リチウム二次電池では、作成した全固体リチウム二次電池の充放電出力の特性が向上することが知られている。
これらの電池素子は、正極(I)、負極(II)が、それぞれの電極端子を兼ねたプレス成型金型で、ポリプロピレン樹脂製の絶縁性円筒管104内に加圧充填されるとともに、正極(I)、負極(II)の短絡を防ぐための絶縁菅を介在させたボルトとナットを用いて強固に締め付けることにより作成される。尚、これらの製造工程は、乾燥不活性ガス雰囲気中、室温領域で処理されている。
Among them, the lithium ion conductive solid electrolyte layer 108 is mixed with α-alumina (Al 2 O 3 ) in the sulfide-based lithium ion conductive solid electrolyte, so that the sulfide-based lithium ion conductive solid as a base material is mixed. A material that improves the ionic conductivity of the electrolyte is used. In an all-solid lithium secondary battery using such an electrolyte layer, it is known that the charge / discharge output characteristics of the produced all-solid lithium secondary battery are improved.
In these battery elements, a positive electrode (I) and a negative electrode (II) are press-molded molds that also serve as respective electrode terminals. I) It is created by tightening firmly using bolts and nuts interposing an insulating rod for preventing a short circuit of the negative electrode (II). In addition, these manufacturing processes are processed in a room temperature region in a dry inert gas atmosphere.

また、ここで用いられる硫化物系のリチウムイオン伝導性固体電解質層108は、硫化物系のリチウムイオン伝導性固体電解質が、主に用いられ、これら電解質には結晶質、非晶質が使われている。このような材料を用いて作成した電池は、電池全体が絶縁性円筒管104内に加圧、圧縮され、強固に固められた状態となっており、その結果、電池充放電サイクルの際に生じる電極活物質の体積膨張収縮に伴って生じる電極活物質と電解質粉末の接触界面の接合阻害を回避できる。
従って、その充放電サイクルに伴う電池放電容量の減少は阻止され、優れた特性を示す電池となっている。ここで、絶縁性円筒管104で強固に囲うことのない実用電池の形状を想定した場合、その充放電サイクルサイクルに伴って、電池放電容量が大きく減少する。
The sulfide-based lithium ion conductive solid electrolyte layer 108 used here is mainly a sulfide-based lithium ion conductive solid electrolyte, and these electrolytes are crystalline or amorphous. ing. A battery made using such a material is in a state where the entire battery is pressed and compressed in the insulating cylindrical tube 104 and is firmly solidified, and as a result, occurs during the battery charge / discharge cycle. It is possible to avoid the inhibition of bonding at the contact interface between the electrode active material and the electrolyte powder, which is caused by the volume expansion and contraction of the electrode active material.
Therefore, a decrease in the battery discharge capacity accompanying the charge / discharge cycle is prevented, and the battery exhibits excellent characteristics. Here, assuming a shape of a practical battery that is not tightly surrounded by the insulating cylindrical tube 104, the battery discharge capacity is greatly reduced with the charge / discharge cycle cycle.

また、他の全固体リチウム二次電池として、下記非特許文献1に示すように、蒸着装置やスパッタ装置を用い、正極薄膜、電解質薄膜そして負極薄膜を順次、形成することにより構成する全固体薄膜リチウム二次電池が開示され、その特性として、数千サイクル以上の優れた充放電サイクル特性が得られることが報告されている。この電池では、蒸着により形成された電解質層内が粒界のない薄い一枚の電解質板で出来ているため、電解質内で、可動イオンであるリチウムイオンの移動が電解質粒子の接合粒界の影響を受けることがなく、電極活物質の充放電に伴って生じる体積膨張収縮に対しての粒界接合の阻害が起こりにくい為、充放電サイクル寿命が優れたものとなる。   Further, as another all-solid lithium secondary battery, as shown in Non-Patent Document 1 below, an all-solid thin film configured by sequentially forming a positive electrode thin film, an electrolyte thin film, and a negative electrode thin film using a vapor deposition apparatus or a sputtering apparatus. A lithium secondary battery is disclosed, and it has been reported that excellent charge / discharge cycle characteristics of several thousand cycles or more can be obtained. In this battery, the inside of the electrolyte layer formed by vapor deposition is made of a single thin electrolyte plate without grain boundaries, so the movement of lithium ions, which are mobile ions, in the electrolyte is affected by the joint grain boundaries of the electrolyte particles. In this case, the intergranular bonding is hardly inhibited against the volume expansion / contraction caused by the charging / discharging of the electrode active material, so that the charge / discharge cycle life is excellent.

S. D. Jhones and J. R. Akridge, J. Power Sources, 43−44, 505(1993)S. D. Jones and J.M. R. Akridge, J .; Power Sources, 43-44, 505 (1993)

しかしながら、前記した全固体リチウム二次電池では、電解質層および電極層中では固体電解質は、単に電解質粉末粒子が加圧圧縮により、固められただけで、その接触界面は粒界が存在した状態となっているため、その接合力は弱い。特に、全固体リチウム二次電池を高率充電すると、その際に生じる電池内部での電流密度分布の違いにより、電流密度分布の強い部分は、電極体積変化が極めて大となり、電極活物質と電解質粒子接合界面での電子的接合阻害が起こる。   However, in the above-described all solid lithium secondary battery, in the electrolyte layer and the electrode layer, the solid electrolyte is simply formed by compressing the electrolyte powder particles by pressure compression, and the contact interface is in a state where grain boundaries exist. Therefore, the bonding force is weak. In particular, when an all-solid lithium secondary battery is charged at a high rate, due to the difference in current density distribution inside the battery that occurs at that time, the electrode volume change is extremely large in the portion where the current density distribution is strong, and the electrode active material and the electrolyte Electronic bonding inhibition occurs at the particle bonding interface.

また、この際、負極電極活物質の反応として、リチウム金属の可逆析出反応を利用した電池系では、電解質層内の電解質粉末粒子間の接合粒界にリチウムイオンが樹技状リチウム金属状となって析出する。その結果、こうした全固体リチウム二次電池では、充放電サイクルに伴って、充放電出力電流密度の低下を招き、その容量も暫時、低下する。さらに、析出した樹技状リチウム金属は、電解質粒子間接合界面を広げ、その間に析出することにより、正極と負極との電気的短絡を招く等、種々の課題を有していた。   At this time, in a battery system using a reversible precipitation reaction of lithium metal as a reaction of the negative electrode active material, lithium ions are converted into a tree-like lithium metal at the junction grain boundary between the electrolyte powder particles in the electrolyte layer. To precipitate. As a result, in such an all-solid lithium secondary battery, the charge / discharge output current density is lowered with the charge / discharge cycle, and the capacity is also lowered for a while. In addition, the deposited lithium-like lithium metal has various problems such as causing an electrical short circuit between the positive electrode and the negative electrode by spreading the interface between the electrolyte particles and precipitating between them.

また、全固体薄膜リチウム二次電池を、実用性に富んだ電池とするには、高容量の電池とする必要があり、これが為には、電極層内のイオン伝導経路を維持しつつ、使用する電極活物質の量を増加させる必要がある。この技術を用い、そのままの形状で電極層を厚くすると、電極抵抗が大きくなる。こうした抵抗を下げるためには、電極堆積時に、電極活物質間にイオン伝導性電解質材料を同時に堆積させる必要があり、堆積時間の増大だけでなく、堆積させる装置に多元蒸着装置等、高価な装置が必要となり、全固体薄膜リチウム二次電池の製造費用も多大となる。このように従来の蒸着方法により電極活物質量を増加させることは、きわめて困難で、高エネルギーを有する実用的なリチウム二次電池を安価に提供することが出来なかった。   In addition, in order to make an all-solid-state thin film lithium secondary battery a practical battery, it is necessary to use a high-capacity battery. For this purpose, it is used while maintaining the ion conduction path in the electrode layer. It is necessary to increase the amount of electrode active material to be used. When this technique is used and the electrode layer is thickened as it is, the electrode resistance increases. In order to lower such resistance, it is necessary to deposit an ion conductive electrolyte material between electrode active materials at the time of electrode deposition. Not only the deposition time is increased, but the deposition apparatus is an expensive apparatus such as a multi-source evaporation apparatus. And the manufacturing cost of the all-solid-state thin film lithium secondary battery becomes large. As described above, it is extremely difficult to increase the amount of the electrode active material by the conventional vapor deposition method, and it has been impossible to provide a practical lithium secondary battery having high energy at low cost.

こうした課題を解決させるため、用いるリチウムイオン伝導性電解質層に柔軟性を与え、その加工性を改善するために、リチウムイオン伝導性電解質層の構成において、使用電解質粉末に有機高分子バインダを添加し、柔軟性に富んだシート化が種々、検討されてきた。しかし、いずれにしても、作成した固体電解質シート内部では、電解質粒子間の接合界面では粒界が存在しており、これを用いて全固体リチウム二次電池を構成しても、作成した電池の充放電サイクル寿命、特に深い充放電サイクルにおいて、先に述べたような現象、即ち、電池内部での電流密度分布の違いにより、電流密度分布の強い部分は、電極体積変化が極めて大となり、電極活物質と電解質粒子接合界面での電子的接合阻害が起こる。   In order to solve these problems, an organic polymer binder is added to the electrolyte powder to be used in the configuration of the lithium ion conductive electrolyte layer in order to give flexibility to the lithium ion conductive electrolyte layer to be used and to improve its workability. Various flexible sheet formations have been studied. However, in any case, inside the prepared solid electrolyte sheet, there are grain boundaries at the junction interface between the electrolyte particles, and even if an all-solid lithium secondary battery is configured using this, In the charge / discharge cycle life, particularly in the deep charge / discharge cycle, due to the phenomenon as described above, that is, due to the difference in current density distribution inside the battery, the electrode volume change is extremely large in the portion where the current density distribution is strong, and the electrode Electronic bonding inhibition at the active material / electrolyte particle bonding interface occurs.

また、用いる負極電極活物質の反応として、リチウム金属の可逆析出反応を利用した電池系では、電解質層内の電解質粉末粒子間の接合粒界にリチウムイオンが樹技状リチウム金属状となって析出する。その結果、こうした全固体リチウム二次電池では、充放電サイクルに伴って、充放電出力電流密度の低下を招き、その容量も暫時、低下する。さらに、析出した樹技状リチウム金属は、電解質粒子間接合界面を広げ、その間に析出することにより、正極と負極との電気的短絡を招く等、種々の課題を有していた。   In addition, in a battery system that uses a reversible precipitation reaction of lithium metal as a reaction of the negative electrode active material to be used, lithium ions are precipitated in the form of a tree-like lithium metal at the joint grain boundary between the electrolyte powder particles in the electrolyte layer. To do. As a result, in such an all-solid lithium secondary battery, the charge / discharge output current density is lowered with the charge / discharge cycle, and the capacity is also lowered for a while. In addition, the deposited lithium-like lithium metal has various problems such as causing an electrical short circuit between the positive electrode and the negative electrode by spreading the interface between the electrolyte particles and precipitating between them.

また、有機高分子バインダーを添加して作成した固体電解質シートでは、そのリチウムイオン伝導性が、バインダーを添加しない固体電解質単独と比べて、極端に低下する傾向があり、用いるリチウムイオン伝導性固体電解質として、極力イオン伝導性に優れたものを使用する必要があった。
そのため、例えば、Li2S−SiS2,Li2S−SiS2−LiI,Li2S−SiS2−LiBr,Li2S−SiS2−LiCl,Li2S−SiS2−B23−LiI,Li2S−SiS2−P25−LiI,Li2S−B23,Li2S−B23−LiI,Li2S−P25,Li2S−P25−LiI,Li2S−P25−ZmSn(Z=Ge,Zn,Ga),Li2S−GeS2,Li2S−SiS2−Li3PO4,Li2S−SiS2−LixPOy(M=P,Si,Ge,B,Al,Ga,In)系の硫化物リチウムイオン伝導性固体電解質ガラス、及びこれら成分を含む結晶性のリチウムイオン伝導体、あるいはこれらの混合体からなるリチウムイオン伝導性固体電解質を用いられ、中でも優れたリチウムイオン伝導性を有する材料という観点から、Li2S−B23,Li2S−P25以外の多元系リチウムイオン伝導性固体電解質材料が検討されてきた。
しかし、その多くは、構成材料としてSi、Ge、LiI等、半導体材料もしくはハロゲン化リチウムが含んだものが用いられてきた。
In addition, in a solid electrolyte sheet prepared by adding an organic polymer binder, the lithium ion conductivity tends to be extremely lower than that of a solid electrolyte alone to which no binder is added, and the lithium ion conductive solid electrolyte to be used Therefore, it was necessary to use a material having excellent ion conductivity as much as possible.
Therefore, for example, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 - LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S-B 2 S 3 -LiI, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S -P 2 S 5 -ZmSn (Z = Ge, Zn, Ga), Li 2 S-GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-SiS 2- LixPOy (M = P, Si, Ge, B, Al, Ga, In) -based sulfide lithium ion conductive solid electrolyte glass, crystalline lithium ion conductor containing these components, or a mixture thereof Lithium ion conductive solid electrolyte consisting of From the viewpoint of material with Ion conductivity, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 other multi-component system lithium ion conductive solid electrolyte materials have been studied.
However, most of them have used a semiconductor material such as Si, Ge, LiI or the like containing lithium halide as a constituent material.

優れたイオン伝導性を示す硫化物系リチウムイオン伝導性固体電解質材料として、Si、Geが含まれた材料が多く、これを全固体リチウム二次電池の電解質として用いると、その充放電反応において、特に負極では、これらSi、Geがリチウムイオンの金属リチウムへの還元が進行する電位近辺で還元を受けるため、リチウムイオン電池の負極活物質として、一般的に用いられているカーボンを用いることが出来ない。従って、負極活物質反応として、リチウムの可逆反応電位より高い材料であるIn等が用いられてきた。
この結果、構成された電池の作動電圧が負極としてカーボンを用いたものに比べ、低くいものとなっていた。即ち、カーボンを負極材料として用いた電池に比べ、コスト的に高くなると共に、作動電圧が低い全固体リチウム二次電池となっていた。
As a sulfide-based lithium ion conductive solid electrolyte material showing excellent ion conductivity, there are many materials containing Si and Ge, and when this is used as an electrolyte of an all-solid lithium secondary battery, in its charge / discharge reaction, Particularly in the negative electrode, since Si and Ge undergo reduction near the potential at which the reduction of lithium ions to metallic lithium proceeds, commonly used carbon can be used as the negative electrode active material for lithium ion batteries. Absent. Accordingly, In, which is a material having a higher reversible reaction potential than lithium, has been used as the negative electrode active material reaction.
As a result, the operating voltage of the constructed battery was lower than that using carbon as the negative electrode. That is, as compared with a battery using carbon as a negative electrode material, the cost is high and the all-solid lithium secondary battery has a low operating voltage.

また、硫化物系リチウムイオン伝導性固体電解質材料として、ヨウ化リチウムが含まれた硫化物系リチウムイオン伝導体を、全固体リチウム二次電池の電解質として用いた場合、その充放電反応において、特に正極では、約3.0V付近でヨウ素の酸化還元反応が進行し、例えば、コバルト酸リチウムを正極活物質として用いた場合の反応(約4.2V)を阻害する。そのため、電位的に高い充放電反応を示す材料が正極活物質として用いることが出来ず、作動電圧の低い全固体リチウム二次電池しか、構成出来なかった。   In addition, when a sulfide-based lithium ion conductor containing lithium iodide is used as an electrolyte of an all-solid lithium secondary battery as a sulfide-based lithium ion conductive solid electrolyte material, In the positive electrode, the oxidation-reduction reaction of iodine proceeds at about 3.0 V, and inhibits the reaction (about 4.2 V) when lithium cobaltate is used as the positive electrode active material, for example. Therefore, a material exhibiting a high potential charge / discharge reaction could not be used as the positive electrode active material, and only an all solid lithium secondary battery having a low operating voltage could be constructed.

本発明の発明者らは負極および正極での、こうした問題をなくすため、硫化物系リチウムイオン伝導性固体電解質のイオン伝導率として、α−アルミナを種々なる硫化物系リチウムイオン伝導体に添加混合することにより、イオン伝導性を改善することが可能であることを見出し、この電解質を用いた全固体二次電池について研究開発してきた。本発明では、更に、この電解質を成型した際に残存する固体電解質粒子間の粒界を無くすことで、電解質粒子間接合界面での粒界接合問題を改善し、優れた性能を有した実用性に富んだ全固体リチウム二次電池を提供しようとするものである。   In order to eliminate such problems in the negative electrode and the positive electrode, the inventors of the present invention add α-alumina to various sulfide-based lithium ion conductors as the ionic conductivity of the sulfide-based lithium ion conductive solid electrolyte. As a result, it has been found that ion conductivity can be improved, and an all-solid secondary battery using this electrolyte has been researched and developed. The present invention further eliminates the grain boundary between the solid electrolyte particles remaining when the electrolyte is molded, thereby improving the grain boundary bonding problem at the interface between the electrolyte particles and having practical performance with excellent performance. It is intended to provide an all-solid-state lithium secondary battery that is rich in materials.

本発明は、少なくとも上述の課題の解決するためのものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least the above-described problems, and the invention can be implemented as the following forms or application examples.

[適用例1]本適用例にかかる硫化物系リチウムイオン伝導性固体電解質ガラスは、硫化物系リチウムイオン伝導性固体電解質にα−アルミナを含むことを特徴とする。   Application Example 1 A sulfide-based lithium ion conductive solid electrolyte glass according to this application example is characterized in that the sulfide-based lithium ion conductive solid electrolyte contains α-alumina.

これによれば、硫化物系リチウムイオン伝導性固体電解質ガラスは、α−アルミナと硫化物系リチウムイオン伝導性固体電解質の混合物からなる材料を加熱溶融し、強急冷することで、ガラス状硫化物系リチウムイオン伝導性固体電解質とする。このことにより、固体電解質ガラスではイオン伝導が無秩序(異方性が無い)であり、これらを用いた粉末成型体からなる固体電解質層のイオン伝導率を、単にこれら材料の混合体からなるものより、より優れた電解質に改善させることができる。   According to this, the sulfide-based lithium ion conductive solid electrolyte glass is obtained by heating and melting a material composed of a mixture of α-alumina and a sulfide-based lithium ion conductive solid electrolyte, followed by rapid cooling. Lithium ion conductive solid electrolyte. As a result, the ionic conduction is disordered (no anisotropy) in the solid electrolyte glass, and the ionic conductivity of the solid electrolyte layer made of a powder molded body using these is simply higher than that of a mixture of these materials. , Can be improved to a better electrolyte.

[適用例2]上記適用例にかかる硫化物系リチウムイオン伝導性固体電解質ガラスにおいて、硫化物系リチウムイオン伝導性固体電解質ガラスが、硫化リチウム−硫化燐とα−アルミナ、または硫化リチウム−硫化ホウ素とα−アルミナを含むことが好ましい。   Application Example 2 In the sulfide-based lithium ion conductive solid electrolyte glass according to the application example, the sulfide-based lithium ion conductive solid electrolyte glass is lithium sulfide-phosphorus sulfide and α-alumina, or lithium sulfide-boron sulfide. And α-alumina.

これによれば、硫化物系リチウムイオン伝導性固体電解質ガラスは、硫化リチウム−硫化燐とα−アルミナ、または硫化リチウム−硫化ホウ素からなる2元系硫化物系リチウムイオン伝導体のイオン伝導率を改善することができるため、全固体リチウム二次電池の作動電圧が高く、また、高率放電が可能な実用性の高い電池を提供できることに繋がる。   According to this, the sulfide-based lithium ion conductive solid electrolyte glass has an ionic conductivity of a binary sulfide-based lithium ion conductor made of lithium sulfide-phosphorus sulfide and α-alumina or lithium sulfide-boron sulfide. Since it can be improved, the working voltage of the all-solid-state lithium secondary battery is high, and a highly practical battery capable of high rate discharge can be provided.

[適用例3]本適用例にかかる全固体リチウム二次電池は、α−アルミナを含む硫化物系リチウムイオン伝導性固体電解質ガラスを、固体電解質層として用いていることを特徴とする。   Application Example 3 An all-solid lithium secondary battery according to this application example is characterized in that sulfide-based lithium ion conductive solid electrolyte glass containing α-alumina is used as a solid electrolyte layer.

[適応例4]本適応例にかかる全固体リチウム二次電池は、硫化リチウム−硫化燐、または、硫化リチウム−硫化ホウ酸、を含む硫化物系リチウムイオン伝導性固体ガラスを固体電解質層として用いることを特徴とする。   [Application Example 4] The all-solid lithium secondary battery according to this application example uses a sulfide-based lithium ion conductive solid glass containing lithium sulfide-phosphorus sulfide or lithium sulfide-sulfuric boric acid as a solid electrolyte layer. It is characterized by that.

[適応例5]本適応例にかかる全固体リチウム二次電池は、正極層および負極層からなる一対の電極間に上記固体電解質層を介在させた全固体リチウム二次電池素子を用いることを特徴とする。   [Application Example 5] The all-solid lithium secondary battery according to this application example uses an all-solid lithium secondary battery element in which the solid electrolyte layer is interposed between a pair of electrodes composed of a positive electrode layer and a negative electrode layer. And

[適応例6]本適応例にかかる全固体リチウム二次電池は、正極層または負極層のいずれかと、上記固体電解質層とが、一体化成型された全固体リチウム二次電池素子を用いることを特徴とする。   [Application Example 6] The all-solid lithium secondary battery according to this application example uses an all-solid lithium secondary battery element in which either the positive electrode layer or the negative electrode layer and the solid electrolyte layer are integrally formed. Features.

これによれば、α−アルミナを含有させた硫化物系リチウムイオン伝導性固体電解質ガラスを全固体リチウム二次電池の固体電解質層として用いることで、充放電率に優れた性能を有する全固体リチウム二次電池を提供することが可能になる。   According to this, by using the sulfide-based lithium ion conductive solid electrolyte glass containing α-alumina as the solid electrolyte layer of the all-solid lithium secondary battery, the all-solid lithium having excellent performance in charge and discharge rate. A secondary battery can be provided.

[適応例7]本適用例にかかる全固体リチウム二次電池の製造方法は、少なくとも正極層および負極層からなる1対の電極間に、少なくとも適用例1〜適用例3のいずれか一例に記載の硫化物系リチウムイオン伝導性固体電解質ガラスを介在させた全固体リチウム二次電池素子、または少なくとも正極層および負極層のいずれかと、少なくとも適用例1または適用例2のいずれか一例に記載の硫化物系リチウムイオン伝導性固体電解質ガラス層を、加熱、圧縮することにより、全固体リチウム二次電池素子または電極層と電解質層を一体化成型したα−アルミナを含む、硫化物系リチウムイオン伝導性固体電解質の混合物を加熱溶融する第1の工程と、加熱溶融した上記混合物を急冷する第2の工程と、を有する硫化物系リチウムイオン伝導性固体電解質ガラスの製造工程を含むことを特徴とする。   [Application Example 7] The manufacturing method of an all-solid lithium secondary battery according to this application example is described in any one of Application Examples 1 to 3 between at least a pair of electrodes including a positive electrode layer and a negative electrode layer. The all-solid-state lithium secondary battery element in which the sulfide-based lithium ion conductive solid electrolyte glass is interposed, or at least one of the positive electrode layer and the negative electrode layer, and at least one of Application Example 1 and Application Example 2 Sulfide-based lithium ion conductive material comprising α-alumina, which is an all-solid lithium secondary battery element or electrode layer and electrolyte layer integrally formed by heating and compressing a solid-based lithium ion conductive solid electrolyte glass layer Sulfide-based lithium ion conduction comprising: a first step of heating and melting a solid electrolyte mixture; and a second step of rapidly cooling the heating and melting mixture. Characterized in that it comprises a manufacturing process of the solid electrolyte glass.

[適応例8]本適応例にかかる全固体リチウム二次電池の製造方法は、上記の製造方法に加えて、正極層または負極層のいずれかと、上記硫化物系リチウムイオン伝導性固体電解質ガラスから生成した電解質ガラス粉末とを、加熱、圧縮することにより、電極層と電解質層を一体化成型した全固体リチウム二次電池素子を形成する第3の工程を含むことを特徴とする。   [Adaptation example 8] In addition to the above manufacturing method, the manufacturing method of the all-solid lithium secondary battery according to this application example is based on either the positive electrode layer or the negative electrode layer, and the sulfide-based lithium ion conductive solid electrolyte glass. It includes a third step of forming an all-solid lithium secondary battery element in which the electrode layer and the electrolyte layer are integrally molded by heating and compressing the generated electrolyte glass powder.

これによれば、全固体リチウム二次電池の製造方法は、α−アルミナを含有させた硫化物系リチウムイオン伝導性固体電解質ガラスを全固体リチウム二次電池の電解質として用いることで、単にα−アルミナを含有させた硫化物系リチウムイオン伝導性固体電解質を用いたものと比べ、電池内部抵抗の低い電池を提供することができる。更に、ここで用いる上記の電解質ガラス粉末は、を加熱圧縮することで一枚のガラス板状の電解質層となるため、該層内では、電解質粉末粒子間接合界面が無くなり少なく、イオン伝導率が向上する高いガラス状の固体電解質層を得ることができる。このため、全固体リチウム二次電池の正極、負極からなる一対の電極間に、これら上記の電解質ガラス粉末を層状に介在させ、全固体リチウム二次電池素子の作成に際し、あるいは電極、電解質層を一体化成型する際において、加熱、圧縮工程を附加するよう行うことにより、電池内部において、電解質粉末同士の接合界面において接合粒界が無くなり少なく、イオン伝導性に優れた電解質層と電極層とを備えた一体化成型した全固体リチウム二次電池素子を形成することができ、上記全固体リチウム二次電池素子を用いた提供することができ、優れた充放電サイクル性能を付与させる全固体リチウム二次電池を提供することが可能となる。   According to this, the manufacturing method of the all-solid lithium secondary battery can be obtained simply by using the sulfide-based lithium ion conductive solid electrolyte glass containing α-alumina as the electrolyte of the all-solid lithium secondary battery. A battery having a low battery internal resistance can be provided as compared with those using a sulfide-based lithium ion conductive solid electrolyte containing alumina. Furthermore, the above-mentioned electrolyte glass powder used here becomes a single glass plate-like electrolyte layer by heat-compressing, and therefore, there is little interface between electrolyte powder particles in the layer, and the ionic conductivity is low. An improved high glassy solid electrolyte layer can be obtained. Therefore, these electrolyte glass powders are interposed between a pair of electrodes consisting of a positive electrode and a negative electrode of an all-solid-state lithium secondary battery in a layered manner. By performing heating and compression processes during integral molding, there are few joint grain boundaries at the joint interface between electrolyte powders in the battery, and an electrolyte layer and an electrode layer excellent in ion conductivity are formed. An all-solid lithium secondary battery element that is integrally formed can be formed, and can be provided using the above-mentioned all-solid lithium secondary battery element, and can be provided with excellent charge / discharge cycle performance. A secondary battery can be provided.

[適応例9]上記適用例にかかる全固体リチウム二次電池の製造方法において、上記加熱を行う温度条件は、上記硫化物系リチウムイオン伝導性固体電解質ガラスのガラス軟化温度領域の範囲内であり、上記加熱を行う時間は上記硫化物系リチウムイオン伝導性固体電解質ガラスの結晶化が進行しない時間範囲で行うことが好ましい。   [Application Example 9] In the method for manufacturing an all-solid lithium secondary battery according to the application example, the temperature condition for the heating is within the glass softening temperature range of the sulfide-based lithium ion conductive solid electrolyte glass. The heating is preferably performed in a time range in which the crystallization of the sulfide-based lithium ion conductive solid electrolyte glass does not proceed.

これによれば、全固体リチウム二次電池の製造方法は、α−アルミナを含有させた硫化物系リチウムイオン伝導性固体電解質ガラスの上記ガラス軟化温度領域で層状にプレス成形することで、容易に粒界の少ないガラス状の上記固体電解質層を作ることができる。このため、上記固体電解質層のイオン伝導率を改善することができる。また、上記電極内部では電極活物質粒子と電解質粒子の接合が円滑となり、優れた充放電サイクル性能を持った全固体リチウム二次電池素子を提供することができ、充放電率に優れた性能を示す全固体リチウム二次電池を提供することが可能になる。   According to this, the manufacturing method of the all-solid-state lithium secondary battery can be easily formed by press-molding the sulfide-based lithium ion conductive solid electrolyte glass containing α-alumina in layers in the above-mentioned glass softening temperature region. The glassy solid electrolyte layer with few grain boundaries can be formed. For this reason, the ionic conductivity of the solid electrolyte layer can be improved. Also, the electrode active material particles and the electrolyte particles can be smoothly joined inside the electrode, and an all-solid lithium secondary battery element having excellent charge / discharge cycle performance can be provided. It becomes possible to provide the all-solid lithium secondary battery shown.

[適応例10]上記適用例にかかる全固体リチウム二次電池の製造方法において、上記加熱を行う温度は、200℃〜300℃であり、上記加熱を行う時間が、5時間以内であることが好ましい。   [Application Example 10] In the method for manufacturing an all-solid lithium secondary battery according to the application example, the heating temperature is 200 ° C. to 300 ° C., and the heating time is 5 hours or less. preferable.

これによれば、全固体リチウム二次電池は、上記固体電解質層の結晶化を回避させる必要があり、本全固体リチウム二次電池の製造方法において、加熱する温度は、上記層状に介在させた上記電解質ガラス粉末の軟化温度領域であって、硫化物系リチウムイオン伝導性固体電解質ガラス粉末層が結晶化しない時間に亘り、加熱する必要がある。固体電解質ガラスの軟化は、上記固体電解質ガラスのガラス転移温度付近以上で起こる。結晶化が進む温度領域では、その温度が高ければ、高いほど、電解質ガラスの結晶化が進み易くなり、加熱処理時間を短くする必要がある。   According to this, the all-solid lithium secondary battery needs to avoid crystallization of the solid electrolyte layer, and in the method for manufacturing the all-solid lithium secondary battery, the heating temperature is interposed in the layered manner. In the softening temperature region of the electrolyte glass powder, it is necessary to heat for a time during which the sulfide-based lithium ion conductive solid electrolyte glass powder layer does not crystallize. Softening of the solid electrolyte glass occurs at or above the glass transition temperature of the solid electrolyte glass. In the temperature region where crystallization proceeds, the higher the temperature, the easier the crystallization of the electrolyte glass proceeds, and it is necessary to shorten the heat treatment time.

上記加熱を行う温度は、硫化物系リチウムイオン伝導性固体電解質ガラス粉末層の軟化温度領域の範囲内であって、200℃〜300℃で処理することが好ましい。また、更に硫化物系リチウムイオン伝導性固体電解質ガラス粉末層が結晶化しない時間に亘り、加熱することが好ましく、その処理時間として、電池製造工程を考えると、5時間以内が望ましい。   The heating temperature is within the softening temperature range of the sulfide-based lithium ion conductive solid electrolyte glass powder layer, and is preferably treated at 200 ° C to 300 ° C. Furthermore, it is preferable to heat for a time during which the sulfide-based lithium ion conductive solid electrolyte glass powder layer does not crystallize, and the processing time is preferably within 5 hours in view of the battery manufacturing process.

このような方法によれば、硫化物系リチウムイオン伝導性固体電解質ガラス層の結晶化を回避し、優れたリチウムイオン伝導性を有するものとすることができる。また、硫化物系リチウムイオン伝導性固体電解質ガラス粉末が軟化した状態となるため、異なる層との接合面における接合を円滑にすることができる。   According to such a method, it is possible to avoid crystallization of the sulfide-based lithium ion conductive solid electrolyte glass layer and to have excellent lithium ion conductivity. In addition, since the sulfide-based lithium ion conductive solid electrolyte glass powder is in a softened state, it is possible to smoothly join the joint surfaces with different layers.

[適応例11]上記適用例にかかる全固体リチウム二次電池の製造方法において、上記の全固体リチウム二次電池素子を、軟化温度が350℃以下の低融点ガラスにより封止する第4の工程を備えることが好ましい。   Application Example 11 In the method for manufacturing an all-solid lithium secondary battery according to the application example, the fourth step of sealing the all-solid lithium secondary battery element with a low-melting glass having a softening temperature of 350 ° C. or lower. It is preferable to provide.

これによれば、全固体リチウム二次電池の製造方法は、全固体リチウム二次電池素子の周囲を低融点ガラスにより囲む工程を備えることで、嫌湿性電池である全固体リチウム二次電池の封孔処理も可能となり、全固体リチウム二次電池の製造工程における水分の混入を回避でき、電池性能の低下を防ぐことができる結果、極めて製造に関する工業的価値を高めることになる。   According to this, the manufacturing method of the all-solid lithium secondary battery includes the step of enclosing the periphery of the all-solid lithium secondary battery element with the low-melting glass, thereby sealing the all-solid lithium secondary battery that is a hygroscopic battery. Pore treatment is also possible, and mixing of moisture in the manufacturing process of an all-solid lithium secondary battery can be avoided, and the battery performance can be prevented from being lowered. As a result, the industrial value relating to manufacturing is extremely increased.

[適応例12]上記適用例にかかる全固体リチウム二次電池の製造方法において、上記低融点ガラスは、V25,ZnO,BaOおよびTeO2の4成分からなるガラスを用いたことが好ましい。 [Application Example 12] In the method for manufacturing an all-solid lithium secondary battery according to the application example, it is preferable that the low-melting glass is a glass composed of four components of V 2 O 5 , ZnO, BaO and TeO 2. .

これによれば、全固体リチウム二次電池の製造方法は、低融点ガラスに、V25,ZnO,BaOおよびTeO2の、少なくとも4つの成分からなるものの使用が、全固体リチウム二次電池の加熱圧縮処理工程において、作成した電池の性能を低下させることが少ないため、好適に選定される。 According to this, the manufacturing method of the all-solid lithium secondary battery uses an all-solid-state lithium secondary battery that uses low melting point glass composed of at least four components of V 2 O 5 , ZnO, BaO, and TeO 2. In the heat compression treatment step, since the performance of the produced battery is rarely lowered, it is preferably selected.

このような方法によれば、低融点ガラスを溶融する際の熱転移による硫化物系リチウムイオン伝導性固体電解質ガラス層の結晶化を回避でき、該電解質層のイオン伝導率の低下を阻止できる。   According to such a method, it is possible to avoid crystallization of the sulfide-based lithium ion conductive solid electrolyte glass layer due to thermal transition when melting the low melting point glass, and it is possible to prevent a decrease in ion conductivity of the electrolyte layer.

[適応例13]上記適用例にかかる全固体リチウム二次電池の製造方法において、上記第1の工程、上記第2の工程、上記第3の工程および上記第4の工程が、乾燥した不活性ガス雰囲気中で連続処理することが好ましい。   [Application Example 13] In the method for manufacturing an all-solid lithium secondary battery according to the application example, the first step, the second step, the third step, and the fourth step are dry and inert. It is preferable to perform the continuous treatment in a gas atmosphere.

これによれば、全固体リチウム二次電池の製造方法は、硫化物系リチウムイオン伝導性固体電解質ガラス層、正極層および負極層をそれぞれ形成する各形成工程を備え、各形成工程、一体化する処理工程は、乾燥した不活性ガス雰囲気中で連続して処理する。   According to this, the manufacturing method of an all-solid-state lithium secondary battery is provided with each formation process which forms each sulfide type lithium ion conductive solid electrolyte glass layer, a positive electrode layer, and a negative electrode layer, and each formation process is integrated. In the treatment step, the treatment is continuously carried out in a dry inert gas atmosphere.

このように、本全固体リチウム二次電池は、一対の正電極と負電極、および正電極と負電極間に設けられた硫化物系リチウムイオン伝導性固体電解質ガラス層を有する全固体リチウム二次電池であって、適用例7〜適用例13のいずれか一例の方法により製造されたことを特徴とする。   As described above, the all-solid lithium secondary battery includes an all-solid lithium secondary battery having a pair of positive and negative electrodes and a sulfide-based lithium ion conductive solid electrolyte glass layer provided between the positive and negative electrodes. A battery, which is manufactured by the method of any one of Application Examples 7 to 13.

この全固体リチウム二次電池の作成には、このα−アルミナを含んだ硫化物系リチウムイオン伝導性固体電解質ガラスを使用し、この電解質ガラス粉末からなる層を、少なくとも正極層と負極層の間に介在させるか、もしくは、少なくとも正極層および負極層の、いずれか1つとを、積層して加熱、圧縮することにより、これらを一体化させている。このことにより、異なる層間の接合界面における接合が密となり、作成した全固体リチウム二次電池の充放電性能において、充放電出力電流密度を大きくすることが可能となる。と同時に、電解質ガラス層内では電解質粉末同士の接合界面を無くすことができる。   The all-solid-state lithium secondary battery is produced using this sulfide-type lithium ion conductive solid electrolyte glass containing α-alumina, and a layer made of this electrolyte glass powder is at least between the positive electrode layer and the negative electrode layer. Or at least one of the positive electrode layer and the negative electrode layer is laminated, heated, and compressed to integrate them. As a result, the bonding at the bonding interface between different layers becomes dense, and the charge / discharge output current density can be increased in the charge / discharge performance of the produced all-solid lithium secondary battery. At the same time, the bonding interface between the electrolyte powders can be eliminated in the electrolyte glass layer.

その結果、特に、負極電極反応として金属リチウムの可逆析出反応を使用した電池系において、過充電時に生じやすい負極界面での金属リチウムの樹技状析出を阻止できることにつながり、その結果、正極と負極との電気的短絡を回避できる。このような異なる層を加熱、圧縮して一体化する工程は容易であり、且つ、作成した全固体リチウム二次電池の性能において、充放電サイクル寿命に優れた製品を供給することが出来、工業的価値の高い全固体リチウム二次電池の製造を可能とするものである。   As a result, in particular, in a battery system that uses a reversible deposition reaction of metallic lithium as a negative electrode reaction, it is possible to prevent metal-like deposition of metallic lithium at the negative electrode interface, which is likely to occur at the time of overcharging. Can be avoided. The process of heating and compressing and integrating these different layers is easy, and it is possible to supply products with excellent charge / discharge cycle life in the performance of the prepared all-solid lithium secondary battery. This makes it possible to produce an all-solid-state lithium secondary battery having a high technical value.

以上、α−アルミナを含有した硫化物系リチウムイオン伝導性固体電解質を用いると、硫化物系リチウムイオン伝導体単味より、優れたリチウムイオン伝導性を有する硫化物系リチウムイオン伝導性固体電解質ガラスを形成することができる。ここでは、α−アルミナを含有した硫化物系リチウムイオン伝導性固体電解質の混合物を、加熱溶融し、その融液を強急冷することで硫化物系リチウムイオン伝導性固体電解質ガラスを製造する。このα−アルミナを含有した硫化物系リチウムイオン伝導性ガラスから生成した電解質ガラス粉末を材料とする固体電解質層と、正極層および負極層の少なくとも1つとを、積層して加熱、圧縮、を行い一体化することにより、異なる層間の界面における接合が密とすることができ、作成した電池の性能において、その充放電出力電流密度が大きくすることができる。   As described above, when a sulfide-based lithium ion conductive solid electrolyte containing α-alumina is used, a sulfide-based lithium ion conductive solid electrolyte glass having lithium ion conductivity superior to that of a sulfide-based lithium ion conductor alone. Can be formed. Here, a sulfide-based lithium ion conductive solid electrolyte glass is produced by heating and melting a mixture of a sulfide-based lithium ion conductive solid electrolyte containing α-alumina and then rapidly cooling the melt. A solid electrolyte layer made of an electrolyte glass powder produced from sulfide-based lithium ion conductive glass containing α-alumina, and at least one of a positive electrode layer and a negative electrode layer are laminated, heated, and compressed. By integrating, the junction at the interface between different layers can be made dense, and the charge / discharge output current density can be increased in the performance of the produced battery.

更に、α−アルミナを含有した硫化物系リチウムイオン伝導性固体電解質として、Si、Ge、を含まないもの、例えば、Li2S−P25,Li2S−B25等の使用は、全固体リチウム二次電池を構成した場合、負極での反応として、金属リチウムの可逆析出反応を使用することが可能となり、好ましい。 Further, as a sulfide-based lithium ion conductive solid electrolyte containing α-alumina, a material not containing Si, Ge, for example, Li 2 S—P 2 S 5 , Li 2 S—B 2 S 5 or the like is used. When an all-solid lithium secondary battery is constituted, it is possible to use a reversible deposition reaction of metallic lithium as the reaction at the negative electrode, which is preferable.

更に、これらはヨウ化リチウム等のハロゲン化物を含まないため、正極での反応として、ハロゲン化物の酸化還元反応の影響を受けないため、高い充放電反応を示す電極活物質の使用が可能となり、より好ましいものとなる。以上のような材料を使用し、作成した電池内部の電解質層内部では電解質粉末粒子間の界面接合は無くなり、特に、負極電極反応として金属リチウムの可逆析出反応を使用した電池系において、過充電時に生じやすい負極界面での金属リチウムの樹技状析出を阻止できることにつながり、その結果、正極と負極との電気的短絡を回避できる。   Furthermore, since these do not contain halides such as lithium iodide, the reaction at the positive electrode is not affected by the oxidation-reduction reaction of halides, so it is possible to use an electrode active material that exhibits a high charge / discharge reaction, It becomes more preferable. Using the materials as described above, there is no interfacial bonding between the electrolyte powder particles inside the electrolyte layer inside the created battery, especially in battery systems that use a reversible deposition reaction of metallic lithium as the negative electrode electrode reaction. This leads to the prevention of metallic lithium-like precipitation at the negative electrode interface, which is likely to occur, and as a result, an electrical short circuit between the positive electrode and the negative electrode can be avoided.

このような異なる層を加熱、圧縮して一体化する工程は容易であり、且つ、作成した全固体リチウム二次電池の性能において、充放電サイクル寿命に優れた製品を供給することが出来、工業的価値の高い全固体リチウム二次電池の製造を可能とするものとなる。また、本発明で使用した硫化物系リチウムイオン伝導性固体電解質ガラスは、既に発明者らが提案した硫化物系リチウムイオン伝導性固体電解質にα−アルミナを含んだ混合電解質を母材とし、上記混合電解質のガラス化を検討した結果、製造が可能となったものである。開示されたα−アルミナを含んだ上記混合電解質は全てガラス化が可能であり、上記ガラス化された硫化物系リチウムイオン導電性固体電解質を使うことで、優れた電池性能を有する全固体リチウム二次電池の製造を可能としたものである。   The process of heating and compressing and integrating these different layers is easy, and it is possible to supply products with excellent charge / discharge cycle life in the performance of the prepared all-solid lithium secondary battery. This makes it possible to produce an all-solid lithium secondary battery with high target value. Further, the sulfide-based lithium ion conductive solid electrolyte glass used in the present invention is based on a mixed electrolyte containing α-alumina in a sulfide-based lithium ion conductive solid electrolyte that has already been proposed by the inventors. As a result of studying vitrification of the mixed electrolyte, it has become possible to produce it. All of the above mixed electrolyte containing α-alumina disclosed can be vitrified, and by using the above vitrified sulfide-based lithium ion conductive solid electrolyte, all-solid lithium secondary batteries having excellent battery performance can be obtained. The secondary battery can be manufactured.

[適応例14]本適用例にかかる電極と電解質層との一体化成形方法は、少なくとも正極層および負極層からなる1対の電極間に、少なくとも適用例1〜適用例2のいずれか一例に記載の硫化物系リチウムイオン伝導性固体電解質ガラスによる固体電解質層を介在させた全固体リチウム二次電池素子を形成するものである。少なくとも正極層および負極層のいずれかと、少なくとも適用例1または適用例2のいずれか一例に記載の硫化物系リチウムイオン伝導性固体電解質ガラスより生成した電解質ガラス粉末からなる層を、加熱、圧縮することにより、電極層と電解質層を一体化成型した上記全固体リチウム二次電池素子を形成することができる。   [Application Example 14] The method for integrally forming an electrode and an electrolyte layer according to this application example is at least one of Application Examples 1 to 2 between a pair of electrodes including a positive electrode layer and a negative electrode layer. The all-solid-state lithium secondary battery element in which the solid electrolyte layer made of the sulfide-based lithium ion conductive solid electrolyte glass is interposed is formed. At least one of the positive electrode layer and the negative electrode layer and at least a layer made of the electrolyte glass powder formed from the sulfide-based lithium ion conductive solid electrolyte glass described in any one of Application Example 1 and Application Example 2 is heated and compressed. Thus, the all solid lithium secondary battery element in which the electrode layer and the electrolyte layer are integrally molded can be formed.

これによれば、上記の電極電解質層の一体化成形方法は、α−アルミナを含有させた硫化物系リチウムイオン伝導性固体電解質ガラスを全固体リチウム二次電池の電解質として用いることで、単にα−アルミナを含有させた硫化物系リチウムイオン伝導性固体電解質を用いたものと比べ、電池内部抵抗の低い電池を提供することができる。更に、ここで用いるから生成した電解質ガラス粉末は、を加熱圧縮することで一枚のガラス板状の電解質層となるため、該層内では電解質粉末粒子間接合界面が無くなり、イオン伝導率が向上する一枚のガラス状の固体電解質層を得られる。このため、上記の電極と電解質層との一体化成形方法は、全固体リチウム二次電池の正極、負極からなる一対の電極間に、これら上記の電解質ガラス粉末を層状に介在させ、全固体リチウム二次電池素子の作成に際し、あるいは電極、電解質層を一体化成型する際において、加熱圧縮工程を附加することにより、電池内部において、電解質粉末同士の接合界面において接合粒界が無くなり、イオン伝導性に優れた固体電解質ガラスによる固体電解質層を備えた全固体リチウム二次電池素子を形成することができる。全固体リチウム二次電池を提供することができに上記全固体リチウム二次電池を用いることにより、優れた充放電サイクル性能を付与させることが可能となる。   According to this, the above-mentioned method for integrally forming the electrode electrolyte layer is simply by using a sulfide-based lithium ion conductive solid electrolyte glass containing α-alumina as an electrolyte of an all-solid lithium secondary battery. -A battery having a low battery internal resistance can be provided as compared with those using a sulfide-based lithium ion conductive solid electrolyte containing alumina. Furthermore, since the electrolyte glass powder produced from the use here is heated and compressed into a single glass plate-like electrolyte layer, the interface between the electrolyte powder particles is eliminated in the layer, and the ionic conductivity is improved. A single glassy solid electrolyte layer is obtained. For this reason, the above-described method of integrally forming the electrode and the electrolyte layer is obtained by interposing these electrolyte glass powders in layers between a pair of electrodes consisting of a positive electrode and a negative electrode of an all-solid lithium secondary battery. When a secondary battery element is formed, or when an electrode and an electrolyte layer are integrally formed, by adding a heat compression step, there is no bonding grain boundary at the bonding interface between electrolyte powders inside the battery, and ion conductivity It is possible to form an all-solid lithium secondary battery element having a solid electrolyte layer made of a solid electrolyte glass excellent in the above. By using the all-solid lithium secondary battery so that an all-solid lithium secondary battery can be provided, excellent charge / discharge cycle performance can be imparted.

[適応例15]上記適用例にかかる電極と電解質層との一体化成形方法において、上記加熱を行う温度条件は、上記硫化物系リチウムイオン伝導性固体電解質ガラスのガラス軟化温度領域の範囲内であり、上記加熱を行う時間は上記硫化物系リチウムイオン伝導性固体電解質ガラスの結晶化が進行しない時間範囲で行うことが好ましい。   [Application Example 15] In the method of integrally forming the electrode and the electrolyte layer according to the application example, the temperature condition for the heating is within the range of the glass softening temperature range of the sulfide-based lithium ion conductive solid electrolyte glass. In addition, the heating is preferably performed in a time range in which the crystallization of the sulfide-based lithium ion conductive solid electrolyte glass does not proceed.

これによれば、上記の電極と電解質層との一体化成形方法は、α−アルミナを含有させた硫化物系リチウムイオン伝導性固体電解質ガラスの軟化温度領域で層状にプレス成形することで、容易に該電解質層内に粒界の無い板状ガラスの固体電解質層を作ることができる。このため、該電解質層のイオン伝導率を改善することができる。従って、全固体リチウム二次電池の正極、負極からなる一対の電極間に、これら電解質ガラス粉末を層状に介在させた全固体リチウム二次電池素子を作成するに際し、あるいは電極、電解質層を一体化成型する際において、該硫化物系リチウムイオン伝導性固体電解質ガラス粉末の軟化温度領域で加熱、圧縮することで、電解質層内に粒界のない接合層とさせることができ、また、電極内部では電極活物質粒子と電解質粒子の接合が円滑となり、優れた充放電サイクル性能を持った全固体リチウム二次電池を提供することになり、また、充放電率に優れた性能を示す全固体リチウム二次電池を提供することが可能になる。   According to this, the above-mentioned method of integrally forming the electrode and the electrolyte layer can be easily performed by press-molding into layers in the softening temperature region of sulfide-based lithium ion conductive solid electrolyte glass containing α-alumina. In addition, it is possible to produce a solid electrolyte layer of plate glass having no grain boundary in the electrolyte layer. For this reason, the ionic conductivity of the electrolyte layer can be improved. Therefore, when creating an all-solid lithium secondary battery element in which these electrolyte glass powders are layered between a pair of electrodes consisting of a positive electrode and a negative electrode of an all-solid lithium secondary battery, or the electrode and the electrolyte layer are integrated. When molding, by heating and compressing in the softening temperature region of the sulfide-based lithium ion conductive solid electrolyte glass powder, it can be a bonding layer without grain boundaries in the electrolyte layer. The joining of the electrode active material particles and the electrolyte particles will be smooth, and an all-solid lithium secondary battery having excellent charge / discharge cycle performance will be provided. A secondary battery can be provided.

[適応例16]上記適用例にかかる電極と電解質層との一体化成形方法において、上記加熱を行う温度は、200℃〜300℃であり、上記加熱を行う時間は、5時間以内とすることが好ましい。   [Application Example 16] In the method of integrally forming an electrode and an electrolyte layer according to the application example, the heating temperature is 200 ° C. to 300 ° C., and the heating time is 5 hours or less. Is preferred.

これによれば、電極と電解質層との一体化成形方法は、全固体リチウム二次電池素子内部の固体電解質層の結晶化を回避させる必要があり、上記加熱を行う温度は、硫化物系リチウムイオン伝導性固体電解質ガラス粉末層の軟化温度領域であるが、硫化物系リチウムイオン伝導性固体電解質ガラス粉末層が結晶化しない時間に亘り、加熱する必要がある。固体電解質ガラスの軟化は、上記固体電解質ガラスのガラス転移温度付近以上で起こる。結晶化が進む温度領域では、その温度が高ければ、高いほど、電解質ガラスの結晶化が進み易くなり、加熱処理時間を短くする必要がある。   According to this, the method of integrally forming the electrode and the electrolyte layer needs to avoid crystallization of the solid electrolyte layer inside the all-solid lithium secondary battery element, and the temperature at which the heating is performed is the sulfide-based lithium. Although it is the softening temperature range of the ion conductive solid electrolyte glass powder layer, it is necessary to heat for a time during which the sulfide-based lithium ion conductive solid electrolyte glass powder layer does not crystallize. Softening of the solid electrolyte glass occurs at or above the glass transition temperature of the solid electrolyte glass. In the temperature region where crystallization proceeds, the higher the temperature, the easier the crystallization of the electrolyte glass proceeds, and it is necessary to shorten the heat treatment time.

その上記加熱する温度は、硫化物系リチウムイオン伝導性固体電解質ガラス粉末層の軟化温度領域であって、200℃から300℃で処理するあることが好ましい。また、更に硫化物系リチウムイオン伝導性固体電解質ガラス粉末層が結晶化しない時間に亘り、加熱することが好ましく、上記加熱を行う時間としては、電池製造工程を考えると、5時間以内が望ましい。   The heating temperature is in the softening temperature region of the sulfide-based lithium ion conductive solid electrolyte glass powder layer, and is preferably treated at 200 to 300 ° C. Furthermore, it is preferable to heat for a time during which the sulfide-based lithium ion conductive solid electrolyte glass powder layer does not crystallize, and the time for performing the heating is preferably within 5 hours in consideration of the battery manufacturing process.

このような方法によれば、硫化物系リチウムイオン伝導性固体電解質ガラスの結晶化を回避し、優れたリチウムイオン伝導性を有するものとすることができる。また、硫化物系リチウムイオン伝導性固体電解質ガラス粉末が軟化した状態となるため、異なる層との接合面における接合を円滑にすることができる。   According to such a method, it is possible to avoid crystallization of the sulfide-based lithium ion conductive solid electrolyte glass and to have excellent lithium ion conductivity. In addition, since the sulfide-based lithium ion conductive solid electrolyte glass powder is in a softened state, it is possible to smoothly join the joint surfaces with different layers.

以下、本発明の実施の形態について、全固体リチウム二次電池の製造方法を詳細に説明する。先ず、全固体リチウム二次電池の電解質層として用いる硫化物系リチウムイオン伝導性固体電解質ガラスの作成方法ついて実施形態1を用い説明する。   Hereinafter, an embodiment of the present invention will be described in detail for a method for producing an all-solid lithium secondary battery. First, a method for producing a sulfide-based lithium ion conductive solid electrolyte glass used as an electrolyte layer of an all-solid lithium secondary battery will be described using Embodiment 1.

(実施形態1)
本実施形態1で用いる硫化物系リチウムイオン伝導性固体電解質は硫化物系リチウムイオン伝導性固体電解質にα−アルミナを含んでなるガラス状電解質であり、母体となるリチウムイオン伝導性固体電解質は、例えば、Li2S−SiS2,Li2S−SiS2−LiI,Li2S−SiS2−LiBr,Li2S−SiS2−LiCl,Li2S−SiS2−B23−LiI,Li2S−SiS2−P25−LiI,Li2S−B23,Li2S−B23−LiI,Li2S−P25,Li2S−P25−LiI,Li2S−P25−ZmSn(Z=Ge,Zn,Ga),Li2S−GeS2,Li2S−SiS2−Li3PO4,Li2S−SiS2−LixPOy(M=P,Si,Ge,B,Al,Ga,In)系の硫化物リチウムイオン伝導性固体電解質ガラス、及びこれら成分を含む結晶性のリチウムイオン伝導体、あるいはこれらの混合体からなるリチウムイオン伝導性固体電解質が選ばれる。
(Embodiment 1)
The sulfide-based lithium ion conductive solid electrolyte used in Embodiment 1 is a glassy electrolyte containing α-alumina in a sulfide-based lithium ion conductive solid electrolyte, and the base lithium ion conductive solid electrolyte is: For example, Li 2 S—SiS 2 , Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —LiBr, Li 2 S—SiS 2 —LiCl, Li 2 S—SiS 2 —B 2 S 3 —LiI, Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 S—B 2 S 3 , Li 2 S—B 2 S 3 —LiI, Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 -LiI, Li 2 S-P 2 S 5 -ZmSn (Z = Ge, Zn, Ga), Li 2 S-GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-SiS 2 - LixPOy (M = P, Si, Ge, B, Al, Ga, In) Hydride lithium-ion-conducting solid electrolyte glass, and crystalline lithium ion conductor comprising these components, or a lithium ion conductive solid electrolyte consisting of the mixture is chosen.

次に、これら母体となる硫化物系リチウムイオン伝導性固体電解質に絶縁性微粒子である、10μm以下の粒径を有するα−アルミナを混合して用いる。ここで用いるα−アルミナは、高真空中において250℃で5時間加熱し、その表面に吸着していると思われる水分を除去し用いた。
これらを所定量秤量し、上記、硫化物系リチウムイオン伝導体に加えた混合物を調合し、調合した混合物を、更に遊星ボールミルにより混合微粉砕化した。ここで用いた遊星ボールミルのポットは、アルミナ製であり、その中に入れるボールは、直径5mmおよび10mmのアルミナ製ボールを使用した。
Next, α-alumina having a particle diameter of 10 μm or less, which is an insulating fine particle, is mixed with the sulfide-based lithium ion conductive solid electrolyte as a base material. The α-alumina used here was heated at 250 ° C. for 5 hours in a high vacuum to remove water that was supposed to be adsorbed on the surface.
A predetermined amount of these were weighed, and the mixture added to the sulfide-based lithium ion conductor was prepared. The prepared mixture was further mixed and pulverized by a planetary ball mill. The pot of the planetary ball mill used here was made of alumina, and the balls contained therein were alumina balls having a diameter of 5 mm and 10 mm.

次に、これら硫化物リチウムイオン伝導性固体電解質および調合したα−アルミナを用いてガラス化するに際しては、次の2通りの手法が適用される。
即ち、(1)調合したα−アルミナを含む硫化物系リチウムイオン伝導性固体電解質粉末をグラッシーカーボン坩堝に充填し、これを石英管内に真空封入する。この真空アンプルを電気炉内に挿入し、約850℃で約3時間、加温溶融した。その後、真空アンプルを氷水中に挿入し、グラッシーカーボン坩堝内の融液を強急冷することで、α−アルミナを含む硫化物系リチウムイオン伝導性固体電解質ガラスを得た。
Next, when vitrification is performed using these sulfide lithium ion conductive solid electrolyte and the prepared α-alumina, the following two methods are applied.
That is, (1) A sulfide-based lithium ion conductive solid electrolyte powder containing the prepared α-alumina is filled in a glassy carbon crucible, and this is vacuum-sealed in a quartz tube. The vacuum ampule was inserted into an electric furnace and heated and melted at about 850 ° C. for about 3 hours. Thereafter, a vacuum ampule was inserted into ice water, and the melt in the glassy carbon crucible was rapidly cooled to obtain a sulfide-based lithium ion conductive solid electrolyte glass containing α-alumina.

また、別のガラス化手法として、(2)調合したα−アルミナを含む硫化物系リチウムイオン伝導性固体電解質粉末をグラッシーカーボン坩堝に充填した後、この坩堝をグローブボックスに接続した電気炉内の石英管内に、乾燥アルゴンガス通気しながら挿入し、坩堝を約850℃で約3時間、加温し、α−アルミナを含む硫化物系リチウムイオン伝導性固体電解質粉末を溶融した。その後、この坩堝を石英管から取り出し、坩堝内の融液をグローブボックス中に設けたステンレス製のツインローラーに注ぐことで、溶融物を強急冷することで硫化物系リチウムイオン伝導性固体電解質ガラスを作ることができる。
この融液の強急冷に当たっては、溶融状態から軟化温度領域に入り、この状態では柔軟性を持った板状となりながら、この過程を経由したあと、ガラス転移温度以下に到達し、一枚の堅い板状ガラスとなり、所望の硫化物リチウムイオン伝導性ガラスを得ることができる。
As another vitrification method, (2) after filling the glassy carbon crucible with the sulfide-based lithium ion conductive solid electrolyte powder containing the prepared α-alumina, the crucible is connected to a glove box in an electric furnace. The quartz tube was inserted while ventilating dry argon gas, and the crucible was heated at about 850 ° C. for about 3 hours to melt the sulfide-based lithium ion conductive solid electrolyte powder containing α-alumina. After that, the crucible is taken out from the quartz tube, and the melt in the crucible is poured into a stainless steel twin roller provided in the glove box so that the melt is rapidly cooled to provide sulfide-based lithium ion conductive solid electrolyte glass. Can be made.
In the rapid cooling of this melt, it enters the softening temperature region from the molten state, and in this state, it becomes a flexible plate, but after passing through this process, it reaches below the glass transition temperature, and it is a single hard sheet It becomes plate-like glass, and a desired sulfide lithium ion conductive glass can be obtained.

これらのツインローラーによるガラス化工程は全て、乾燥アルゴン雰囲気のドライボックスに付設した電気炉を使用するとともに、試料の準備工程は全てドライボックス中で処理した。こうして作成した硫化物系リチウムイオン伝導性固体電解質を粉砕し、その粉末を用い、これを直径1cmの円筒を有したアルミナ製成型金型に充填し、この金型を作成した硫化物系リチウムイオン伝導性固体電解質ガラスの軟化温度(約200℃〜320℃)に加温しながら、約2トン/cm2の圧力で加圧成型した。
ここで、用いた成型用雄金型は金メッキを施したステンレス製のものを用いた。成型物を室温に冷却した後、その圧力下で、そのイオン伝導率を測定した。
All the vitrification processes using these twin rollers used an electric furnace attached to a dry box in a dry argon atmosphere, and all the sample preparation processes were processed in the dry box. The sulfide-based lithium ion conductive solid electrolyte thus prepared is pulverized, and the powder is used to fill an alumina mold having a cylinder with a diameter of 1 cm. While heating to the softening temperature (about 200 ° C. to 320 ° C.) of the ion conductive solid electrolyte glass, it was pressure-molded at a pressure of about 2 ton / cm 2 .
Here, the used male mold for molding was a stainless steel plated with gold. After the molding was cooled to room temperature, its ionic conductivity was measured under the pressure.

以下に、本実施形態1の硫化物系リチウムイオン伝導性固体電解質ガラスを、更に詳細に説明するために、実施例を用いて説明する。   Hereinafter, the sulfide-based lithium ion conductive solid electrolyte glass of Embodiment 1 will be described with reference to examples in order to describe it in more detail.

(実施例1)
ここでは、出発母材となる、硫化物系リチウムイオン伝導体としてLi2S−SiS2−Li3PO4からなるリチウムイオン伝導性ガラスを用い、上記(1)に記載した方法で、絶縁性部粒子としてα−アルミナを7%の重量比で混合した新しい硫化物系リチウムイオン伝導性固体電解質ガラスを構成した。
Example 1
Here, using a lithium ion conductive glass made of Li 2 S—SiS 2 —Li 3 PO 4 as a sulfide-based lithium ion conductor, which is a starting base material, an insulating property is obtained by the method described in (1) above. A new sulfide-based lithium ion conductive solid electrolyte glass in which α-alumina was mixed at a weight ratio of 7% as part particles was formed.

得られた硫化物系リチウムイオン伝導性固体電解質ガラスを遊星ボールミルで、平均粒径が約7μmに粉砕し、得た固体電解質粉末を、イオン伝導率測定セルを兼ねた直径1cmの円筒を有したアルミナ製成型治具に充填し、2トン/cm2の圧力で加圧成型した。この加圧に際しては、治具を硫化物系リチウムイオン伝導性固体電解質ガラスの軟化温度領域(約200℃〜320℃)に加温(加温時間2時間以内で処理)しながら、加圧成型した。
ここで、用いた成型用雄金型は金メッキを施したステンレス製のものを用いた。続いて、加圧状態を維持しながら、測定セルが室温に冷却した後、そのイオン伝導率を測定した。またイオン伝導率測定後、測定セルから中の固体電解質ペレットを取り出すと、加熱温度が200℃から320℃以下の温度で作成したペレットは、全て薄茶色の透明なディスクとなって得られた。即ち、電解質層内では粒界接合の無い一枚の透明の板状リチウムイオン伝導性ガラスとなっており、180℃および350℃で作成したものは電解質が不透明白色状態を示していた。
The obtained sulfide-based lithium ion conductive solid electrolyte glass was pulverized with a planetary ball mill to an average particle size of about 7 μm, and the obtained solid electrolyte powder had a cylinder with a diameter of 1 cm that also served as an ion conductivity measurement cell. An alumina molding jig was filled and pressure molded at a pressure of 2 ton / cm 2 . In this pressurization, the jig is heated while being heated (processed within 2 hours) within the softening temperature range (approximately 200 ° C to 320 ° C) of the sulfide-based lithium ion conductive solid electrolyte glass. did.
Here, the used male mold for molding was a stainless steel plated with gold. Subsequently, while maintaining the pressurized state, the measurement cell was cooled to room temperature, and then its ionic conductivity was measured. Moreover, when the solid electrolyte pellet was taken out from the measurement cell after measuring the ionic conductivity, the pellets prepared at a heating temperature of 200 ° C. to 320 ° C. or less were all obtained as a light brown transparent disk. That is, in the electrolyte layer, it is a single transparent plate-like lithium ion conductive glass having no grain boundary bonding, and those prepared at 180 ° C. and 350 ° C. showed an opaque white state of the electrolyte.

この作成した電解質について、そのイオン伝導度を測定すると、200℃から320℃以下の加温範囲内で処理して得た透明な板状となったものでは、測定時に加圧する圧力が2トン/cm2と低い圧力に係わらず、そのイオン伝導率は1.7×10-3S/cm2以上の優れた値を示した。
一方、350℃で加熱圧縮して作成した白色の不透明な電解質では、0.95×10-4S/cm2を示し、極めてイオン伝導率の低下が著しいことが分かった。しかし、180℃で加温圧縮して得た白色不透明の電解質層では、1.1×10-3S/cm2を示した。
これは、350℃の処理では、電解質粉末が結晶化した為によるものであり、180℃での処理では、電解質粉末は軟化せず、単に電解質ガラス粉末を弱い圧力で圧縮しただけで、一枚の粒界の無いガラス板にはならなかったと考えられた。
これに対し、従来の電解質であるα−アルミナを単に実施例1で用いた電解質母材に混合して得た電解質粉末を、2トン/cm2の圧力で成型すると、そのイオン伝導率は0.9×10-3S/cm2を示し、成型圧力を4トン/cm2の圧力以上で成型することで、2.5×10-3S/cm2を示すようになった。
即ち、このことはイオン伝導率として、電解質粉末に4トン/cm2以上の圧力を掛けなければ得られない値で、しかも、作成した電解質成型体の色は白色のディスクとなっており、そこでは電解質粉末粒子同士の粒界接合が解消されず、不透明な白色を呈していた。
When the ionic conductivity of the prepared electrolyte was measured, a transparent plate obtained by processing within a heating range of 200 ° C. to 320 ° C., the pressure applied during the measurement was 2 ton / Despite the low pressure of cm 2 , the ionic conductivity showed an excellent value of 1.7 × 10 −3 S / cm 2 or more.
On the other hand, the white opaque electrolyte produced by heating and compressing at 350 ° C. showed 0.95 × 10 −4 S / cm 2, and it was found that the ionic conductivity was extremely lowered. However, the white opaque electrolyte layer obtained by warm compression at 180 ° C. showed 1.1 × 10 −3 S / cm 2 .
This is because the electrolyte powder crystallized in the treatment at 350 ° C., and the electrolyte powder does not soften in the treatment at 180 ° C. It was thought that it was not a glass plate without grain boundaries.
On the other hand, when the electrolyte powder obtained by simply mixing α-alumina, which is a conventional electrolyte, with the electrolyte base material used in Example 1 is molded at a pressure of 2 ton / cm 2 , its ionic conductivity is 0. indicates .9 × 10 -3 S / cm 2, by molding a molding pressure 4 t / cm 2 of pressure or more, began to show a 2.5 × 10 -3 S / cm 2 .
That is, this is a value that can only be obtained by applying a pressure of 4 ton / cm 2 or more to the electrolyte powder as the ionic conductivity, and the color of the formed electrolyte is a white disk. The grain boundary bonding between the electrolyte powder particles was not eliminated, and an opaque white color was exhibited.

得られた特性を総合して図10に示した。この結果から、α−アルミナを単に混合して得た電解質粉末を用いると、4トン/cm2以上の圧力を掛け、その圧力を維持しなければ、全固体リチウム二次電池内の電解質層として、実用的電池性能を有したものとならないのに反し、本発明の電解質ガラス粉末を用い、電解質層を構成すると、容易に実用的な電解質層が可能となると言える。 The obtained characteristics are collectively shown in FIG. From this result, when an electrolyte powder obtained by simply mixing α-alumina is used, if a pressure of 4 ton / cm 2 or more is applied and the pressure is not maintained, an electrolyte layer in an all-solid lithium secondary battery can be obtained. On the other hand, it can be said that a practical electrolyte layer can be easily formed when the electrolyte glass powder of the present invention is used to constitute an electrolyte layer, although it does not have practical battery performance.

(実施例2)
ここでは、実施例1で用いた電解質ガラスの加熱、圧縮成型における、加熱温度と時間の関係を調べるため、電解質ガラス成型体を同様に作成し、その伝導率を測定すると共に、その外観を調べた。但し、ここで用いた成型圧力は実施例1と同様、2トン/cm2とした。
得られた結果を総合して図11に示した。この結果、加熱温度として、180℃〜350℃の温度範囲で加熱圧縮すると、処理時間が6時間以内では、全てのガラス成型体について、そのイオン伝導率が1×10-3S/cm2以上を示していることが判った。但し、処理温度が300℃で、処理時間が5時間を超えるとこの温度領域では、イオン伝導率の若干の低下が認められている。
処理温度としては200℃から300℃の温度範囲で、処理時間としては5時間以内が望ましいことが判明した。180℃では電解質成型体の外観として不透明な白色を呈していたことから、電解質層内には粒界接合の存在した状況と考えられ、好ましい状態でない。
(Example 2)
Here, in order to investigate the relationship between the heating temperature and time in the heating and compression molding of the electrolyte glass used in Example 1, an electrolyte glass molded body was similarly prepared, its conductivity was measured, and its appearance was examined. It was. However, the molding pressure used here was 2 ton / cm 2 as in Example 1.
The obtained results are collectively shown in FIG. As a result, when heating and compressing in the temperature range of 180 ° C. to 350 ° C. as the heating temperature, the ion conductivity is 1 × 10 −3 S / cm 2 or more for all glass molded bodies within a treatment time of 6 hours. It was found that However, when the treatment temperature is 300 ° C. and the treatment time exceeds 5 hours, a slight decrease in ionic conductivity is observed in this temperature region.
It has been found that the treatment temperature is preferably in the temperature range of 200 ° C. to 300 ° C., and the treatment time is preferably within 5 hours. At 180 ° C., since the appearance of the electrolyte molded body was opaque white, it is considered that grain boundary bonding existed in the electrolyte layer, which is not a preferable state.

(実施例3)
ここでは、出発母材となる、硫化物系リチウムイオン伝導体としてLi2S−Ge22−P25からなるリチウムイオン伝導性ガラスを用い、上記(1)に記載した方法で、絶縁性部粒子としてα−アルミナを7%の重量比で混合した新しい硫化物系リチウムイオン伝導性固体電解質ガラスを同様に構成した。
(Example 3)
Here, using a lithium ion conductive glass made of Li 2 S—Ge 2 S 2 —P 2 S 5 as a sulfide-based lithium ion conductor as a starting base material, the method described in (1) above, A new sulfide-based lithium ion conductive solid electrolyte glass in which α-alumina was mixed at a weight ratio of 7% as insulating part particles was similarly constructed.

得られた硫化物系リチウムイオン伝導性固体電解質ガラス(以下、電解質ガラスともいう)を遊星ボールミルで、平均粒径が約7μmに粉砕した固体電解質粉末を、イオン伝導率測定セルを兼ねた直径1cmの円筒を有したアルミナ製成型金型に充填し、この金型を作成した硫化物系リチウムイオン伝導性固体電解質ガラスの軟化温度(約220℃)に加温(加温時間2時間以内で処理)、約2トン/cm2の圧力で加圧成型した。
ここで、用いた成型用雄金型は金メッキを施したステンレス製のものを用いた。続いて、加圧状態を維持しながら、測定セルが室温に冷却した後、そのイオン伝導率を測定した。またイオン伝導率測定後、測定セルから中の固体電解質ペレットを取り出すと、上記固体電解質ペレットは薄茶色の透明なディスクとなっていた。この事例でも、電解質層内では粒界接合の無い一枚の板状リチウムイオン伝導性ガラスとなっていることが判明した。
The obtained sulfide-based lithium ion conductive solid electrolyte glass (hereinafter also referred to as electrolyte glass) with a planetary ball mill was crushed to an average particle size of about 7 μm, and a solid electrolyte powder serving as an ion conductivity measuring cell was 1 cm in diameter. Filled in an alumina mold having a cylindrical shape, and heated to the softening temperature (about 220 ° C.) of the sulfide-based lithium ion conductive solid electrolyte glass produced with this mold (within 2 hours of heating time) Treatment), and pressure-molded at a pressure of about 2 tons / cm 2 .
Here, the used male mold for molding was a stainless steel plated with gold. Subsequently, while maintaining the pressurized state, the measurement cell was cooled to room temperature, and then its ionic conductivity was measured. When the solid electrolyte pellet was taken out from the measurement cell after the ionic conductivity measurement, the solid electrolyte pellet was a light brown transparent disk. Also in this case, it was found that the sheet was a single plate-like lithium ion conductive glass having no grain boundary bonding in the electrolyte layer.

作成した電解質ガラスのイオン伝導度の測定結果は、測定時に加圧する圧力が2トン/cm2と低い圧力に係わらず、そのイオン伝導率は3.3×10-3S/cm2と優れた値を示した。これに対し、従来のα−アルミナを母剤に単に混合して得た電解質粉末を同じようにイオン伝導率を測定し、比較すると、この値はイオン伝導率測定用セルに4トン/cm2以上の圧力を掛けなければ得られない値であった。
即ち、α−アルミナを単に混合して得た電解質粉末では、測定セルに4トン/cm2以上の圧力を掛けることにより、約3.0×10-3S/cm2となる。これは従来の電解質層を成型するに際し、この圧力以上掛けなければ、電解質内部では粒界接合の影響を受けるものであることが判った。しかも、測定後、セル内の電解質成型体を取り出すと、薄茶色の不透明なディスクが得られた。即ち、成型体内部では、電解質粉末粒子同士の粒界接合が解消されず、薄茶色の不透明な状態を呈していたと思われた。
As a result of measuring the ionic conductivity of the prepared electrolyte glass, the ionic conductivity was excellent at 3.3 × 10 −3 S / cm 2 , regardless of the pressure applied at the time of measurement was as low as 2 ton / cm 2 . The value is shown. On the other hand, the ionic conductivity of the electrolyte powder obtained by simply mixing the conventional α-alumina with the base material was measured in the same manner, and when compared, this value was 4 ton / cm 2 in the ionic conductivity measuring cell. It was a value that could not be obtained without applying the above pressure.
That is, the electrolyte powder obtained by simply mixing α-alumina is about 3.0 × 10 −3 S / cm 2 by applying a pressure of 4 ton / cm 2 or more to the measurement cell. It has been found that, when a conventional electrolyte layer is molded, if the pressure does not exceed this pressure, it is affected by grain boundary bonding inside the electrolyte. Moreover, after the measurement, the electrolyte molded body in the cell was taken out, and a light brown opaque disk was obtained. That is, it was considered that the grain boundary bonding between the electrolyte powder particles was not eliminated in the molded body, and a light brown opaque state was exhibited.

(実施例4)
ここでは、出発母材となる、硫化物系リチウムイオン伝導体としてLi2S−P25からなるリチウムイオン伝導性ガラスを用い、上記(1)に記載した方法で、絶縁性部粒子としてα−アルミナを7%の重量比で混合した新しい硫化物系リチウムイオン伝導性固体電解質ガラスを構成した。
Example 4
Here, as a starting base material, lithium ion conductive glass composed of Li 2 S—P 2 S 5 is used as a sulfide-based lithium ion conductor, and the insulating part particles are formed by the method described in (1) above. A new sulfide-based lithium ion conductive solid electrolyte glass in which α-alumina was mixed at a weight ratio of 7% was constructed.

得られた電解質ガラスを遊星ボールミルで、平均粒径が約7μmに粉砕し、この粉末を、イオン伝導率測定セルを兼ねた直径1cmの円筒を有したアルミナ製成型金型に充填し、硫化物系リチウムイオン伝導性固体電解質ガラスの軟化温度領域(約220℃)に加温(加温時間2時間以内で処理)しながら、約2トン/cm2の圧力で加圧成型した。
ここで、用いた成型用雄金型は金メッキを施したステンレス製のものを用いた。続いて、加圧状態を維持しながら、測定セルを室温に冷却させ後、そのイオン伝導率を測定した。またイオン伝導率測定後、測定セルから中の固体電解質ペレットを取り出すと、上記固体電解質ペレットは薄茶色の透明な茶褐色のディスクとなって得られた。この事例でも、電解質層内では粒界接合の無い一枚の板状リチウムイオン伝導性ガラスとなっていることが判明した。
The obtained electrolyte glass was pulverized with a planetary ball mill to an average particle size of about 7 μm, and this powder was filled into an alumina mold having a 1 cm diameter cylinder also serving as an ionic conductivity measuring cell, and sulfided. The material lithium ion conductive solid electrolyte glass was press-molded at a pressure of about 2 ton / cm 2 while being heated (treated within 2 hours of heating time) in the softening temperature region (about 220 ° C.).
Here, the used male mold for molding was a stainless steel plated with gold. Subsequently, while maintaining the pressurized state, the measurement cell was cooled to room temperature, and then its ionic conductivity was measured. Further, when the solid electrolyte pellet was taken out of the measurement cell after measuring the ionic conductivity, the solid electrolyte pellet was obtained as a light brown transparent brownish brown disk. Also in this case, it was found that the sheet was a single plate-like lithium ion conductive glass having no grain boundary bonding in the electrolyte layer.

この作成した電解質ガラスのイオン伝導度を測定した結果、測定時に加圧する圧力が2トン/cm2と低い圧力に係わらず、そのイオン伝導率は0.85×10-3S/cmで、極めて優れた値を示した。これに対し、従来のα−アルミナを、この母剤に単に混合して得た電解質粉末を同じようにイオン伝導率を測定し、比較すると、この値はイオン伝導率測定用セルに4トン/cm2以上の圧力を掛けなければ得られない値であることが判明した。
即ち、α−アルミナを単に混合して得た電解質粉末を用いると、測定セルに4トン/cm2以上の圧力を掛けなければ、約0.7×10-3S/cm2とならず、これは従来の電解質層を成型するに際し、この圧力以上掛けなければ、電解質内部では粒界接合の影響を受けるものであることが判った。しかも、測定後、セル内の電解質成型体を取り出すと、茶褐色色の不透明なディスクが得られた。即ち、成型体内部では、電解質粉末粒子同士の粒界接合が解消されず、茶褐色の不透明な状態を呈していたと思われた。
As a result of measuring the ionic conductivity of the prepared electrolyte glass, the ionic conductivity was 0.85 × 10 −3 S / cm regardless of the pressure applied at the time of measurement being as low as 2 ton / cm 2. Excellent value was shown. On the other hand, the ionic conductivity of the electrolyte powder obtained by simply mixing the conventional α-alumina with this base material was measured in the same manner. It was found that the value could not be obtained unless a pressure of cm 2 or more was applied.
That is, when electrolyte powder obtained by simply mixing α-alumina is used, the pressure does not reach about 0.7 × 10 −3 S / cm 2 unless a pressure of 4 ton / cm 2 or more is applied to the measurement cell. It has been found that, when a conventional electrolyte layer is molded, if this pressure is not applied, the inside of the electrolyte is affected by grain boundary bonding. Moreover, when the molded electrolyte in the cell was taken out after the measurement, a brownish brown opaque disk was obtained. That is, it was considered that the grain boundary bonding between the electrolyte powder particles was not eliminated inside the molded body, and a brownish brown opaque state was exhibited.

(実施例5)
ここでは出発母材となる、硫化物系リチウムイオン伝導体としてLi2S−P25−LiIからなるリチウムイオン伝導性ガラスを用い、上記(1)に記載した方法で、絶縁性部粒子としてα−アルミナを7%の重量比で混合した新しい硫化物系リチウムイオン伝導性固体電解質ガラスを構成した。
(Example 5)
Here, using the lithium ion conductive glass made of Li 2 S—P 2 S 5 —LiI as the sulfide-based lithium ion conductor as a starting base material, the insulating part particles are obtained by the method described in the above (1). A new sulfide-based lithium ion conductive solid electrolyte glass in which α-alumina was mixed at a weight ratio of 7% was prepared.

得られた電解質ガラスを遊星ボールミルで、平均粒径が約7μmに粉砕し、この粉末を、イオン伝導率測定セルを兼ねた直径1cmの円筒を有したアルミナ製成型金型に充填し、作成した硫化物系リチウムイオン伝導性固体電解質ガラスの軟化温度(約220℃)に加温(加温時間2時間以内で処理)しながら、約2トン/cm2の圧力で加圧成型した。
ここで、用いた成型用雄金型は金メッキを施したステンレス製のものを用いた。続いて、加圧状態を維持しながら、測定セルを室温に冷却させた後、そのイオン伝導率を測定した。またイオン伝導率測定後、測定セルから中の固体電解質ペレットを取り出すと、上記固体電解質ペレットは茶黒色の透明なディスクが得られた。この事例でも、電解質層内では粒界接合の無い一枚の板状リチウムイオン伝導性ガラスとなっていることが判明した。
The obtained electrolyte glass was pulverized with a planetary ball mill to an average particle size of about 7 μm, and this powder was filled into an alumina mold having a 1 cm diameter cylinder also serving as an ion conductivity measurement cell. The sulfide-based lithium ion conductive solid electrolyte glass was subjected to pressure molding at a pressure of about 2 ton / cm 2 while being heated (treated within 2 hours of heating time) to the softening temperature (about 220 ° C.).
Here, the used male mold for molding was a stainless steel plated with gold. Subsequently, while maintaining the pressurized state, the measurement cell was cooled to room temperature, and then its ionic conductivity was measured. When the solid electrolyte pellet was taken out of the measurement cell after measuring the ionic conductivity, a brown black transparent disk was obtained from the solid electrolyte pellet. Also in this case, it was found that the sheet was a single plate-like lithium ion conductive glass having no grain boundary bonding in the electrolyte layer.

作成した電解質ガラスのイオン伝導度の測定結果、測定時に加圧する圧力が2トン/cm2と低い圧力に係わらず、そのイオン伝導率は1.1×10-3S/cmで、極めて優れた値を示した。一方、従来のα−アルミナを、この母剤に単に混合して得た電解質粉末を同じようにイオン伝導率を測定し、比較すると、この値はイオン伝導率測定用セルに4トン/cm2以上の圧力を掛けなければ得られない値であることが判明した。
即ち、α−アルミナを単に混合して得た電解質粉末を用いると、測定セルに4トン/cm2以上の圧力を掛けねば、このイオン伝導率に近い、約0.85×10-3S/cm2とならなかった。これは従来の電解質層を成型するに際し、この圧力以上の圧力を掛け無ければ、電解質内部では粒界接合の影響を受ける材料であることが判った。しかも、測定後、セル内の電解質成型体を取り出すと、濃い茶色の不透明なディスクが得られた。即ち、成型体内部では、電解質粉末粒子同士の粒界接合が解消されず、茶黒色の不透明な状態を呈していたと思われた。
As a result of measuring the ionic conductivity of the prepared electrolyte glass, the ionic conductivity was 1.1 × 10 −3 S / cm regardless of the low pressure of 2 ton / cm 2 during the measurement, which was extremely excellent. The value is shown. On the other hand, the ionic conductivity of the electrolyte powder obtained by simply mixing the conventional α-alumina with this base material was measured in the same manner, and when compared, this value was 4 ton / cm 2 in the ionic conductivity measuring cell. It was found that the value could not be obtained without applying the above pressure.
That is, when an electrolyte powder obtained by simply mixing α-alumina is used, if the pressure of 4 ton / cm 2 or more is not applied to the measurement cell, this ion conductivity is close to about 0.85 × 10 −3 S / It did not become a cm 2. It has been found that if a pressure higher than this pressure is not applied when forming a conventional electrolyte layer, the material is affected by grain boundary bonding inside the electrolyte. Moreover, when the molded electrolyte in the cell was taken out after the measurement, a dark brown opaque disk was obtained. That is, it was considered that the grain boundary bonding between the electrolyte powder particles was not eliminated inside the molded body, and a brown black opaque state was exhibited.

(実施例6)
ここでは、出発母材となる、硫化物系リチウムイオン伝導体としてLi2S−B23からなるリチウムイオン伝導性ガラスを用い、上記(1)に記載した方法で、絶縁性部粒子としてα−アルミナを5%の重量比で混合した新しい硫化物系リチウムイオン伝導性固体電解質ガラスを構成した。
(Example 6)
Here, as a starting base material, lithium ion conductive glass made of Li 2 S—B 2 S 3 is used as a sulfide-based lithium ion conductor, and the insulating part particles are formed by the method described in (1) above. A new sulfide-based lithium ion conductive solid electrolyte glass in which α-alumina was mixed at a weight ratio of 5% was constructed.

得られた電解質ガラスを遊星ボールミルで、平均粒径が約7μmに粉砕し、これをイオン伝導率測定セルを兼ねた直径1cmの円筒を有したアルミナ製成型金型に充填し、作成した硫化物系リチウムイオン伝導性固体電解質ガラスの軟化温度(約220℃)に金型を加温(加温時間2時間以内で処理)、約2トン/cm2の圧力で加圧成型した。ここで、用いた成型用雄金型は金メッキを施したステンレス製のものを用いた。続いて、加圧状態を維持しながら、測定セルを室温に冷却した後、そのイオン伝導率を測定した。またイオン伝導率測定後、測定セルから中の固体電解質ペレットを取り出すと、上記固体電位質ペレットは茶色の透明なディスクとなっていた。この事例でも、電解質層内では粒界接合の無い一枚の板状リチウムイオン伝導性ガラスとなっていることが判明した。 The obtained electrolyte glass was pulverized with a planetary ball mill to an average particle diameter of about 7 μm, and this was filled into an alumina mold having a diameter of 1 cm which also served as an ion conductivity measuring cell, and the sulfide was prepared. The mold was heated (treated within 2 hours of heating time) to the softening temperature (about 220 ° C.) of the physical lithium ion conductive solid electrolyte glass, and pressure-molded at a pressure of about 2 ton / cm 2 . Here, the used male mold for molding was a stainless steel plated with gold. Subsequently, while maintaining the pressurized state, the measurement cell was cooled to room temperature, and then its ionic conductivity was measured. When the solid electrolyte pellet was taken out from the measurement cell after the ionic conductivity measurement, the solid potential pellet was a brown transparent disk. Also in this case, it was found that the sheet was a single plate-like lithium ion conductive glass having no grain boundary bonding in the electrolyte layer.

作成した電解質ガラスのイオン伝導度の測定結果は、測定時に加圧する圧力が2トン/cm2と低い圧力に係わらず、そのイオン伝導率は1.0×10-3S/cmで、極めて優れた値を示した。これに対し、従来のα−アルミナを、この母剤に単に混合して得た電解質粉末を同じようにイオン伝導率を測定し、比較すると、この値はイオン伝導率測定用セルに4トン/cm2以上の圧力を掛けなければ得られない値であることが判明した。
即ち、α−アルミナを単に混合して得た電解質粉末を用いると、測定セルに4トン/cm2以上の圧力を掛けることで、約0.9×10-3S/cm2となった。これは従来の電解質層を成型するに際し、この圧力以上掛け無ければ、電解質内部では粒界接合の影響を受けるものであることが判った。しかも、測定後、セル内の電解質成型体を取り出すと、薄茶色の不透明なディスクが得られた。即ち、成型体内部では、電解質粉末粒子同士の粒界接合が解消されず、茶色の不透明な状態を呈していたと思われた。
The measurement result of the ionic conductivity of the prepared electrolyte glass shows that the ionic conductivity is 1.0 × 10 −3 S / cm, regardless of whether the pressure applied during the measurement is as low as 2 ton / cm 2. The value was shown. On the other hand, the ionic conductivity of the electrolyte powder obtained by simply mixing the conventional α-alumina with this base material was measured in the same manner. It was found that the value could not be obtained unless a pressure of cm 2 or more was applied.
That is, when an electrolyte powder obtained by simply mixing α-alumina was used, a pressure of 4 ton / cm 2 or more was applied to the measurement cell to obtain about 0.9 × 10 −3 S / cm 2 . It has been found that, when a conventional electrolyte layer is molded, if this pressure is not applied, the inside of the electrolyte is affected by grain boundary bonding. Moreover, after the measurement, the electrolyte molded body in the cell was taken out, and a light brown opaque disk was obtained. That is, it was considered that the grain boundary bonding between the electrolyte powder particles was not eliminated inside the molded body, and a brown opaque state was exhibited.

本実施例では、Li2S−SiS2−Li3PO4,Li2S−GeS2−P25,Li2S−P25,Li2S−P25−LiI、Li2S−B23の5種の硫化物リチウムイオン伝導性固体電解質を用い、これらにα−Al23を加えた材料を合成し、その溶融温度域まで加温し、その融液を強急冷することで、ガラス化が可能であることが判明した。
これらの現象は、本具体例で用いた硫化物リチウムイオン伝導体に限定されるものでなく、硫化物リチウムイオン伝導体にα−アルミナを混合した全ての材料に対して共通して、ガラス化が可能となることは、容易に推定されるものである。また、それぞれのイオン伝導度を測定した結果から、その値が粉末状の硫化物系リチウムイオン伝導性固体電解質を成型したものと全く異なり、強い圧力で加圧しなくても、形成されている電解質層が一枚のガラス状となっているため、電解質粉末粒界接合問題がなくなり、そのイオン伝導度が向上することが判った。
In this example, Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiI, Li Using 5 types of sulfide lithium ion conductive solid electrolytes of 2 S-B 2 S 3 , materials with α-Al 2 O 3 added thereto were synthesized, heated to their melting temperature range, and the melt It was found that vitrification was possible by rapid cooling of.
These phenomena are not limited to the sulfide lithium ion conductor used in this specific example, but are common to all materials in which α-alumina is mixed with the sulfide lithium ion conductor. It can be easily estimated that this is possible. In addition, from the results of measuring the ionic conductivity of each, the value is completely different from that obtained by molding a powdered sulfide-based lithium ion conductive solid electrolyte, and the formed electrolyte can be formed without applying high pressure. It has been found that since the layer is made of a single sheet of glass, the problem of electrolyte powder grain boundary bonding is eliminated and the ionic conductivity is improved.

以上のように、上記した実施例1から実施例6の結果と、ガラス化しない電解質についての、イオン伝導率測定のための印加圧力の影響結果から判るように、α−Al23を硫化物リチウムイオン伝導体への混合した全ての硫化物リチウムイオン伝導体を、溶融温度域まで加温し、その融液を強急冷することで、ガラス化が可能であり、これにより、イオン伝導率が、電解質中に粒界がないため改善されたものと言えることが判明した。
また、α−アルミナを単に混合して得た電解質粉末を用いると、4トン/cm2以上の圧力を掛け、その圧力を維持しなければ、全固体リチウム二次電池内の電解質層として、実用的電池性能を有したものとならないことから、全固体リチウム二次電池では、その電池素子の外周を強く圧縮状態としなければ、優れた充放電サイクル性能を有しなくなると考えられ、これに反し、本発明の電解質ガラス粉末を用い、粒界接合のない電解質層を構成し、用いると、容易に実用的な全固体リチウム二次電池となると言える。
As described above, as can be seen from the results of Examples 1 to 6 described above and the effect of the applied pressure for measuring the ionic conductivity of the electrolyte that does not vitrify, α-Al 2 O 3 is sulfided. All sulfide lithium ion conductors mixed into the product lithium ion conductor can be vitrified by heating to the melting temperature range and quenching the melt rapidly. However, it has been found that this can be said to be improved because there is no grain boundary in the electrolyte.
In addition, when electrolyte powder obtained by simply mixing α-alumina is used, if a pressure of 4 ton / cm 2 or more is applied and the pressure is not maintained, it can be used as an electrolyte layer in an all-solid lithium secondary battery. Therefore, it is considered that an all-solid lithium secondary battery will not have excellent charge / discharge cycle performance unless the outer periphery of the battery element is strongly compressed. When the electrolyte glass powder of the present invention is used to construct and use an electrolyte layer without grain boundary bonding, it can be said that a practical all-solid lithium secondary battery can be obtained easily.

<全固体リチウム二次電池>
次に、こうして得た新しい硫化物リチウムイオン伝導性ガラスを備える本実施形態2の全固体リチウム二次電池について説明する。
<All-solid lithium secondary battery>
Next, the all-solid lithium secondary battery of Embodiment 2 provided with the new sulfide lithium ion conductive glass thus obtained will be described.

(実施形態2)
この全固体リチウム二次電池は、硫化物系リチウムイオン伝導性固体電解質ガラスを層状に形成した硫化物系リチウムイオン伝導性固体電解質を備える。
(Embodiment 2)
This all-solid lithium secondary battery includes a sulfide-based lithium ion conductive solid electrolyte in which a sulfide-based lithium ion conductive solid electrolyte glass is formed in layers.

図2は、本実施形態の全固体リチウム二次電池の縦断面図である。この図2に示す全固体リチウム二次電池素子は、正極(I)、負極(II)間に新規硫化物系リチウムイオン伝導性固体電解質ガラス層(以下、電解質層という)8を介在させて構成されるが、その際、介在させる電解質層8は、正極(I)および負極(II)を覆う様に形成されており、且つ、正極リード板1、負極リード板5は、電解質層8と同等もしくは、より大なる構造の形態とする。更に、この電池素子のほぼ全体(全周)を被覆するように設けられた電池シール部として、絶縁性のシール部10で、正電極端子9および負電極端子4間を隔離し、封孔されている。   FIG. 2 is a longitudinal sectional view of the all-solid lithium secondary battery of the present embodiment. The all-solid lithium secondary battery element shown in FIG. 2 is constructed by interposing a novel sulfide-based lithium ion conductive solid electrolyte glass layer (hereinafter referred to as electrolyte layer) 8 between the positive electrode (I) and the negative electrode (II). However, in this case, the intervening electrolyte layer 8 is formed so as to cover the positive electrode (I) and the negative electrode (II), and the positive electrode lead plate 1 and the negative electrode lead plate 5 are equivalent to the electrolyte layer 8. Or it is set as the form of a larger structure. Further, as a battery seal portion provided so as to cover almost the entire battery element (entire circumference), an insulating seal portion 10 separates the positive electrode terminal 9 and the negative electrode terminal 4 from each other and is sealed. ing.

以下では、まず、正極(I)と負極(II)と電解質層8とを有する電池素子(電池要素)について説明するが、本実施形態では、正極(I)および負極(II)の構成は、殆ど同様の構成も可能なため、正極(I)を代表として図3を用いて説明する。
正極(I)は、電極材料として、電極活物質粒子と固体電解質粉末、必要に応じて、カーボン等の導電剤を混合した正電極合材3、(負極(II)は、負電極合材7)を用いる。この正電極合材3、負電極合材7は、導電性網材のような空隙を有する正極集電体2、負極集電体6に充填されて用いられる。
Hereinafter, first, a battery element (battery element) having the positive electrode (I), the negative electrode (II), and the electrolyte layer 8 will be described. In this embodiment, the configuration of the positive electrode (I) and the negative electrode (II) is Since almost the same configuration is possible, the positive electrode (I) will be described as a representative with reference to FIG.
The positive electrode (I) is composed of electrode active material particles and solid electrolyte powder as an electrode material, and a positive electrode mixture 3 in which a conductive agent such as carbon is mixed, if necessary (the negative electrode (II) is a negative electrode mixture 7) ) Is used. The positive electrode mixture 3 and the negative electrode mixture 7 are used by being filled in a positive electrode current collector 2 and a negative electrode current collector 6 having voids such as a conductive net material.

この際、正極集電体2、負極集電体6としては電流の均一化と内部抵抗を低下させるための目的で電子導電性を付与する効果だけでなく、電池の充放電に際し起こる電極の膨張収縮現象に対しての補強役割を持たせる作用を有し、正極リード板1および負極リード板5に固着し電気的な接合を行うことは、より好ましい。
正極集電体2及び正極リード板1の構成材料としては、例えば、Cu、Ni、Ti、SUSのような電子伝導性金属材料、ポリカーボネートのような硬質樹脂材料、アルミナ、ガラスのようなセラミックス等の絶縁性材料を用いることができるが、全固体リチウム二次電池素子の電解質ガラスの軟化温度に加熱圧縮する際の温度に耐える必要があり、また、絶縁性材料を用いる場合は、その表面に導電性薄膜を付加して用いることは好ましい。
At this time, the positive electrode current collector 2 and the negative electrode current collector 6 have not only the effect of imparting electronic conductivity for the purpose of equalizing the current and lowering the internal resistance, but also the expansion of the electrode that occurs during charging and discharging of the battery. It is more preferable to have an effect of reinforcing the contraction phenomenon and to be electrically bonded to the positive electrode lead plate 1 and the negative electrode lead plate 5.
Examples of the constituent material of the positive electrode current collector 2 and the positive electrode lead plate 1 include electron conductive metal materials such as Cu, Ni, Ti, and SUS, hard resin materials such as polycarbonate, ceramics such as alumina and glass, and the like. It is necessary to withstand the temperature when heating and compressing to the softening temperature of the electrolyte glass of an all-solid-state lithium secondary battery element, and when using an insulating material, It is preferable to add a conductive thin film.

ここで使用する集電体構造を図4に示した。図中401は、所望の寸法サイズの正極リード板1、負極リード板5に同等サイズの金属の網材からなる正極集電体2、負極集電体6をスポット溶接したものである。図中402は正極リード板1、負極リード板5の寸法より小さい正極集電体2、負極集電体6をスポット溶接したものである。また、図中403,404は、構成しようとする電極層の外周部に機械的強度を付加するために、集電体構造401および集電体構造402に規制部11を設けた構造材であり、絶縁性材料または導電性を有する材料を使用することが可能であり、電解質層8で兼ねることもできる。電極作成には、これら各種集電体構造のものから、電池構造に応じて、適宜選択し使用した。   The current collector structure used here is shown in FIG. In the figure, 401 is a spot-welded positive electrode current collector 2 and negative electrode current collector 6 made of a metal mesh of the same size on the positive electrode lead plate 1 and negative electrode lead plate 5 having desired dimensions. In the drawing, reference numeral 402 denotes a spot welded positive electrode current collector 2 and negative electrode current collector 6 which are smaller than the dimensions of the positive electrode lead plate 1 and the negative electrode lead plate 5. Reference numerals 403 and 404 in the figure are structural materials in which the current collector structure 401 and the current collector structure 402 are provided with the restricting portion 11 in order to add mechanical strength to the outer peripheral portion of the electrode layer to be configured. An insulating material or a conductive material can be used, and the electrolyte layer 8 can also be used. The electrodes were prepared by appropriately selecting from these various current collector structures according to the battery structure.

ここで、正極集電体2、負極集電体6として用いた金属の網材は、その構成材料や目的等によっても若干異なるが、平面視において開孔部割合が、25%〜90%程度であるのが好ましく、70%〜85%程度であるのがより好ましい。更にその平均厚さが、10μm〜400μm程度であるのが好ましく、50μm〜300μm程度であるのがより好ましい。
本実施形態の電極では、正極集電体2、負極集電体6のほぼ全面を覆うように、正電極合材3、負電極合材7が正極集電体2、負極集電体6に充填されている。
Here, the metal mesh materials used as the positive electrode current collector 2 and the negative electrode current collector 6 are slightly different depending on the constituent materials, purposes, and the like, but the opening portion ratio is about 25% to 90% in plan view. It is preferable that it is about 70% to 85%. Furthermore, the average thickness is preferably about 10 μm to 400 μm, and more preferably about 50 μm to 300 μm.
In the electrode of the present embodiment, the positive electrode mixture 3 and the negative electrode mixture 7 are formed on the positive electrode current collector 2 and the negative electrode current collector 6 so as to cover almost the entire surfaces of the positive electrode current collector 2 and the negative electrode current collector 6. Filled.

また、ここで用いる正極リード板1および負極リード板5の厚みは、300μm〜500μm程度が好ましい。正電極合材3、負電極合材7としては、例えば、電極活物質を単独、または電極活物質と固体電解質材料とを含んでいる混合物(電極合材)、さらには必要に応じてカーボン等の導電性付与材を混合して用いることができる。
正電極合材3、負電極合材7として、電極活物質と固体電解質材料とを含んでいる混合物を用いることにより、正極(I)または負極(II)を構成する電極活物質と電解質ガラス粉末粒子とのイオン伝導性接合界面の増大により、その界面接合力の密着性の向上を図ることができる。その結果、電極と電解質層8との間におけるイオンの授受が円滑に行われるようになり、全固体リチウム二次電池の特性(充放電特性)を、より向上させることができる。
The thickness of the positive electrode lead plate 1 and the negative electrode lead plate 5 used here is preferably about 300 μm to 500 μm. Examples of the positive electrode mixture 3 and the negative electrode mixture 7 include, for example, an electrode active material alone or a mixture (electrode mixture) containing an electrode active material and a solid electrolyte material, and, if necessary, carbon. These conductivity imparting materials can be mixed and used.
By using a mixture containing an electrode active material and a solid electrolyte material as the positive electrode mixture 3 and the negative electrode mixture 7, the electrode active material and the electrolyte glass powder constituting the positive electrode (I) or the negative electrode (II) By increasing the ion conductive bonding interface with the particles, the adhesion of the interface bonding force can be improved. As a result, the exchange of ions between the electrode and the electrolyte layer 8 can be performed smoothly, and the characteristics (charge / discharge characteristics) of the all-solid lithium secondary battery can be further improved.

本実施形態で用いる正極活物質は、コバルト酸リチウム(LixCoO2)、ニッケル酸リチウム(LixNiO2)、リチウムコバルト酸ニッケル(LiCo0.3Ni0.72)、マンガン酸リチウム(LiMn24)、チタン酸リチウム(Li4/3Ti5/34)、リチウムマンガン酸化合物(LiMyMn2-y4;M=Cr,Co,Ni)、リチウム燐酸鉄およびその化合物(Li1-xFePO4,Li1-xFe0.5Mn0.5PO4)であるオリビン化合物等の遷移金属酸化物材料、TiS2,VS2,FeS,Me・MoS8(MeはLi,Ti,Cu,Sb,Sn,Pb,Ni等の遷移金属)のような硫化物系カルコゲン化物、TiO2,Cr38,V25,MnO2,CoO2等のような金属酸化物を骨格としたリチウム金属酸化物等が挙げられる。
また、負極活物質としては、カーボン、およびリチウム、インジウム、アルミニウム、のような金属材料およびこれら金属とリチウムからなる合金を、1種または2種以上を組み合わせて用いることができる。
The positive electrode active material used in the present embodiment, the lithium cobaltate (Li x CoO 2), lithium nickel oxide (Li x NiO 2), lithium cobalt nickel (LiCo 0.3 Ni 0.7 O 2) , lithium manganate (LiMn 2 O 4), titanium Lithium oxide (Li 4/3 Ti 5/3 O 4 ), lithium manganate compound (LiM y Mn 2 -y O 4 ; M = Cr, Co, Ni), lithium iron phosphate and its compound (Li 1-x FePO 4 , Li 1-x Fe 0.5 Mn 0.5 PO 4 ) transition metal oxide material such as olivine compound, TiS 2 , VS 2 , FeS, Me.MoS 8 (Me is Li, Ti, Cu, Sb, Sn, pb, sulfide chalcogenide such as transition metals), such as Ni, lithium metal to TiO 2, Cr 3 O 8, V 2 O 5, MnO 2, CoO metal oxide, such as 2 and a skeleton Product, and the like.
Further, as the negative electrode active material, carbon, metal materials such as lithium, indium, and aluminum, and alloys composed of these metals and lithium can be used alone or in combination of two or more.

これら電極活物質と新規固体電解質ガラス材料を混合して用いる場合、新規固体電解質ガラス材料は、後述する電解質層8と同種(同一)であっても異なっていてもよいが、同種(特に同一)であるのが好ましい。これにより、正極(I)と電解質層8との間でのイオンの移動をより円滑に行うことができるとともに、さらなる密着性の向上を図ることができる。
また、電極活物質と固体電解質ガラス材料との混合比は、特に限定されないが、重量比で、4:6〜9:1程度が好ましく、5:5〜8:2程度であるのがより好ましい。
When these electrode active materials and a novel solid electrolyte glass material are mixed and used, the novel solid electrolyte glass material may be the same (same) or different from the electrolyte layer 8 described later, but the same (especially the same). Is preferred. Thereby, while being able to perform the movement of the ion between positive electrode (I) and the electrolyte layer 8 more smoothly, the improvement of the adhesiveness can be aimed at further.
The mixing ratio of the electrode active material and the solid electrolyte glass material is not particularly limited, but is preferably about 4: 6 to 9: 1, more preferably about 5: 5 to 8: 2, by weight ratio. .

また、電極活物質としては、20μm以下の粒状(粉状)のものが好適に用いられる。こうした粒状の電極合材を用いることにより、正極集電体2、負極集電体6の空隙部内に正電極合材3、負電極合材7をより容易かつ確実に充填することができる。
この正電極合材3、負電極合材7の層の平均厚さは、30μm以上500μm以下であるのが好ましく、50μm以上300μm以下であるのが、より好ましい。これは正電極合材3、負電極合材7の厚さが30μm以下では、電極内の活物質への電子伝導のネットワーク経路が少なくなり、出力電流が少なくなるとともに、500μm以上では、電解質層8に接触する電極界面からのイオン伝導経路が永くなる結果、電極内部抵抗が大きくなり、出力電流が少なくなる。従って、全固体二次電池の充放電性能を高くするためには、電極としての厚さに最適厚みが存在するものとなる。
Moreover, as an electrode active material, the granular (powder) thing of 20 micrometers or less is used suitably. By using such a granular electrode mixture, the positive electrode mixture 3 and the negative electrode mixture 7 can be more easily and reliably filled into the gaps of the positive electrode current collector 2 and the negative electrode current collector 6.
The average thickness of the positive electrode mixture 3 and the negative electrode mixture 7 is preferably 30 μm or more and 500 μm or less, and more preferably 50 μm or more and 300 μm or less. This is because when the thickness of the positive electrode mixture 3 and the negative electrode mixture 7 is 30 μm or less, the electron conduction network path to the active material in the electrode is reduced, the output current is reduced, and when the thickness is 500 μm or more, the electrolyte layer As a result of the long ion conduction path from the electrode interface contacting 8, the internal resistance of the electrode increases and the output current decreases. Therefore, in order to increase the charge / discharge performance of the all-solid-state secondary battery, an optimum thickness exists as the thickness of the electrode.

次に、正極(I)、負極(II)の集電体構成例について説明する。その構成を図4に示す。用いる正極集電体2、負極集電体6は正極リード板1または負極リード板5に電気的に接続されたもので、正極集電体2または負極集電体6は、電子伝導性を有する網材を用いてもよい。
また、例えば、凹凸を有するプレス成型体板またはエッチングによる成型体板を用いることで、正極リード板1または負極リード板5と集電体とを兼ねた形状としても良い。403,404は電極の外周部分に補強体として規制部11を備えたもので、上記した補強体は、絶縁性材料または導電性を有する材料を使用でき、電解質層8で兼ねることもできる。
Next, a configuration example of the current collector of the positive electrode (I) and the negative electrode (II) will be described. The configuration is shown in FIG. The positive electrode current collector 2 and the negative electrode current collector 6 used are electrically connected to the positive electrode lead plate 1 or the negative electrode lead plate 5, and the positive electrode current collector 2 or the negative electrode current collector 6 has electronic conductivity. A net material may be used.
Further, for example, by using a press-molded body plate having irregularities or a molded body plate by etching, a shape that serves as the positive electrode lead plate 1 or the negative electrode lead plate 5 and the current collector may be used. Reference numerals 403 and 404 each include a regulating portion 11 as a reinforcing body on the outer peripheral portion of the electrode. The reinforcing body described above can use an insulating material or a conductive material, and can also serve as the electrolyte layer 8.

尚、正極(I)、および負極(II)の構成において、図4に示す基材の種類は、それぞれ正極(I)、と負極(II)で用いたものと、同一であっても異なってもよい。また、本実施形態では、これらの正極(I)および負極(II)の間に、少なくとも一つ以上の電極全体を覆うように接触した電解質層8が設けられている。本実施形態では、この電解質層8は、新規固体電解質ガラス粉末を加圧成型し、それを加熱圧縮し板状ガラスとして作成される。   In addition, in the structure of positive electrode (I) and negative electrode (II), the kind of base material shown in FIG. 4 is different even if it is the same as that used in positive electrode (I) and negative electrode (II), respectively. Also good. In the present embodiment, an electrolyte layer 8 is provided between the positive electrode (I) and the negative electrode (II) so as to cover at least one entire electrode. In the present embodiment, the electrolyte layer 8 is formed as a sheet glass by press-molding a novel solid electrolyte glass powder and heating and compressing it.

この新規固体電解質ガラス粒子の平均粒径としては、特に限定されないが、1μm〜20μm程度であるのが好ましく、1μm〜10μm程度であるのがより好ましい。かかるサイズの固体電解質粒子を用いることは、最終的に全固体リチウム二次電池素子を構成する電解質ガラスの軟化温度に加温、圧縮する際、固体電解質ガラス粒子同士の接触が改善され、また電極内では電極活物質と電解質ガラス粒子の接合面積を増大させることができ、リチウムイオンの移動経路を十分に確保することができ、電池素子およびそれを用いて作成した積層二次電池の特性をより向上させることができる。
また、電解質層8の平均厚さとしては、10μm〜500μm程度であるのが好ましく、30μm〜300μm程度であるのがより好ましい。
Although it does not specifically limit as an average particle diameter of this novel solid electrolyte glass particle, It is preferable that it is about 1 micrometer-20 micrometers, and it is more preferable that it is about 1 micrometer-10 micrometers. The use of solid electrolyte particles of such a size improves the contact between the solid electrolyte glass particles when the electrode is finally heated and compressed to the softening temperature of the electrolyte glass constituting the all-solid lithium secondary battery element. In the inside, the bonding area between the electrode active material and the electrolyte glass particles can be increased, a sufficient migration path of lithium ions can be secured, and the characteristics of the battery element and the laminated secondary battery made using the same can be further improved. Can be improved.
Further, the average thickness of the electrolyte layer 8 is preferably about 10 μm to 500 μm, and more preferably about 30 μm to 300 μm.

以上のように本実施形態では、この電解質層8が、上述した正極(I)および負極(II)の周囲を覆った状態で電池素子が構成されている。これにより、電極活物質およびカーボン等の導電材料が混合されている正電極合材3、負電極合材7を使用し作成した電極では電極活物質及び導電材料が電極から脱落し、電解質層8周辺の端面を汚染しない。
即ち、正電極(I)、負電極(II)間を短絡させるという現象を皆無とすることができる。この電極からの活物質の脱離による電極間の短絡は構成する電池素子の電解質層の厚みが薄いほど多発するものとなる。その結果、薄い電極群、電解質群よりなる素電池を複数用い構成される積層電池では、構成内部電池素子に不良電池素子が1つでもあれば、積層電池を構成することが出来ない為、より一層、本実施形態の効果が得られるものとなり好ましい。
As described above, in this embodiment, the battery element is configured with the electrolyte layer 8 covering the periphery of the positive electrode (I) and the negative electrode (II) described above. As a result, in the electrode prepared using the positive electrode mixture 3 and the negative electrode mixture 7 in which the electrode active material and the conductive material such as carbon are mixed, the electrode active material and the conductive material fall off from the electrode, and the electrolyte layer 8 Do not pollute the surrounding edge.
That is, the phenomenon of short-circuiting between the positive electrode (I) and the negative electrode (II) can be eliminated. The short circuit between the electrodes due to the desorption of the active material from the electrode occurs more frequently as the electrolyte layer of the battery element is thinner. As a result, in a laminated battery configured by using a plurality of unit cells composed of a thin electrode group and an electrolyte group, if there is even one defective battery element in the internal battery element, a laminated battery cannot be configured. Further, the effect of this embodiment can be obtained, which is preferable.

また、本実施形態で用いる、正極集電体2、負極集電体6および正極リード板1、負極リード板5は、リード板表面に凹凸を有しているものを用いることもでき、かかる構成のリード板を用いることにより、凹凸部に前述した正電極合材3、負電極合材7を充填する空隙を備えた機能を発揮させることができる。その結果、正極リード板1、負極リード板5が、正極集電体2、負極集電体6の使用を省略できるという利点も得られる。   In addition, the positive electrode current collector 2, the negative electrode current collector 6, the positive electrode lead plate 1, and the negative electrode lead plate 5 used in the present embodiment can be those having irregularities on the surface of the lead plate. By using this lead plate, it is possible to exhibit the function of providing the gaps filled with the positive electrode mixture 3 and the negative electrode mixture 7 described above in the concavo-convex portion. As a result, there is an advantage that the positive electrode lead plate 1 and the negative electrode lead plate 5 can omit the use of the positive electrode current collector 2 and the negative electrode current collector 6.

この際、凹凸における凹部および凸部の横断面形状は、特に限定されず、円形、楕円形、三角形、長方形、正方形、菱形等の四角形、五角形、六角形、八角形のような多角形、不定形等のいずれもよい。また、正極リード板1、負極リード板5の表面に、横断面形状が異なる2種類以上の凹凸が混在していても構わない。
正極リード板1、負極リード板5における凹部が占める面積の割合は、その平面視において、25%〜90%程度であるのが好ましく、50%〜85%程度であるのがより好ましい。
At this time, the cross-sectional shape of the concave and convex portions in the concaves and convexes is not particularly limited, and is round, elliptical, triangular, rectangular, square, rhombus-like quadrilateral, pentagonal, hexagonal, octagonal polygonal, irregular Any of a fixed form etc. is good. Further, two or more types of irregularities having different cross-sectional shapes may be mixed on the surfaces of the positive electrode lead plate 1 and the negative electrode lead plate 5.
The ratio of the area occupied by the concave portions in the positive electrode lead plate 1 and the negative electrode lead plate 5 is preferably about 25% to 90%, and more preferably about 50% to 85% in the plan view.

また、正極リード板1、負極リード板5における凸部は、その平均高さが、50μm〜400μm程度であるのが好ましく、100μm〜200μm程度であるのがより好ましい。
凹部および凸部の割合および寸法をかかる範囲内とすることにより、凹凸部に集電体としての機能をより確実に発揮させることができる。
The average height of the convex portions of the positive electrode lead plate 1 and the negative electrode lead plate 5 is preferably about 50 μm to 400 μm, and more preferably about 100 μm to 200 μm.
By setting the ratios and dimensions of the concave portions and the convex portions within such ranges, the concave and convex portions can more reliably exhibit the function as the current collector.

次に、図5には別の構造の全固体リチウム二次電池、電池素子を電池容器19内に設置した構造のものを示した。ここでは、電池素子が有する正極(I)、および、負極(II)には、充放電を行うための正極電極端子12、負極電極端子15が、導電性を有する接続リード13,16を介して、正極リード板1、負極リード板5と接続されている。
各正極電極端子12、負極電極端子15は予め電池容器蓋20に設置したハーメチック電極端子14,17を介し接続しておき、一方、電池容器19内に、絶縁性の固定材を充填したものの中に、これを挿入し、電池容器蓋20と電池容器19の接合部21をシーム溶接あるいはパッキング材で封孔したものである。従って、正極リード板1、負極リード板5は固定部18を貫通した構成となっている。
Next, FIG. 5 shows an all-solid lithium secondary battery having a different structure and a structure in which the battery element is installed in the battery container 19. Here, the positive electrode (I) and the negative electrode (II) of the battery element are provided with a positive electrode terminal 12 and a negative electrode terminal 15 for charging / discharging through connection leads 13 and 16 having conductivity. The positive lead plate 1 and the negative lead plate 5 are connected.
Each of the positive electrode terminal 12 and the negative electrode terminal 15 is connected in advance through hermetic electrode terminals 14 and 17 installed in the battery container lid 20, while the battery container 19 is filled with an insulating fixing material. In addition, this is inserted, and the joint portion 21 of the battery container lid 20 and the battery container 19 is sealed with seam welding or a packing material. Therefore, the positive electrode lead plate 1 and the negative electrode lead plate 5 are configured to penetrate the fixing portion 18.

この固定部18は正電極、負電極の周辺に具備された規制部11にも接触して設置されており、規制部11と同等の働きを有しており、電池の充放電に於ける面方向の延び縮を規制(維持)する機能を有する。即ち、正極(I)および、負極(II)の面方向{正極(I)から負極(II)に向かう方向に対してほぼ垂直をなす方向}への拡大を規制する機能を有し、それに付随して起こる正極、負極間に介在する電解質層8の面方向への拡大をも規制し、電解質、電極の接合界面の電子的接合阻害を阻止する作用を与えるものである。   The fixed portion 18 is also placed in contact with the regulating portion 11 provided around the positive electrode and the negative electrode, and has the same function as the regulating portion 11, and is a surface for charging / discharging the battery. It has the function of regulating (maintaining) the expansion and contraction in the direction. That is, the positive electrode (I) and the negative electrode (II) have a function of restricting the expansion in the plane direction {direction substantially perpendicular to the direction from the positive electrode (I) to the negative electrode (II)} This also restricts the expansion in the surface direction of the electrolyte layer 8 interposed between the positive electrode and the negative electrode, and acts to inhibit electronic bonding inhibition at the electrolyte / electrode bonding interface.

一般に、電池素子では、充放電に伴って電極活物質の結晶構造が立体的に変形(伸縮)する。そのため、例えば、電極に規制部11を設けない従来型の構成および従来から用いられている硫化物リチウムイオン伝導体を用いた全固体リチウム二次電池では、電池の充放電の際に生じる電極活物質の結晶構造が立体的に変形(変化)する。これに対しては、正極(I)および、負極(II)は、厚さ方向でなく面方向に大きく変形(伸縮)する。   In general, in a battery element, the crystal structure of the electrode active material is three-dimensionally deformed (stretched) with charge and discharge. Therefore, for example, in an all-solid-state lithium secondary battery using a conventional configuration in which the restriction portion 11 is not provided on the electrode and a conventionally used sulfide lithium ion conductor, the electrode activity generated when the battery is charged and discharged The crystal structure of the substance is three-dimensionally deformed (changed). On the other hand, the positive electrode (I) and the negative electrode (II) are greatly deformed (stretched) in the plane direction, not in the thickness direction.

その結果、正極(I)および、負極(II)は電解質層8からはみ出し部分が形成される。当然、正極、負極の間に存在する電解質層8も面方向に引き延ばされる(あるいは逆の反応時には伸縮して)ことになる。これに伴って、かかる部分では、電極活物質への電子的接合あるいはイオン伝導経路を切断する接合阻害が生じることに起因して、電池素子の充放電に伴って電流が流れにくくなる。
即ち、当該部分から、電極活物質と電解質との接触界面に剥離が生じ、電子的接合あるいはイオン伝導経路が破壊される。この現象は、二次電池ヘの充放電を繰り返すことにより、徐々に進行し、結果として、二次電池においては、電池容量が徐々に低下し、ついには二次電池の充放電が困難となる。
As a result, the positive electrode (I) and the negative electrode (II) are formed to protrude from the electrolyte layer 8. Naturally, the electrolyte layer 8 existing between the positive electrode and the negative electrode is also stretched in the plane direction (or expanded and contracted during the reverse reaction). Along with this, in such a portion, due to the occurrence of electronic inhibition to the electrode active material or junction inhibition that cuts the ion conduction path, it becomes difficult for current to flow along with charging / discharging of the battery element.
That is, peeling occurs at the contact interface between the electrode active material and the electrolyte from the portion, and the electronic bonding or ion conduction path is destroyed. This phenomenon gradually progresses by repeatedly charging and discharging the secondary battery. As a result, in the secondary battery, the battery capacity gradually decreases, and finally it becomes difficult to charge and discharge the secondary battery. .

これに対して、本実施形態の電池素子では、正極(I)および、負極(II)の面方向への拡大を規制する機能を持たし、それに付随して起こる電解質層8の面方向への拡大を規制する機能を有する規制部11および固定部18を設けた構成が、より好ましく適用できる。これにより、二次電池の作製時や充放電時において、二次電池の形状をできる限り初期形状に近い状態で維持すること、すなわち正極(I)および負極(II)、電解質層8の面方向への拡大が規制されて、上記の不都合を防止することができる。その結果、充放電サイクルの経過(複数回の充放電)によっても、電池容量の低下を防止することができる。   On the other hand, the battery element of the present embodiment has a function of restricting the expansion in the surface direction of the positive electrode (I) and the negative electrode (II), and occurs in the surface direction of the electrolyte layer 8 accompanying therewith. A configuration in which the restriction portion 11 and the fixing portion 18 having a function of restricting enlargement are provided can be more preferably applied. Thereby, at the time of production of the secondary battery and at the time of charging / discharging, the shape of the secondary battery is maintained as close to the initial shape as possible, that is, the positive electrode (I) and the negative electrode (II), the surface direction of the electrolyte layer 8 The above-mentioned inconvenience can be prevented by restricting the expansion to the above. As a result, it is possible to prevent the battery capacity from being lowered even by the progress of charging / discharging cycles (multiple charging / discharging).

この規制部11は、電子伝導性材料および絶縁性材料のいずれも、電池反応に影響を与えない不活性な材料で構成される。かかる構成とすることにより、正極(I)および負極(II)間の短絡を確実に防止することができる。
この絶縁性材料としては、例えば、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のような各種樹脂材料、各種ガラス材料、各種セラミックス材料等が挙げられる。また、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂および低融点ガラスのうちの1種または2種以上を組み合わせて構成しても良い。ただし、用いる材料としては全固体リチウム二次電池素子の電解質ガラスの軟化温度に加熱圧縮する際の温度に耐える必要のあるものが選択される必要がある。
これらの材料を用いることにより、規制部11をより容易に形成することができる。また、機械的強度の高い規制部11を得やすいことからも好ましい。
The regulation portion 11 is made of an inactive material that does not affect the battery reaction, both of the electron conductive material and the insulating material. By setting it as this structure, the short circuit between positive electrode (I) and negative electrode (II) can be prevented reliably.
Examples of the insulating material include various resin materials such as thermoplastic resin, thermosetting resin, and photocurable resin, various glass materials, and various ceramic materials. Moreover, you may comprise combining 1 type (s) or 2 or more types among a thermoplastic resin, a thermosetting resin, a photocurable resin, and low melting glass. However, as the material to be used, it is necessary to select a material that needs to withstand the temperature when heated and compressed to the softening temperature of the electrolyte glass of the all-solid lithium secondary battery element.
By using these materials, the restricting portion 11 can be formed more easily. Moreover, it is preferable also from the easy to obtain the control part 11 with high mechanical strength.

熱可塑性樹脂としては、例えば、ポリオレフィン、エチレン酢酸ビニル共重合体およびポリアミド等やホットメルト樹脂が挙げられる。熱硬化性樹脂としては、例えば、エポキシ系樹脂、ポリウレタン系樹脂およびフェノール系樹脂等が挙げられる。また、光硬化性樹脂としては、例えば、エポキシ系樹脂、ウレタンアクリレート系樹脂およびビニルエーテル系樹脂等が挙げられる。   Examples of the thermoplastic resin include polyolefin, ethylene vinyl acetate copolymer, polyamide, and hot melt resin. Examples of the thermosetting resin include epoxy resins, polyurethane resins, and phenol resins. Examples of the photocurable resin include epoxy resins, urethane acrylate resins, vinyl ether resins, and the like.

また、規制部11は、その構成材料や目的等によっても若干異なるが、その平均厚さ(特に、その側面の平均厚さ)が、30μm〜500μm程度であるのが好ましく、50μm〜300μm程度であるのがより好ましい。かかる範囲内に設定することにより、正極(I)および負極(II)、電解質層8の面方向への拡大を確実に防止して、規制部11としての機能を確実に発揮させることができる。   Moreover, although the regulation part 11 changes a little depending on the constituent material, purpose, etc., it is preferable that the average thickness (especially the average thickness of the side surface) is about 30 μm to 500 μm, and about 50 μm to 300 μm. More preferably. By setting within this range, the positive electrode (I), the negative electrode (II), and the electrolyte layer 8 can be reliably prevented from expanding in the surface direction, and the function as the restricting portion 11 can be reliably exhibited.

次に、上述したような部材を用いて、全固体リチウム二次電池を作成する工程について説明する。   Next, the process of creating an all-solid lithium secondary battery using the members as described above will be described.

全固体リチウム二次電池を作成する従来の工程は、例えば、図6における金型を用い、下部雄成形型600を挿入した状態で、図4の集電体構造401に示す集電体構造の正極リード板1、負極リード板5側を下部金型に接するように成形金型602の円筒孔603内に挿入する。その後、円筒孔603に正電極合材3、負電極合材7を充填し、正電極合材3、負電極合材7を平面化した後、上部雄成形型601を挿入し、予備的に加圧成形した。これを取り出し、正電極と負電極とした。   A conventional process for producing an all-solid-state lithium secondary battery includes, for example, the current collector structure shown in the current collector structure 401 of FIG. 4 with the lower male mold 600 inserted using the mold in FIG. The positive electrode lead plate 1 and the negative electrode lead plate 5 side are inserted into the cylindrical hole 603 of the molding die 602 so as to contact the lower die. Thereafter, the positive electrode composite material 3 and the negative electrode composite material 7 are filled in the cylindrical hole 603, and the positive electrode composite material 3 and the negative electrode composite material 7 are planarized, and then the upper male mold 601 is inserted and preliminarily Press molded. This was taken out and used as a positive electrode and a negative electrode.

続いて、図7の金型を用いて電解質層と電極層を一体化成型した。
これには、先ず、図7で示した金型を用い、(i):この円筒孔703Aに電解質粉末705Aを挿入し、平滑化した後[この状態では電解質層は(図8の801)の状態となる]。
次に、(ii):上部雄成形型として電解質層に電極充填用空間部位を形成するための凸部を備えた上部雄成形型706Aを挿入し、弱い力で加圧する[この状態では電解質層は(図8の802)の状態となる]。
続いて、(iii):この上部雄成形型706Aを抜き、出来た電解質層の凹面に、既に作成しておいた電極(正極または負極)を電極活物質面が電解質層に接する様に挿入し、上部雄成形型701Aにより、予備的に加圧成型する[この状態では電解質層と電極層(正極)は一体化され、(図8の803)の状態となる]。
続いて、この金型を上下、逆転させ、(iv):(i)〜(iii)の工程と同じようにして処理を行うことにより、(図8の804)の状態とし、最後に(v):では(図8の805)の状態とすることで、本発明の電池素子を構成する。
Subsequently, the electrolyte layer and the electrode layer were integrally molded using the mold shown in FIG.
For this purpose, first, using the mold shown in FIG. 7, (i): after inserting the electrolyte powder 705A into the cylindrical hole 703A and smoothing [in this state, the electrolyte layer (801 in FIG. 8) State.]
Next, (ii): as the upper male mold, the upper male mold 706A having a convex portion for forming the electrode filling space portion is inserted into the electrolyte layer, and pressurized with a weak force [in this state, the electrolyte layer Is in the state (802 in FIG. 8)].
Subsequently, (iii): The upper male mold 706A is pulled out, and the electrode (positive electrode or negative electrode) already prepared is inserted into the concave surface of the resulting electrolyte layer so that the electrode active material surface is in contact with the electrolyte layer. Then, the upper male mold 701A is preliminarily pressure-molded [in this state, the electrolyte layer and the electrode layer (positive electrode) are integrated into a state of 803 in FIG. 8].
Subsequently, the mold is turned upside down and reversed, and processing is performed in the same manner as in steps (iv) :( i) to (iii), so that the state of (804 in FIG. 8) is obtained, and finally (v ): Then, the battery element of the present invention is configured by setting the state (805 in FIG. 8).

この工程では、正電極、負電極共に、その周囲が電解質層で囲まれた構成としたが、片側の電極と電解質層を一体化したものを用いても良い。この構造では、後で述べるこれら一体化成型物を、更に加熱圧縮一体化する際、負極活物質として耐熱性の低い、リチウム、インジウム等を圧着、貼り付けした電池素子を作成する時に用いられる。
以上、これらの工程で用いた加圧成形のための圧力は1トン/cm2以上であるのが好ましく、2トン/cm2であるのがより好ましい。これにより、正電極合材3、負電極合材7を好適に圧縮できるとともに、正極集電体2、負極集電体6(図4参照)が備える空隙部内に正電極合材3、負電極合材7を確実に充填することができ、後続する加熱圧縮による一体化をより確実とする。
この際、全固体リチウム二次電池の製造に用いられる各種成形用金型は、金属製に限定されず、例えば、樹脂製、セラミックス製であってもよい。
In this step, both the positive electrode and the negative electrode are surrounded by the electrolyte layer, but an electrode on one side and the electrolyte layer may be integrated. In this structure, when these integrated molded products to be described later are further heat-compressed and integrated, they are used to produce a battery element in which lithium, indium or the like having low heat resistance as a negative electrode active material is pressed and pasted.
As described above, the pressure for pressure molding used in these steps is preferably 1 ton / cm 2 or more, and more preferably 2 ton / cm 2 . Thereby, while being able to compress suitably the positive electrode compound material 3 and the negative electrode compound material 7, the positive electrode compound material 3 and the negative electrode in the space | gap part with which the positive electrode collector 2 and the negative electrode collector 6 (refer FIG. 4) are equipped. The compound material 7 can be reliably filled, and further integration by heating and compression is further ensured.
Under the present circumstances, the various metal mold | die used for manufacture of an all-solid-state lithium secondary battery is not limited to metal, For example, resin and ceramics may be sufficient.

次に、本発明の全固体リチウム二次電池を製造するための製造方法について、更に詳細に図9のフローチャートを用い順次説明する。   Next, the manufacturing method for manufacturing the all solid lithium secondary battery of the present invention will be sequentially described in further detail using the flowchart of FIG.

<A>電極形成工程901
先ず、予め、図4に示した電極作成に必要な正極集電体2、負極集電体6を準備する。
<A> Electrode forming step 901
First, the positive electrode current collector 2 and the negative electrode current collector 6 necessary for electrode preparation shown in FIG. 4 are prepared in advance.

(i)電極作成工程:図6の円筒孔603に、正極集電体2、負極集電体6として正極リード板1、負極リード板5が下部雄成形型600上に接するように配置し、正電極合材3および負電極合材7を充填する。この充填した正電極合材3、負電極合材7を平面化した後、上部雄成形型601を用い、加圧成形することで正電極と負電極を作成する。これを金型より抜き出すことで、本発明用電池の電極(図3−1)を作成する。   (I) Electrode creation process: The positive electrode current collector 2 and the negative electrode current collector 6 are arranged so that the positive electrode lead plate 1 and the negative electrode lead plate 5 are in contact with the lower male mold 600 in the cylindrical hole 603 of FIG. The positive electrode mixture 3 and the negative electrode mixture 7 are filled. After the filled positive electrode mixture 3 and negative electrode mixture 7 are planarized, a positive electrode and a negative electrode are created by pressure molding using the upper male mold 601. By extracting this from the mold, the electrode of the battery for the present invention (FIG. 3-1) is created.

<B>電解質一体化接合工程902
次に、電解質層作成用金型として、電極作成に用いた円筒孔603より内径の大きい成形型(図7参照)を用意し、この成形型が備える円筒孔703A内に、下部雄成形型700Aを挿入した状態で、円筒孔703A内に電解質粉末705Aを充填する。
次いで、円筒孔703A内の電解質層に電極形状が形成可能な凹凸部を形成するため、電極挿入部となる突起部707Aを有する上部雄成形型706Aを挿入し、これを予備的に加圧成形することで、電極を挿入可能な部位を備えた電解質層を形成する。
その後、上部雄成形型706Aを取り出し、電解質層に形成された電極挿入部分に、<A>電極形成工程901の工程で作成した電極(例えば正極)を挿入し、突起部のない上部雄成形型701Aを挿入し、予備加圧成型することで、正極の周囲が電解質層で覆われた電解質層と電極(正極)が一体化する(図8の803)を作成することができる。
<B> Electrolyte integrated joining step 902
Next, a mold (see FIG. 7) having an inner diameter larger than the cylindrical hole 603 used for electrode preparation is prepared as a mold for forming the electrolyte layer, and the lower male mold 700A is placed in the cylindrical hole 703A of the mold. In a state in which is inserted, the electrolyte powder 705A is filled in the cylindrical hole 703A.
Next, in order to form an uneven portion capable of forming an electrode shape in the electrolyte layer in the cylindrical hole 703A, an upper male molding die 706A having a projection 707A serving as an electrode insertion portion is inserted, and this is preliminarily pressure molded. As a result, an electrolyte layer having a portion into which the electrode can be inserted is formed.
Thereafter, the upper male mold 706A is taken out, and the electrode (for example, positive electrode) created in the step <A> electrode forming process 901 is inserted into the electrode insertion portion formed in the electrolyte layer, so that the upper male mold without the protruding portion is inserted. By inserting 701A and performing pre-press molding, an electrolyte layer in which the periphery of the positive electrode is covered with an electrolyte layer and the electrode (positive electrode) can be integrated (803 in FIG. 8).

<C>電池素子作成工程903
次に、正極と電解質層が一体化した成型体を取り出すことなく、成形金型(図7参照)を上下反転させた後、上になった下部雄成形型700Aを一度取り出し、円筒孔703A内の電解質層面に、再び、電極形状が形成可能な突起部707Aを有する上部雄成形型706Aを挿入し、予備的に加圧成形することで、電極(負極)を挿入可能な部位を備えた電解質層を形成する。
続いて、上部雄成形型706Aを取り出し、この部位に予め作成した末端電極(負極)を挿入し、突起部のない下部雄成形型700Aを挿入し、所定の圧力で加圧成型することで、正極層および負極層の周囲が電解質層で覆われた単電池素子(図8の805)となる素電池を作成することができる。
<C> Battery element creation step 903
Next, without removing the molded body in which the positive electrode and the electrolyte layer are integrated, the molding die (see FIG. 7) is turned upside down, and then the upper lower male molding die 700A is taken out once, and the inside of the cylindrical hole 703A is removed. An electrolyte having a portion into which an electrode (negative electrode) can be inserted by inserting an upper male mold 706A having a projection 707A capable of forming an electrode shape into the surface of the electrolyte layer and preliminarily press-molding it. Form a layer.
Subsequently, the upper male mold 706A is taken out, a terminal electrode (negative electrode) prepared in advance is inserted into this part, a lower male mold 700A having no protrusion is inserted, and pressure molding is performed at a predetermined pressure. A unit cell to be a single cell element (805 in FIG. 8) in which the periphery of the positive electrode layer and the negative electrode layer is covered with an electrolyte layer can be produced.

この工程での成型は電解質が軟化する温度域に加熱しながら行った。従って、加える圧力は、1トン/cm2程度で良く、2トン/cm2以上であるのがより好ましい。これにより、電池素子が十分に圧縮され、また、電池素子内での正極(I)、負極(II)の周囲を電解質層で完全に覆うことが出来、その接合強度あるいは界面接合を確実とする。
この結果、作成した電池素子内での正極と負極との間の短絡を確実に阻止するとともに、電池性能の一定した電池作成が可能となる。
また、これらの工程で用いた成型用雌金型702Aの円筒孔703Aの内面には、形成される電池素子の離型性を向上させるための離型剤を付与しておいてもよい。
Molding in this step was performed while heating to a temperature range where the electrolyte softens. Therefore, the applied pressure may be about 1 ton / cm 2 , and more preferably 2 ton / cm 2 or more. As a result, the battery element is sufficiently compressed, and the periphery of the positive electrode (I) and the negative electrode (II) in the battery element can be completely covered with the electrolyte layer, thereby ensuring the bonding strength or interfacial bonding. .
As a result, it is possible to reliably prevent a short circuit between the positive electrode and the negative electrode in the produced battery element and to produce a battery with a constant battery performance.
Further, a mold release agent for improving the mold releasability of the battery element to be formed may be provided on the inner surface of the cylindrical hole 703A of the female mold for molding 702A used in these steps.

<D>電池シール化工程904
この工程を図2の電池素子を用い説明する。
<C>電池素子作成工程903で得た電池素子を図7の金型より、更に大きい金型を用意し、その内部に正電極端子9を設置した後、その上に挿入する。
続いて、挿入した電池素子の周囲に軟化温度が350℃以下の低融点ガラスフリットを充填した後、負電極端子4を挿入し、全体を加圧することで、電池素子の電極端子の間の周囲に低融点ガラスフリットが充填した状態の電池素子を作成する。
<D> Battery sealing step 904
This process will be described with reference to the battery element of FIG.
<C> The battery element obtained in the battery element creation step 903 is prepared with a mold that is larger than the mold shown in FIG.
Subsequently, after the inserted battery element is filled with a low melting point glass frit having a softening temperature of 350 ° C. or lower, the negative electrode terminal 4 is inserted, and the whole is pressurized so that the periphery between the electrode terminals of the battery element A battery element filled with a low melting point glass frit is prepared.

この状態にした電池素子を、加圧下の元、低融点ガラスフリットが軟化溶融する温度に加熱し、電池素子全体を封孔シールする(シール部10)。ここで用いる低融点ガラスとしては、軟化温度が200℃〜350℃以下の範囲のものを選択した。
このような低融点ガラスとしては、PbO−B23−SiO2−Al23系の鉛ガラス、その他、鉛を含まない低融点ガラスも、この軟化温度範囲の封孔シール材として使用可能である。しかし、酸化鉛が有ると、これが負極電極界面でこの材料が電気的に接触していると、容易に還元が進む、また更に、これらは電池内部に存在する硫化物系リチウムイオン伝導体に含まれる硫黄成分と化学的に反応しやすい為、電池を長期に渡って使用するには、V25,ZnO,BaOおよびTeO2の4つの成分からなる無鉛低融点ガラスの使用は、軟化温度が320℃近辺にあり、好ましく用いることができる。
The battery element in this state is heated to a temperature at which the low melting point glass frit is softened and melted under pressure, and the whole battery element is hermetically sealed (seal portion 10). As the low melting point glass used here, one having a softening temperature in the range of 200 ° C. to 350 ° C. or less was selected.
As such a low melting glass, PbO—B 2 O 3 —SiO 2 —Al 2 O 3 based lead glass and other low melting glass not containing lead are also used as sealing materials in this softening temperature range. Is possible. However, if there is lead oxide, if this material is in electrical contact at the negative electrode interface, the reduction proceeds easily, and furthermore, they are included in the sulfide-based lithium ion conductor present inside the battery. In order to use the battery for a long period of time, it is necessary to use a lead-free low-melting glass composed of four components of V 2 O 5 , ZnO, BaO and TeO 2. Is around 320 ° C. and can be preferably used.

この封孔シール材を使用するに際しては、このように電池全体は220℃付近に加熱しながら、5時間以内で全体を圧縮処理すること、さらには、電池封じ部位を局部的に加熱しても、内部の硫化物系リチウムイオン伝導性固体電解質ガラスを結晶化させる温度には到達しないため、使用可能である。
これにより、内部に存在する硫化物系リチウムイオン伝導性固体電解質ガラス層内の電解質ガラス粒子間の粒界を無くすことが可能となる。更に、電極内部での電解質粒子と電極活物質粒子間の界面接合を滑らかとする作用があり、接合界面でのイオン伝導経路が良好となり、電池出力特性が向上させる効果が期待できる。
When this sealing material is used, the whole battery is heated to around 220 ° C. in this way, and the whole battery is compressed within 5 hours. Further, even if the battery sealing part is heated locally, Since it does not reach the temperature for crystallizing the internal sulfide-based lithium ion conductive solid electrolyte glass, it can be used.
Thereby, it becomes possible to eliminate the grain boundary between the electrolyte glass particles in the sulfide-based lithium ion conductive solid electrolyte glass layer existing inside. Furthermore, there is an effect of smoothing the interface bonding between the electrolyte particles and the electrode active material particles inside the electrode, the ion conduction path at the bonding interface is improved, and the effect of improving the battery output characteristics can be expected.

このような効果を得るために、60%以上の硬化状態となるまで減圧加熱状態を維持し、その後、減圧を解除し(必要に応じて、加圧接合しても良い)封孔しても良い。また、上記した無鉛低融点ガラスを更に、好適に使用するために、これらのガラスに微量の鉛材料を加えることで融点を低下させても良い。また、これら材料の熱膨張を調整するために、使用するガラスフリット内にフィラーとして、β−ユークリプタイト、チタン酸鉛、コージェライトなどを加え、使用しても良い。   In order to obtain such an effect, the reduced pressure heating state is maintained until a cured state of 60% or more is reached, and then the reduced pressure is released (pressure bonding may be performed if necessary) and sealing is performed. good. Moreover, in order to use the above-mentioned lead-free low-melting glass more suitably, the melting point may be lowered by adding a trace amount of lead material to these glasses. In order to adjust the thermal expansion of these materials, β-eucryptite, lead titanate, cordierite, etc. may be added to the glass frit used as a filler.

<E>電池封孔工程905
この工程は、電池構成として図5の構造のものを作成するに際し行われる。ここでは電池容器19および電池容器蓋20の構成材料としては、例えば、アルミニウム、銅、真鍮、ステンレススティール等各種金属材料や各種樹脂材料、各種セラミックス材料、各種ガラス材料、金属と各種樹脂からなるコンポジット材料等が挙げられるが、電解質ガラスの軟化処理温度に耐える材料を選定する必要があることは云うまでもない。
<E> Battery sealing step 905
This step is performed when a battery structure having the structure shown in FIG. 5 is prepared. Here, as the constituent material of the battery case 19 and the battery case lid 20, for example, various metal materials such as aluminum, copper, brass, stainless steel, various resin materials, various ceramic materials, various glass materials, composites made of metal and various resins. Although materials etc. are mentioned, it is needless to say that it is necessary to select a material that can withstand the softening temperature of the electrolyte glass.

この工程では、<D>電池シール化工程904で作成した電池素子の正極リード板1、負極リード板5と正極電極端子12、負極電極端子15を電池容器蓋20に設けられたハーメチック電極端子14,17を介し、予め接合しておく。この状態にしたものを予め溶融させたホットメルトが存在する容器内に挿入し、電池容器19を冷却した後、電池容器蓋20と電池容器19の間の接合部21にパッキングを介在させ、プレス封孔によりシールした。   In this process, the positive electrode lead plate 1, the negative electrode lead plate 5, the positive electrode terminal 12, and the negative electrode terminal 15 of the battery element created in the <D> battery sealing step 904 are provided on the battery container lid 20. , 17 in advance. The product in this state is inserted into a pre-melted hot melt container, and the battery container 19 is cooled. Then, a packing is interposed at the junction 21 between the battery container lid 20 and the battery container 19 and pressed. Sealed by sealing.

以下に、本発明の全固体リチウムイオン二次電池を詳細に説明するために、具体的実施例を用いて説明する。   Hereinafter, in order to describe the all solid lithium ion secondary battery of the present invention in detail, a specific example will be used.

(実施例7)
ここでは、本発明によるところの電池構成(図2参照)、即ち、一対の電極間に両方の電極を電解質層で覆った形状の電池素子を作成した。
先ず、図6の円筒孔603に、集電体として正極リード板1または負極リード板5と正極集電体2または負極集電体6とを接合したものを用意し、正極リード板1または負極リード板5が下部雄成形型600上に接するように配置し、正電極合材3または負電極合材7を充填する。
続いて、この充填した正電極合材3、負電極合材7を平面化した後、上部雄成形型601を用い、加圧成形することで電極(例えば正極)を作成する。これを金型より抜き出すことで、本発明用電池の電極(図3−1参照)を構成する。
(Example 7)
Here, a battery configuration according to the present invention (see FIG. 2), that is, a battery element having a shape in which both electrodes are covered with an electrolyte layer between a pair of electrodes was prepared.
First, a positive electrode lead plate 1 or a negative electrode lead plate 5 and a positive electrode current collector 2 or a negative electrode current collector 6 are prepared as a current collector in the cylindrical hole 603 of FIG. The lead plate 5 is disposed so as to be in contact with the lower male mold 600 and filled with the positive electrode mixture 3 or the negative electrode mixture 7.
Subsequently, after the planarized positive electrode mixture 3 and negative electrode mixture 7 are planarized, an electrode (for example, a positive electrode) is formed by pressure molding using the upper male mold 601. By extracting this from the mold, the electrode of the battery for the present invention (see FIG. 3-1) is constructed.

ここでは、正極活物質としてコバルト酸リチウム、電解質としてLi2S,SiS2,Li3PO4からなる3元系硫化物リチウムイオン伝導性ガラスを母剤とし、これにα−アルミナを5%加えたイオン伝導度が3.2×10-3S/cm2の新規硫化物リチウムイオン伝導体をガラス粉末にしたものを用い、これらを7:3の重量比で混合してなる正極合材を、直径16mm、厚さ、約250μmの正極を作成した。
電解質層には同一電解質を用い、直径18mm、厚さ300μmとした。また負極活物質としてはカーボン粉末(粒径、5μm)を用い、これを電解質と重量比で5:5の割合で混合した合剤を作成し、直径16mm、厚さ、150μmの負極を作成した。ここで用いた集電体材料である網材は100μmで、リード板は厚さ50μmのチタン薄膜を用いた為、電極総厚としてはリード板の厚さが附加される。
Here, a ternary sulfide lithium ion conductive glass composed of lithium cobaltate as a positive electrode active material and Li 2 S, SiS 2 , Li 3 PO 4 as an electrolyte is used as a base material, and 5% of α-alumina is added thereto. A positive electrode mixture formed by mixing a new sulfide lithium ion conductor having a ionic conductivity of 3.2 × 10 −3 S / cm 2 into a glass powder and mixing them at a weight ratio of 7: 3. A positive electrode having a diameter of 16 mm, a thickness of about 250 μm was prepared.
The same electrolyte was used for the electrolyte layer, and the diameter was 18 mm and the thickness was 300 μm. Also, carbon powder (particle size, 5 μm) was used as the negative electrode active material, and a mixture was prepared by mixing it with the electrolyte at a ratio of 5: 5 by weight to prepare a negative electrode having a diameter of 16 mm, a thickness of 150 μm. . Since the net material as the current collector material used here is 100 μm and the lead plate is a titanium thin film having a thickness of 50 μm, the thickness of the lead plate is added as the total electrode thickness.

次に、電極・電解質層一体化用金型として、電極作成に用いた金型(図6参照)の円筒孔603より内径の大きい成形型(図7参照)を用意する。この成形型が備える円筒孔703A内に、下部雄成形型700Aを挿入した状態で、円筒孔703A内に先ず電解質粉末705Aを充填する。
続いて、円筒孔703A内に電極形状が形成可能な突起部707Aを有する上部雄成形型706Aを挿入し、予備的に加圧成形することで、電極を挿入可能な部位を備えた電解質層を形成する。
その後、上部雄成形型706Aを取り出し、電解質層に形成された電極挿入部分に、すでに作成した電極(例えば正極)を挿入し、突起部のない上部雄成形型701Aを挿入し、予備加圧成型することで、正極の周囲が電解質層で覆われた電解質層と電極(正極)を一体化する(図8の803の状態)。
Next, a mold (see FIG. 7) having an inner diameter larger than the cylindrical hole 603 of the mold (see FIG. 6) used for electrode preparation is prepared as the electrode / electrolyte layer integration mold. In a state where the lower male mold 700A is inserted into the cylindrical hole 703A included in the mold, the cylindrical powder 705A is first filled with the electrolyte powder 705A.
Subsequently, an upper male molding die 706A having a projection 707A capable of forming an electrode shape is inserted into the cylindrical hole 703A, and an electrolyte layer having a portion into which the electrode can be inserted is preliminarily pressure-molded. Form.
Thereafter, the upper male mold 706A is taken out, the electrode (for example, positive electrode) already created is inserted into the electrode insertion portion formed in the electrolyte layer, and the upper male mold 701A having no protrusion is inserted, and pre-press molding is performed. By doing so, the electrolyte layer and the electrode (positive electrode) in which the periphery of the positive electrode is covered with the electrolyte layer are integrated (state 803 in FIG. 8).

次に、正極と電解質層が一体化した成型体を取り出すことなく、成形金型(図7参照)を上下反転させた後、上になった下部雄成形型700Aを一度取り出し、円筒孔703A内の電解質層面に、電極形状が形成可能な突起部707Aを有する上部雄成形型706Aを挿入し、予備的に加圧成形することで、電極(負極)を挿入可能な部位を備えた電解質層を形成する。
次に、この部位に予め作成した末端電極(負極)を挿入し、下部雄成形型700Aを挿入し、所定の圧力(ここでは、3トン/cm2)で加圧成型することで、正極層および負極層の周囲が電解質層で覆われた単電池素子(図8の805の状態)を作成した。
Next, without removing the molded body in which the positive electrode and the electrolyte layer are integrated, the molding die (see FIG. 7) is turned upside down, and then the upper lower male molding die 700A is taken out once, and the inside of the cylindrical hole 703A is removed. An electrolyte layer having a portion into which an electrode (negative electrode) can be inserted is inserted by inserting an upper male mold 706A having a projection 707A capable of forming an electrode shape into the surface of the electrolyte layer and preliminarily press-molding it. Form.
Next, a terminal electrode (negative electrode) prepared in advance is inserted into this part, a lower male mold 700A is inserted, and the positive electrode layer is formed by pressure molding at a predetermined pressure (here, 3 tons / cm 2 ). And the single cell element (state of 805 of FIG. 8) by which the circumference | surroundings of the negative electrode layer were covered with the electrolyte layer was created.

こうして作成した電池素子を図7の金型より、更に大きい金型を用意しておき、これを用い、その内部に正電極端子9を設置した後、その上に電池素子の正極側が接触するように挿入する。
続いて、挿入した電池素子の周囲に軟化温度が400℃以下の低融点ガラスフリット[V25−ZnO−BaO−TeO2の4成分からなる低融点ガラス、YEV8−4103、(株)ヤマト電子製]を充填した後、負電極端子4を挿入し、全体を2トン/cm2の圧力で加圧することで、電池素子の電極端子の間の周囲に低融点ガラスフリット(シール部10)が充填された電池素子ができる。
これをそのままの状態で約310℃で、1時間加熱圧縮した後、これを冷却させ、図2に示した構造の全固体リチウム二次電池を作成した。
The battery element thus prepared is prepared with a mold larger than the mold shown in FIG. 7, and the positive electrode terminal 9 is installed in the mold so that the positive electrode side of the battery element comes into contact therewith. Insert into.
Subsequently, around the inserted battery element, a low melting point glass frit having a softening temperature of 400 ° C. or lower [low melting point glass composed of four components of V 2 O 5 —ZnO—BaO—TeO 2 , YEV8-4103, Yamato Co., Ltd. The negative electrode terminal 4 is inserted and the whole is pressurized at a pressure of 2 ton / cm 2 , so that the low melting point glass frit (seal part 10) is formed between the electrode terminals of the battery element. Can be obtained.
This was heated and compressed at about 310 ° C. for 1 hour as it was, then cooled, and an all solid lithium secondary battery having the structure shown in FIG. 2 was produced.

この作成した電池の特性を調べるため、該電地を500μA/cm2の定電流で充電、充電電圧が4.2Vに到達した後、電流が30μAとなった時点で、充電を停止し、充電停止時間、30分を経て、同一電流値で放電を開始した。
得られた結果は、放電の電圧が約4.0Vから3.5Vにおいて平坦性があり、3.5V放電終了で、約115mAh/grの放電容量が得られ、これらの電池容量は、ほぼコバルト酸リチウムの理論値に近い値を示すことが判った。
また、その充放電サイクル性能として、約250サイクルを経過した後も、初期容量の90%以上を維持することが判明した。この状況は固体電解質層が一枚の粒界のない状態となっているため、また、電池素子全体の周囲が電解質ガラスで覆われている結果、優れた充放電サイクル特性を示す全固体薄膜電池と同じ様な特性が得られたと考えられる。
In order to investigate the characteristics of this battery, the electric ground was charged at a constant current of 500 μA / cm 2. After the charging voltage reached 4.2 V, the charging was stopped when the current reached 30 μA. Discharge was started at the same current value after a stop time of 30 minutes.
The results obtained are flat when the discharge voltage is about 4.0 V to 3.5 V, and a discharge capacity of about 115 mAh / gr is obtained at the end of the 3.5 V discharge. It was found to show a value close to the theoretical value of lithium acid.
Further, it has been found that the charge / discharge cycle performance maintains 90% or more of the initial capacity even after about 250 cycles. This is because the solid electrolyte layer has no single grain boundary, and the entire battery element is covered with electrolyte glass. As a result, the all-solid-state thin film battery exhibits excellent charge / discharge cycle characteristics. It is thought that the same characteristics were obtained.

(比較実験1)
実施例7の効果を調べるため、ここでは、電池構成材料を全く同じものを使用し、先ず、正電極端子9、負電極端子4が存在していない電池素子(図8−805)を加圧一体化成型した。その際、使用した圧力は、実施例7より強い4トン/cm2の圧力で成型した。
こうして作成した電池素子の両端に正電極端子9、負電極端子4を接触させ、その周囲をエポキシ樹脂で絶縁接着して、従来方法による全固体リチウム二次電池を作成し、その電池の充放電サイクル特性を実施例7と同様な条件で調べた。
その結果、初期充放電容量は本発明の電池と変わらないものが得られた。しかし、充放電サイクルの経過に伴い、従来の方法で作成した電池では、充放電容量が暫時低下し、100サイクル経過時には、初期容量の約65%に低下した。
この低下は、電池内部での電極層内の粒界接合および電極層内の電解質粒界面が充放電サイクルに伴って、破壊され、電池内部抵抗の増大を引き起こすために生じたと考えられた。
(Comparative Experiment 1)
In order to examine the effect of Example 7, here, the same battery constituent materials were used, and first, a battery element (FIG. 8-805) in which the positive electrode terminal 9 and the negative electrode terminal 4 were not present was pressurized. Integrated molding. At that time, the pressure used was molded at a pressure of 4 tons / cm 2 stronger than Example 7.
The positive electrode terminal 9 and the negative electrode terminal 4 are brought into contact with both ends of the battery element thus prepared, and the periphery thereof is insulatively bonded with an epoxy resin to prepare an all-solid lithium secondary battery by a conventional method, and charging / discharging of the battery The cycle characteristics were examined under the same conditions as in Example 7.
As a result, the initial charge / discharge capacity was the same as that of the battery of the present invention. However, with the progress of the charge / discharge cycle, the charge / discharge capacity of the battery prepared by the conventional method decreased for a while and decreased to about 65% of the initial capacity after 100 cycles.
This decrease was considered to have occurred because the grain boundary junction in the electrode layer inside the battery and the electrolyte grain interface in the electrode layer were destroyed along with the charge / discharge cycle, causing an increase in battery internal resistance.

(実施例8)
ここでは、電池素子を実施例7において用いた電解質(α−Al23,Li2S,SiS2,Li3PO4)の代わりに、α−アルミナを5%含有した硫化物系リチウムイオン伝導体(Li2S−GeS2−P25)からなる新規結晶質硫化物系リチウムイオン伝導性固体電解質ガラスを用いた以外、実施例7と全く同様にして全固体リチウム二次電池を作成した。
(Example 8)
Here, instead of the electrolyte (α-Al 2 O 3 , Li 2 S, SiS 2 , Li 3 PO 4 ) used in Example 7 for the battery element, sulfide-based lithium ion containing 5% α-alumina An all-solid lithium secondary battery was fabricated in exactly the same manner as in Example 7, except that a novel crystalline sulfide-based lithium ion conductive solid electrolyte glass made of a conductor (Li 2 S—GeS 2 —P 2 S 5 ) was used. Created.

こうして作成した電池の特性を調べるため、該電地を500μA/cm2の定電流で充電、充電電圧が4.2Vに到達した後、電流が30μAとなった時点で、充電を停止し、充電停止時間、30分を経て、同一電流値で放電を開始した。 In order to investigate the characteristics of the battery thus prepared, the electric ground was charged with a constant current of 500 μA / cm 2 , and after the charging voltage reached 4.2 V, the charging was stopped when the current became 30 μA. Discharge was started at the same current value after a stop time of 30 minutes.

得られた結果は、実施例7と殆ど同様で、放電の電圧が約4.0Vから3.5Vにおいて平坦性があり、3.0V放電終了で、約113mAh/grの放電容量が得られ、これらの電池容量は、ほぼコバルト酸リチウムの理論値に近い値を示す電池となっていることが判明した。
また、その充放電サイクル性能として、約250サイクルを経過した後も、初期容量の90%以上を維持することが判明した。この状況は固体電解質層が一枚の粒界のない状態となっているため、また、電池素子全体の周囲が電解質ガラスで覆われている結果、全固体薄膜電池で示されている、優れた充放電サイクル特性と同じ特性を与えるようになったと考えられる。
The obtained results are almost the same as in Example 7. The discharge voltage is flat when the voltage is about 4.0 V to 3.5 V, and a discharge capacity of about 113 mAh / gr is obtained at the end of 3.0 V discharge. These battery capacities were found to be batteries showing values close to the theoretical value of lithium cobalt oxide.
Further, it has been found that the charge / discharge cycle performance maintains 90% or more of the initial capacity even after about 250 cycles. This situation is shown in an all-solid-state thin film battery because the solid electrolyte layer is in a state without a single grain boundary, and as a result of the entire battery element being covered with electrolyte glass, It is thought that the same characteristics as the charge / discharge cycle characteristics have been given.

(比較実験2)
実施例8の効果を調べるため、ここでは、電池構成材料を全く同じものを使用し、先ず、正電極端子9、負電極端子4が存在していない電池素子(図8の805)を加圧一体化成型した。その際、使用した圧力は、実施例7より強い4トン/cm2の圧力で成型した。
こうして作成した電池素子の両端に正電極端子9、負電極端子4を接触させ、その周囲をエポキシ樹脂で絶縁接着して、従来方法による全固体リチウム二次電池を作成し、その電池の充放電サイクル特性を実施例7と同様な条件で調べた。
(Comparative experiment 2)
In order to examine the effect of Example 8, here, the same battery constituent materials were used, and first, a battery element (805 in FIG. 8) without positive electrode terminal 9 and negative electrode terminal 4 was pressurized. Integrated molding. At that time, the pressure used was molded at a pressure of 4 tons / cm 2 stronger than Example 7.
The positive electrode terminal 9 and the negative electrode terminal 4 are brought into contact with both ends of the battery element thus prepared, and the periphery thereof is insulatively bonded with an epoxy resin to prepare an all-solid lithium secondary battery by a conventional method, and charging / discharging of the battery The cycle characteristics were examined under the same conditions as in Example 7.

その結果、初期充放電容量は本発明の電池と変わらないものが得られた。しかし、充放電サイクルの経過に伴い、従来の方法で作成した電池では、充放電容量が暫時低下し、100サイクル経過時には、初期容量の約77%に低下することが判明した。
この低下は、電池内部での電極層内の粒界接合および電極層内の電解質粒界面が充放電サイクルに伴って、破壊され、電池内部抵抗の増大を引き起こすために生じたと考えられた。
As a result, the initial charge / discharge capacity was the same as that of the battery of the present invention. However, with the progress of the charge / discharge cycle, it has been found that the charge / discharge capacity of the battery produced by the conventional method decreases for a while and decreases to about 77% of the initial capacity after 100 cycles.
This decrease was considered to have occurred because the grain boundary junction in the electrode layer inside the battery and the electrolyte grain interface in the electrode layer were destroyed along with the charge / discharge cycle, causing an increase in battery internal resistance.

(実施例9)
ここでは電池素子の電解質としてα−アルミナを5%含有した硫化物系リチウムイオン伝導体(Li2S−P25)からなる新規硫化物系リチウムイオン伝導性固体電解質ガラスを用いた以外、全く同様にして全固体リチウム二次電池を作成した。
こうして作成した電池の充放電サイクル特性を調べるため、該電地を500μA/cm2の定電流で充電、充電電圧が4.2Vに到達した後、電流が30μAとなった時点で、充電を停止し、充電停止時間、30分を経て、同一電流値で放電を開始した。
Example 9
Here, a novel sulfide-based lithium ion conductive solid electrolyte glass made of a sulfide-based lithium ion conductor (Li 2 S—P 2 S 5 ) containing 5% α-alumina was used as the electrolyte of the battery element, An all solid lithium secondary battery was prepared in exactly the same manner.
In order to investigate the charge / discharge cycle characteristics of the battery thus prepared, the electric charge was charged with a constant current of 500 μA / cm 2 , and when the charge voltage reached 4.2 V, the charge was stopped when the current reached 30 μA. Then, after a charge stop time of 30 minutes, discharge was started at the same current value.

得られた結果は、実施例7と殆ど同様で、放電の電圧が約4.0Vから3.5Vにおいて平坦性があり、3.0V放電終了で、約120mAh/grの放電容量が得られ、これらの電池容量は、ほぼコバルト酸リチウムの理論値の約100%に近い値を示す電池となっていることが判明した。
また、その充放電サイクル性能として、約270サイクルを経過した後も、初期容量の95%以上を維持することが判明した。この状況は固体電解質層が一枚の粒界のない状態となっているため、また、電池素子全体の周囲が電解質ガラスで覆われている結果、全固体薄膜電池で示されている、優れた充放電サイクル特性と同じ特性を与えるようになったと考えられる。
The obtained results are almost the same as in Example 7. The discharge voltage is flat when the voltage is about 4.0 V to 3.5 V, and a discharge capacity of about 120 mAh / gr is obtained at the end of 3.0 V discharge. It has been found that these battery capacities are approximately 100% of the theoretical value of lithium cobalt oxide.
Further, it has been found that the charge / discharge cycle performance maintains 95% or more of the initial capacity even after about 270 cycles. This situation is shown in an all-solid-state thin film battery because the solid electrolyte layer is in a state without a single grain boundary, and as a result of the entire battery element being covered with electrolyte glass, It is thought that the same characteristics as the charge / discharge cycle characteristics have been given.

(比較実験3)
実施例9の効果を調べるため、ここでは、電池構成材料を全く同じものを使用し、先ず、正電極端子9、負電極端子4が存在していない電池素子(図8の805)を加圧一体化成型した。その際、使用した圧力は、実施例7より強い4トン/cm2の圧力で成型した。
こうして作成した電池素子の両端に正電極端子9、負電極端子4を接触させ、その周囲をエポキシ樹脂で絶縁接着して、従来方法による全固体リチウム二次電池を作成し、その電池の充放電サイクル特性を実施例7と同様な条件で調べた。
(Comparative Experiment 3)
In order to examine the effect of Example 9, here, the same battery constituent materials were used, and first, a battery element (805 in FIG. 8) without positive electrode terminal 9 and negative electrode terminal 4 was pressurized. Integrated molding. At that time, the pressure used was molded at a pressure of 4 tons / cm 2 stronger than Example 7.
The positive electrode terminal 9 and the negative electrode terminal 4 are brought into contact with both ends of the battery element thus prepared, and the periphery thereof is insulatively bonded with an epoxy resin to prepare an all-solid lithium secondary battery by a conventional method, and charging / discharging of the battery The cycle characteristics were examined under the same conditions as in Example 7.

その結果、初期充放電容量は本発明の電池と変わらないものが得られた。しかし、充放電サイクルの経過に伴い、従来の方法で作成した電池では、充放電容量が暫時低下し、95サイクル経過時には、初期容量の約75%に低下することが判明した。
この低下は、電池内部での電極層内の粒界接合および電極層内の電解質粒界面が充放電サイクルに伴って、破壊され、電池内部抵抗の増大を引き起こすために生じたと考えられた。
As a result, the initial charge / discharge capacity was the same as that of the battery of the present invention. However, with the progress of the charge / discharge cycle, it has been found that the charge / discharge capacity of the battery produced by the conventional method decreases for a while and decreases to about 75% of the initial capacity after 95 cycles.
This decrease was considered to have occurred because the grain boundary junction in the electrode layer inside the battery and the electrolyte grain interface in the electrode layer were destroyed along with the charge / discharge cycle, causing an increase in battery internal resistance.

(実施例10)
ここでは、電池素子を実施例7において用いた電解質(α−Al23,Li2S,SiS2,Li3PO4)の代わりに、α−アルミナを5%含有した硫化物系リチウムイオン伝導体(Li2S−B23)からなる新規結晶質硫化物系リチウムイオン伝導性固体電解質ガラスを用いた以外、実施例7と全く同様にして全固体リチウム二次電池を作成した。
こうして作成した電池の特性を調べるため、該電地を500μA/cm2の定電流で充電、充電電圧が4.2Vに到達した後、電流が30μAとなった時点で、充電を停止し、充電停止時間、30分を経て、同一電流値で放電を開始した。
(Example 10)
Here, instead of the electrolyte (α-Al 2 O 3 , Li 2 S, SiS 2 , Li 3 PO 4 ) used in Example 7 for the battery element, sulfide-based lithium ion containing 5% α-alumina An all-solid lithium secondary battery was prepared in exactly the same manner as in Example 7, except that a novel crystalline sulfide-based lithium ion conductive solid electrolyte glass made of a conductor (Li 2 S—B 2 S 3 ) was used.
In order to investigate the characteristics of the battery thus prepared, the electric ground was charged with a constant current of 500 μA / cm 2 , and after the charging voltage reached 4.2 V, the charging was stopped when the current became 30 μA. Discharge was started at the same current value after a stop time of 30 minutes.

得られた結果は、実施例7と殆ど同様で、放電の電圧が約4.0Vから3.5Vにおいて平坦性があり、3.0V放電終了で、約108mAh/grの放電容量が得られ、これらの電池容量は、ほぼコバルト酸リチウムの理論値に近い値を示す電池となっていることが判明した。
また、その充放電サイクル性能として、約220サイクルを経過した後も、初期容量の92%以上を維持することが判明した。この状況は固体電解質層が一枚の粒界のない状態となっているため、また、電池素子全体の周囲が電解質ガラスで覆われている結果、全固体薄膜電池で示されている、優れた充放電サイクル特性と同じ特性を与えるようになったと考えられる。
The obtained results are almost the same as in Example 7, and the discharge voltage is flat when the voltage is about 4.0 V to 3.5 V, and when the 3.0 V discharge is completed, a discharge capacity of about 108 mAh / gr is obtained. These battery capacities were found to be batteries showing values close to the theoretical value of lithium cobalt oxide.
Further, it has been found that the charge / discharge cycle performance maintains 92% or more of the initial capacity even after about 220 cycles. This situation is shown in an all-solid-state thin film battery because the solid electrolyte layer is in a state without a single grain boundary, and as a result of the entire battery element being covered with electrolyte glass, It is thought that the same characteristics as the charge / discharge cycle characteristics have been given.

(比較実験4)
実施例10の効果を調べるため、ここでは、電池構成材料を全く同じものを使用し、先ず、正電極端子9、負電極端子4が存在していない電池素子(図8−805)を加圧一体化成型した。その際、使用した圧力は、実施例7より強い4トン/cm2の圧力で成型した。
こうして作成した電池素子の両端に正電極端子9、負電極端子4を接触させ、その周囲をエポキシ樹脂で絶縁接着して、従来方法による全固体リチウム二次電池を作成し、その電池の充放電サイクル特性を実施例7と同様な条件で調べた。
(Comparative Experiment 4)
In order to examine the effect of Example 10, here, the same battery constituent material was used, and first, the battery element (FIG. 8-805) without the positive electrode terminal 9 and the negative electrode terminal 4 was pressurized. Integrated molding. At that time, the pressure used was molded at a pressure of 4 tons / cm 2 stronger than Example 7.
The positive electrode terminal 9 and the negative electrode terminal 4 are brought into contact with both ends of the battery element thus prepared, and the periphery thereof is insulatively bonded with an epoxy resin to prepare an all-solid lithium secondary battery by a conventional method, and charging / discharging of the battery The cycle characteristics were examined under the same conditions as in Example 7.

その結果、初期充放電容量は本発明の電池と変わらないものが得られた。しかし、充放電サイクルの経過に伴い、従来の方法で作成した電池では、充放電容量が暫時低下し、120サイクル経過時には、初期容量の約70%に低下することが判明した。
この低下は、電池内部での電極層内の粒界接合および電極層内の電解質粒界面が充放電サイクルに伴って、破壊され、電池内部抵抗の増大を引き起こすために生じたと考えられた。
As a result, the initial charge / discharge capacity was the same as that of the battery of the present invention. However, as the charge / discharge cycle progresses, it has been found that the charge / discharge capacity of the battery produced by the conventional method decreases for a while and decreases to about 70% of the initial capacity after 120 cycles.
This decrease was considered to have occurred because the grain boundary junction in the electrode layer inside the battery and the electrolyte grain interface in the electrode layer were destroyed along with the charge / discharge cycle, causing an increase in battery internal resistance.

(実施例11)
ここでは実施例7〜実施例10で作成した電池を60℃の高温槽において、4.2Vの連続電圧印加試験を行った。
その結果、実施例9および実施例10の電池を除く、全ての電池で内部短絡が生じ、電池としての機能を発揮しなくなった。
この現象は、実施例7および実施例8で用いられている電池の固体リチウムイオン伝導性電解質中にはSi,Geが含まれており、これが、電池充電時において、還元され、電子的伝導性を電解質が持つようになったためと考えられた。
(Example 11)
Here, the batteries prepared in Examples 7 to 10 were subjected to a continuous voltage application test of 4.2 V in a high-temperature bath at 60 ° C.
As a result, an internal short circuit occurred in all the batteries except for the batteries of Example 9 and Example 10, and the function as a battery was not exhibited.
As for this phenomenon, Si and Ge are contained in the solid lithium ion conductive electrolyte of the battery used in Example 7 and Example 8, and this is reduced when the battery is charged. It was thought that the electrolyte came to have.

(実施例12)
ここでは、実施例7で使用した電池の負極活物質として、カーボンの代わりにインジウム粉末を用いて作成した以外は、全く同様にして電池を作成した。
この作成した電池の特性を調べるため、該電地を500μA/cm2の定電流で充電、充電電圧が4.0Vに到達した後、電流が30μAとなった時点で、充電を停止し、充電停止時間、30分を経て、同一電流値で放電を開始した。
Example 12
Here, a battery was prepared in exactly the same manner except that the negative electrode active material of the battery used in Example 7 was prepared using indium powder instead of carbon.
In order to investigate the characteristics of this battery, the electric ground was charged with a constant current of 500 μA / cm 2. After the charging voltage reached 4.0 V, the charging was stopped when the current reached 30 μA. Discharge was started at the same current value after a stop time of 30 minutes.

得られた結果は、放電の電圧が約3.7Vから3.0Vにおいて平坦性があり、2.5Vとなった時点で、放電を終了させた。その結果、約117mAh/grの放電容量が得られた。この電池容量は、ほぼコバルト酸リチウムの理論値に近い値を示していた。また、その充放電サイクル性能として、約150サイクルを経過した後も、初期容量の90%以上を維持することが判明した。   The obtained results were flat when the discharge voltage was about 3.7 V to 3.0 V, and when the voltage reached 2.5 V, the discharge was terminated. As a result, a discharge capacity of about 117 mAh / gr was obtained. This battery capacity showed a value almost close to the theoretical value of lithium cobalt oxide. Further, it has been found that the charge / discharge cycle performance maintains 90% or more of the initial capacity even after about 150 cycles.

この状況は固体電解質層が1枚の粒開のない状態となっているため,又,電池素子全体の周囲が電解質ガラスで覆われている結果、全固体薄膜電池で示されてきた優れた充放電サイクル特性と同じ特性を与えるようになったと考えられる。
また、この電池の試験として、60℃の高温層内で4.0Vの電圧を連続二ヶ月間、過充電した結果、その終了後の電池についての充放電性能には、何ら異常は認められなかった。
In this situation, the solid electrolyte layer is in a state without a single particle, and the entire battery element is covered with electrolyte glass. It is considered that the same characteristics as the discharge cycle characteristics have been given.
In addition, as a test of this battery, as a result of overcharging a voltage of 4.0 V in a high temperature layer of 60 ° C. for two consecutive months, no abnormality was found in the charge / discharge performance of the battery after the end. It was.

(実施例13)
ここでは、実施例8で使用した電池の負極活物質として、カーボンの代わりにインジウム粉末を用いて作成した以外は、全く同様にして電池を作成した。
この作成した電池の特性を調べるため、該電地を500μA/cm2の定電流で充電、充電電圧が4.0Vに到達した後、電流が30μAとなった時点で、充電を停止し、充電停止時間、30分を経て、同一電流値で放電を開始した。
(Example 13)
Here, a battery was prepared in exactly the same manner except that the negative electrode active material of the battery used in Example 8 was prepared using indium powder instead of carbon.
In order to investigate the characteristics of this battery, the electric ground was charged with a constant current of 500 μA / cm 2. After the charging voltage reached 4.0 V, the charging was stopped when the current reached 30 μA. Discharge was started at the same current value after a stop time of 30 minutes.

得られた結果は、放電の電圧が約3.7Vから3.0Vにおいて平坦性があり、2.5V放電終了で、約108mAh/grの放電容量が得られ、これらの電池容量は、ほぼコバルト酸リチウムの理論値に近い値を示していた。
また、その充放電サイクル性能として、約150サイクルを経過した後も、初期容量の89%以上を維持することが判明した。この状況は固体電解質層が一枚の粒界のない状態となっているため、また、電池素子全体の周囲が電解質ガラスで覆われている結果、全固体薄膜電池で示されている、優れた充放電サイクル特性と同じ特性を与えるようになったと考えられる。
また、60℃の高温層内で4.0Vの電圧を連続二ヶ月間、過充電試験を行った結果、その終了後の電池についての充放電性能には、何ら異常は認められなかった。
The obtained results are flat when the discharge voltage is about 3.7 V to 3.0 V, and a discharge capacity of about 108 mAh / gr is obtained at the end of 2.5 V discharge. The value was close to the theoretical value of lithium acid.
Further, it was found that the charge / discharge cycle performance maintained 89% or more of the initial capacity even after about 150 cycles. This situation is shown in an all-solid-state thin film battery because the solid electrolyte layer is in a state without a single grain boundary, and as a result of the entire battery element being covered with electrolyte glass, It is thought that the same characteristics as the charge / discharge cycle characteristics have been given.
In addition, as a result of conducting an overcharge test for 4.0 months at a voltage of 4.0 V in a high temperature layer of 60 ° C., no abnormality was found in the charge / discharge performance of the battery after the end.

(実施例14)
ここでは、実施例9で使用した負極活物質として、カーボンの代わりにインジウム粉末を用いて作成した以外は、全く同様にして電池を作成した。
この作成した電池の特性を調べるため、該電地を500μA/cm2の定電流で充電、充電電圧が4.0Vに到達した後、電流が30μAとなった時点で、充電を停止し、充電停止時間、30分を経て、同一電流値で放電を開始した。
(Example 14)
Here, a battery was prepared in exactly the same manner except that the negative electrode active material used in Example 9 was prepared using indium powder instead of carbon.
In order to investigate the characteristics of this battery, the electric ground was charged with a constant current of 500 μA / cm 2. After the charging voltage reached 4.0 V, the charging was stopped when the current reached 30 μA. Discharge was started at the same current value after a stop time of 30 minutes.

得られた結果は、放電の電圧が約3.7Vから3.0Vにおいて平坦性があり、2.5V放電終了で、約113mAh/grの放電容量が得られ、この電池容量は、ほぼコバルト酸リチウムの理論値に近い値を示した。また、その充放電サイクル性能として、約160サイクルを経過した後も、初期容量の85%以上を維持することが判明した。この状況は固体電解質層が一枚の粒界のない状態となっているため、また、電池素子全体の周囲が電解質ガラスで覆われている結果、全固体薄膜電池で示されている、優れた充放電サイクル特性と同じ特性を与えるようになったと考えられる。
また、60℃の高温層内で4.0Vの電圧を連続二ヶ月間、過充電試験を行った結果、その終了後の電池についての充放電性能には、何ら異常は認められなかった。
The obtained results are flat when the discharge voltage is about 3.7 V to 3.0 V, and a discharge capacity of about 113 mAh / gr is obtained at the end of 2.5 V discharge. The value was close to the theoretical value of lithium. Further, it has been found that the charge / discharge cycle performance maintains 85% or more of the initial capacity even after about 160 cycles. This situation is shown in an all-solid-state thin film battery because the solid electrolyte layer is in a state without a single grain boundary, and as a result of the entire battery element being covered with electrolyte glass, It is thought that the same characteristics as the charge / discharge cycle characteristics have been given.
In addition, as a result of conducting an overcharge test for 4.0 months at a voltage of 4.0 V in a high temperature layer of 60 ° C., no abnormality was found in the charge / discharge performance of the battery after the end.

(実施例15)
ここでは、実施例9で使用した電池の負極活物質として、カーボンの代わりにAl粉末(平均粒径:20μm)を用いて作成した以外は、全く同様にして電池を作成した。
この作成した電池の特性を調べるため、該電地を500μA/cm2の定電流で充電、充電電圧が4.0Vに到達した後、電流が30μAとなった時点で、充電を停止し、充電停止時間、30分を経て、同一電流値で放電を開始した。
(Example 15)
Here, a battery was prepared in exactly the same manner except that Al powder (average particle size: 20 μm) was used instead of carbon as the negative electrode active material of the battery used in Example 9.
In order to investigate the characteristics of this battery, the electric ground was charged with a constant current of 500 μA / cm 2. After the charging voltage reached 4.0 V, the charging was stopped when the current reached 30 μA. Discharge was started at the same current value after a stop time of 30 minutes.

得られた結果は、放電の電圧が約4.0Vから3.5Vにおいて平坦性があり、3.0V放電終了で、約123mAh/grの放電容量が得られ、これらの電池容量は、ほぼコバルト酸リチウムの理論値に近い値であることが判った。
また、その充放電サイクル性能として、約210サイクルを経過した後も、初期容量の92%以上を維持することが判明した。この状況は固体電解質層が一枚の粒界のない状態となっているため、また、電池素子全体の周囲が電解質ガラスで覆われている結果、全固体薄膜電池で示されている、優れた充放電サイクル特性と同じ特性を与えるようになったと考えられる。
また、60℃の高温層内で4.0Vの電圧を連続二ヶ月間、過充電試験を行った結果、その終了後の電池についての充放電性能には、何ら異常は認められなかった。
The obtained results show that the discharge voltage is flat when the voltage is about 4.0 V to 3.5 V, and the discharge capacity of about 123 mAh / gr is obtained at the end of the 3.0 V discharge. It was found that the value was close to the theoretical value of lithium acid.
Further, it has been found that the charge / discharge cycle performance maintains 92% or more of the initial capacity even after about 210 cycles. This situation is shown in an all-solid-state thin film battery because the solid electrolyte layer is in a state without a single grain boundary, and as a result of the entire battery element being covered with electrolyte glass, It is thought that the same characteristics as the charge / discharge cycle characteristics have been given.
In addition, as a result of conducting an overcharge test for 4.0 months at a voltage of 4.0 V in a high temperature layer of 60 ° C., no abnormality was found in the charge / discharge performance of the battery after the end.

(実施例16)
ここでは、実施例9の電池作成に当たって、用いた電池素子の加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加熱圧縮温度を350℃とし、処理時間は30分間以内で電池を作成した。作成した電池についての充放電を実施例9と同様にして、行った。
その結果、初期放電容量として、27mAh/grが得られた。これは理論容量の約22%で、この放電容量の低下は、電池内部の電解質ガラスが結晶化し、このことにより、電池内部抵抗が増大した結果、充電が十分に出来なくなったためと思われた。
(Example 16)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced with exactly the same configuration except that the heating and compression conditions of the battery element used were variously changed.
In Example 9, the treatment was performed at 310 ° C. for 1 hour, but in this example, the heat compression temperature was set to 350 ° C., and the battery was produced within a treatment time of 30 minutes. Charging / discharging of the produced battery was performed in the same manner as in Example 9.
As a result, an initial discharge capacity of 27 mAh / gr was obtained. This was about 22% of the theoretical capacity, and this decrease in the discharge capacity was thought to be due to the fact that the electrolyte glass inside the battery crystallized, and as a result, the battery internal resistance increased, resulting in insufficient charging.

(実施例17)
ここでは、実施例9の電池作成に当たって、用いた電池素子の加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件320℃、処理時間を5.0で、加熱圧縮処理することで電池を作成した。
作成した電池についての充放電を実施例9と同様にして、行った。
その結果、初期放電容量として、113mAh/grが得られた。これは理論容量の約94%で、殆ど理論容量を示していることが判った。
(Example 17)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced with exactly the same configuration except that the heating and compression conditions of the battery element used were variously changed.
In Example 9, treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was prepared by heating and compression treatment at a heating condition of 320 ° C. and a treatment time of 5.0.
Charging / discharging of the produced battery was performed in the same manner as in Example 9.
As a result, 113 mAh / gr was obtained as the initial discharge capacity. This was about 94% of the theoretical capacity, and it was found that the theoretical capacity was almost shown.

(実施例18)
ここでは、実施例9の電池作成に当たって、用いた電池素子の加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件320℃、処理時間を6.0で、加熱圧縮処理することで電池を作成した。
作成した電池についての充放電を実施例9と同様にして行った。
その結果、所期放電容量として、89mAh/grが得られた。これは理論容量の約74%で、殆ど理論容量を示していることが判った。
(Example 18)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced with exactly the same configuration except that the heating and compression conditions of the battery element used were variously changed.
In Example 9, treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was prepared by heating and compression treatment at a heating condition of 320 ° C. and a treatment time of 6.0.
Charging / discharging of the produced battery was performed in the same manner as in Example 9.
As a result, an expected discharge capacity of 89 mAh / gr was obtained. This was about 74% of the theoretical capacity, and it was found that the theoretical capacity was almost shown.

(実施例19)
ここでは、実施例9の電池作成に当たって、用いた電池素子を加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件300℃、処理時間を2時間で加熱圧縮処理することで電池を作成した。
作成した電池についての充放電試験を実施例9と同様にして行った。
その結果、初期放電容量として、115mAh/grが得られた。これは理論容量の約96%で、殆ど理論容量を示していることが判った。
Example 19
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced in exactly the same configuration except that the battery element used was heated and various compression conditions were changed.
In Example 9, the treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was produced by heating and compressing at a heating condition of 300 ° C. and a treatment time of 2 hours.
The charge / discharge test for the prepared battery was performed in the same manner as in Example 9.
As a result, 115 mAh / gr was obtained as the initial discharge capacity. This was about 96% of the theoretical capacity, and it was found that the theoretical capacity was almost shown.

(実施例20)
ここでは、実施例9の電池作成に当たって、用いた電池素子を加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件300℃、処理時間を5時間で加熱圧縮処理することで電池を作成した。
作成した電池についての充放電試験を実施例9と同様にして行った。
その結果、初期放電容量として、110mAh/grが得られた。これは理論容量の約92%で、殆ど理論容量を示していることが判った。
(Example 20)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced in exactly the same configuration except that the battery element used was heated and various compression conditions were changed.
In Example 9, the treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was prepared by heating and compressing at a heating condition of 300 ° C. for a treatment time of 5 hours.
The charge / discharge test for the prepared battery was performed in the same manner as in Example 9.
As a result, 110 mAh / gr was obtained as the initial discharge capacity. This was about 92% of the theoretical capacity, and it was found that almost the theoretical capacity was shown.

(実施例21)
ここでは、実施例9の電池作成に当たって、用いた電池素子を加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件300℃、処理時間を6時間で加熱圧縮処理することで電池を作成した。
作成した電池についての充放電試験を実施例9と同様にして行った。
その結果、初期放電容量として、98mAh/grが得られた。これは理論容量の約81%で、殆ど理論容量を示していることが判った。
(Example 21)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced in exactly the same configuration except that the battery element used was heated and various compression conditions were changed.
In Example 9, the treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was produced by heating and compressing at a heating condition of 300 ° C. and a treatment time of 6 hours.
The charge / discharge test for the prepared battery was performed in the same manner as in Example 9.
As a result, 98 mAh / gr was obtained as the initial discharge capacity. This was about 81% of the theoretical capacity, and it was found that the theoretical capacity was almost shown.

(実施例22)
ここでは、実施例9の電池作成に当たって、用いた電池素子を加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件250℃、処理時間を5.0時間で加熱圧縮処理することで電池を作成した。
作成した電池についての充放電試験を実施例9と同様にして行った。
その結果、初期放電容量として、113mAh/grが得られた。これは理論容量の約94%で、理論容量に近い値を示していることが判った。
(Example 22)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced in exactly the same configuration except that the battery element used was heated and various compression conditions were changed.
In Example 9, treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was produced by heating and compressing at a heating condition of 250 ° C. and a treatment time of 5.0 hours.
The charge / discharge test for the prepared battery was performed in the same manner as in Example 9.
As a result, 113 mAh / gr was obtained as the initial discharge capacity. This was about 94% of the theoretical capacity, which was found to be close to the theoretical capacity.

(実施例23)
ここでは、実施例9の電池作成に当たって、用いた電池素子を加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件220℃、処理時間を5.0時間で加熱圧縮処理することで電池を作成した。
作成した電池についての充放電試験を実施例9と同様にして行った。
その結果、初期放電容量として、119mAh/grが得られた。これは理論容量の約99%で、理論容量となっていることが判った。
(Example 23)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced in exactly the same configuration except that the battery element used was heated and various compression conditions were changed.
In Example 9, the treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was prepared by heating and compressing at a heating condition of 220 ° C. and a treatment time of 5.0 hours.
The charge / discharge test for the prepared battery was performed in the same manner as in Example 9.
As a result, 119 mAh / gr was obtained as the initial discharge capacity. This was about 99% of the theoretical capacity, which was found to be the theoretical capacity.

(実施例24)
ここでは、実施例9の電池作成に当たって、用いた電池素子を加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件200℃、処理時間を4.0時間で加熱圧縮処理することで電池を作成した。
作成した電池についての充放電試験を実施例9と同様にして行った。
その結果、初期放電容量として、121mAh/grが得られた。これは理論容量の約99%で、理論容量となっていることが判った。
(Example 24)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced in exactly the same configuration except that the battery element used was heated and various compression conditions were changed.
In Example 9, treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was prepared by heating and compression treatment at a heating condition of 200 ° C. and a treatment time of 4.0 hours.
The charge / discharge test for the prepared battery was performed in the same manner as in Example 9.
As a result, 121 mAh / gr was obtained as the initial discharge capacity. This was about 99% of the theoretical capacity, which was found to be the theoretical capacity.

(実施例25)
ここでは、実施例9の電池作成に当たって、用いた電池素子を加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件200℃、処理時間を6.0時間とした。
作成した電池についての充放電試験を実施例9と同様にして行った。
その結果、初期放電容量として、117mAh/grが得られた。これは理論容量の約98%で、理論容量となっていることが判った。
(Example 25)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced in exactly the same configuration except that the battery element used was heated and various compression conditions were changed.
In Example 9, the treatment was performed at 310 ° C. for 1 hour, but in this example, the heating condition was 200 ° C. and the treatment time was 6.0 hours.
The charge / discharge test for the prepared battery was performed in the same manner as in Example 9.
As a result, 117 mAh / gr was obtained as the initial discharge capacity. This was about 98% of the theoretical capacity, which was found to be the theoretical capacity.

(実施例26)
ここでは、実施例9の電池作成に当たって、用いた電池素子を加温、圧縮条件を種々、変えた以外、全く同様の構成で全固体リチウム二次電池を作成した。
実施例9では310℃、1時間処理したが、本実施例では加温条件180℃、処理時間を4.0時間で加熱圧縮処理することで電池を作成した。
作成した電池についての充放電試験を実施例9と同様にして行った。
(Example 26)
Here, in producing the battery of Example 9, an all-solid lithium secondary battery was produced in exactly the same configuration except that the battery element used was heated and various compression conditions were changed.
In Example 9, treatment was performed at 310 ° C. for 1 hour, but in this example, a battery was produced by heating and compression treatment at a heating condition of 180 ° C. and a treatment time of 4.0 hours.
The charge / discharge test for the prepared battery was performed in the same manner as in Example 9.

その結果、初期放電容量として、118mAh/grが得られた。これは理論容量の約98%を示すことが判った。しかし、この電池では実施例16から実施例24の電池と異なり、充放電サイクル特性において、充放電容量の著しい低下が認められ、95サイクルの充放電時において、その容量が70%程度に低下した。   As a result, 118 mAh / gr was obtained as the initial discharge capacity. This was found to represent about 98% of theoretical capacity. However, in this battery, unlike the batteries of Examples 16 to 24, a significant decrease in charge / discharge capacity was observed in charge / discharge cycle characteristics, and the capacity decreased to about 70% during 95 cycles of charge / discharge. .

以上、実施例16から実施例26で得られた結果を図11に示した。この図11では処理時間と処理温度条件により、作成した電池の初期充放電サイクル試験で得られた放電容量をmAh/grで示した。
この結果から判るように、硫化物系リチウムイオン伝導性固体電解質ガラスの軟化温度領域である約200℃〜300℃の温度範囲では、処理時間が5時間以上経過させても、その放電容量変化は余り大きくなく、処理温度が300℃以上になると、処理時間の影響が大きく現れることが判った。処理温度が320℃近辺では、処理時間が6時間で約74%の放電容量となり、350℃では処理時間が0.5時間で約22%の放電容量となることが判明した。これらの処理時間、処理温度は、全固体リチウム二次電池内の固体電解質ガラスの結晶化が進むことにより、電池内部抵抗が増大することにより、充分に充電反応が行われにくくなったためと考えられた。以上の結果、電池全体を加熱圧縮する条件としては、200℃から320℃の温度範囲で、且つ処理時間として5時間以内であれば、電池作成工程上、望ましいことが判明した。
The results obtained in Examples 16 to 26 are shown in FIG. In FIG. 11, the discharge capacity obtained in the initial charge / discharge cycle test of the prepared battery is expressed in mAh / gr depending on the processing time and the processing temperature condition.
As can be seen from this result, in the temperature range of about 200 ° C. to 300 ° C., which is the softening temperature range of the sulfide-based lithium ion conductive solid electrolyte glass, the discharge capacity change is It was not so large, and it was found that when the processing temperature was 300 ° C. or higher, the influence of the processing time appeared greatly. It was found that when the processing temperature is around 320 ° C., the discharge capacity is about 74% after 6 hours, and at 350 ° C., the discharge capacity is about 22% after 0.5 hours. These treatment times and treatment temperatures are thought to be due to the fact that the battery internal resistance increases due to the progress of crystallization of the solid electrolyte glass in the all-solid-state lithium secondary battery, so that the charging reaction is not sufficiently performed. It was. As a result, it has been found that the conditions for heating and compressing the entire battery are desirable in the battery preparation process if the temperature range is 200 ° C. to 320 ° C. and the processing time is within 5 hours.

(実施例27)
実施例7から実施例26で作成した電池では、電池素子の周囲に軟化温度が320℃以下の低融点ガラスフリット[YEV8−4103(株)ヤマト電子製]を用いて、図2に示した構造の全固体リチウム二次電池を作成したが、ここでは、低融点ガラスとして、[V25−ZnO−BaO−TeO2の4成分からなる低融点ガラス、YEV8−3111(株)ヤマト電子製]を用い、実施例7と全く同様にして、全固体リチウム二次電池を作成した。
作成した全固体リチウム二次電池について、実施例7同様の充放電試験および連続二ヶ月の過充電試験を行った所、殆ど、同じ特性を示すことが判った。
(Example 27)
In the batteries prepared in Example 7 to Example 26, the structure shown in FIG. 2 was used by using a low melting point glass frit (YEV8-4103 manufactured by Yamato Electronics Co., Ltd.) having a softening temperature of 320 ° C. or less around the battery element. The all-solid-state lithium secondary battery of [V 2 O 5 —ZnO—BaO—TeO 2 is used as a low melting point glass, a low melting point glass consisting of four components of V 2 O 5 —ZnO—BaO—TeO 2 , manufactured by Yamato Electronics Co., Ltd. All solid lithium secondary batteries were made in the same manner as in Example 7.
About the created all-solid-state lithium secondary battery, when the same charging / discharging test and continuous two-month overcharge test of Example 7 were done, it turned out that almost the same characteristic is shown.

(実施例28)
実施例7から実施例26で作成した電池では、電池素子の周囲に軟化温度が320℃以下の低融点ガラスフリット[YEV8−4103(株)ヤマト電子製]を用いて、図2に示した構造の全固体リチウム二次電池を作成したが、ここでは、低融点ガラスとして、[V25−ZnO−BaO−TeO2の4成分からなる低融点ガラス、YEV8−3102(株)ヤマト電子製]を用い、実施例7と全く同様にして、全固体リチウム二次電池を作成した。
作成した全固体リチウム二次電池について、実施例7と同様の充放電試験および連続二ヶ月の過充電試験を行った所、殆ど、同じ特性を示すことが判った。
(Example 28)
In the batteries prepared in Examples 7 to 26, the structure shown in FIG. 2 was used by using a low melting point glass frit (YEV8-4103 manufactured by Yamato Electronics Co., Ltd.) having a softening temperature of 320 ° C. or less around the battery element. The all-solid-state lithium secondary battery of [V 2 O 5 —ZnO—BaO—TeO 2 is used as a low melting point glass, a low melting point glass composed of four components, YEV8-3102, manufactured by Yamato Electronics Co., Ltd. All solid lithium secondary batteries were made in exactly the same manner as in Example 7.
About the created all-solid-state lithium secondary battery, when the same charging / discharging test as Example 7 and the continuous two-month overcharge test were done, it turned out that almost the same characteristic is shown.

(実施例29)
実施例7から実施例26で作成した電池では、電池素子の周囲に軟化温度が320℃以下の低融点ガラスフリット[YEV8−4103(株)ヤマト電子製]を用いて、図2に示した構造の全固体リチウム二次電池を作成したが、ここでは、低融点ガラスとして、[V25−ZnO−BaO−TeO2の4成分からなる低融点ガラス、YEV8−3302(株)ヤマト電子製]を用い、実施例7と全く同様にして、全固体リチウム二次電池を作成した。
作成した全固体リチウム二次電池について、実施例7と同様の充放電試験および連続二ヶ月の過充電試験を行った所、殆ど、同じ特性を示すことが判った。
(Example 29)
In the batteries prepared in Example 7 to Example 26, the structure shown in FIG. 2 was used by using a low melting point glass frit (YEV8-4103 manufactured by Yamato Electronics Co., Ltd.) having a softening temperature of 320 ° C. or less around the battery element. The all-solid-state lithium secondary battery of [V 2 O 5 —ZnO—BaO—TeO 2 is used as a low melting point glass, a low melting point glass composed of four components, YEV8-3302, manufactured by Yamato Electronics Co., Ltd. All solid lithium secondary batteries were made in the same manner as in Example 7.
About the created all-solid-state lithium secondary battery, when the same charging / discharging test as Example 7 and the continuous two-month overcharge test were done, it turned out that almost the same characteristic is shown.

(実施例30)
実施例7から実施例26で作成した電池では、電池素子の周囲に軟化温度が320℃以下の低融点ガラスフリット[YEV8−4103(株)ヤマト電子製]を用いて、図2に示した構造の全固体リチウム二次電池を作成したが、ここでは、低融点ガラスとして、[V25−ZnO−BaO−TeO2の4成分からなる低融点ガラス、YEV8−3118(株)ヤマト電子製]を用い、実施例7と全く同様にして、全固体リチウム二次電池を作成した。
作成した全固体リチウム二次電池について、実施例7と同様の充放電試験および連続二ヶ月の過充電試験を行った所、殆ど、同じ特性を示すことが判った。
(Example 30)
In the batteries prepared in Example 7 to Example 26, the structure shown in FIG. 2 was used by using a low melting point glass frit (YEV8-4103 manufactured by Yamato Electronics Co., Ltd.) having a softening temperature of 320 ° C. or less around the battery element. The all-solid-state lithium secondary battery of [V 2 O 5 —ZnO—BaO—TeO 2 is used as a low melting point glass, a low melting point glass composed of four components, YEV8-3118, manufactured by Yamato Electronics Co., Ltd. All solid lithium secondary batteries were made in exactly the same manner as in Example 7.
About the created all-solid-state lithium secondary battery, when the same charging / discharging test as Example 7 and the continuous two-month overcharge test were done, it turned out that almost the same characteristic is shown.

(実施例31)
実施例7から実施例26で作成した電池では、電池素子の周囲に軟化温度が320℃以下の低融点ガラスフリットを用いて、図2に示した構造の全固体リチウム二次電池を作成したが、ここでは、低融点ガラスとして、PbO−B23−SiO2−Al23系のICパッケージ用封着鉛ガラス(ガラスコードNo.LS−0803)を用い、加熱圧縮処理条件として、360℃、30分とした以外、実施例7と全く同様にして、全固体リチウム二次電池を作成した。
作成した全固体リチウム二次電池について、実施例7同様の充放電試験および連続二ヶ月の過充電試験を行った所、初期放電容量として、99mAh/grが得られ、理論容量83%の放電性能を与えた。しかし、60℃過充電試験の結果では、66mAh/grを示し、初期放電容量が理論容量の55%となることが判った。これは、電池シール材として使用した低融点ガラスの中に、電気化学的に還元を受けやすい酸化鉛が存在しているため、これが還元され、シール部分が電子伝導性を持つようになり、充放電特性が低下したものと推定された。
(Example 31)
In the batteries prepared in Examples 7 to 26, an all-solid lithium secondary battery having the structure shown in FIG. 2 was prepared using a low-melting glass frit having a softening temperature of 320 ° C. or less around the battery element. Here, as the low melting point glass, PbO—B 2 O 3 —SiO 2 —Al 2 O 3 based sealed lead glass for IC packages (glass code No. LS-0803) is used, and the heat compression treatment conditions are as follows: An all-solid lithium secondary battery was produced in the same manner as in Example 7 except that the temperature was 360 ° C. for 30 minutes.
The prepared all-solid lithium secondary battery was subjected to the same charge / discharge test and continuous two-month overcharge test as in Example 7. As a result, 99 mAh / gr was obtained as the initial discharge capacity, and discharge performance with a theoretical capacity of 83%. Gave. However, the result of the 60 ° C. overcharge test showed 66 mAh / gr, and it was found that the initial discharge capacity was 55% of the theoretical capacity. This is because the low melting point glass used as the battery seal material contains lead oxide that is susceptible to reduction electrochemically, and this is reduced, and the sealed portion becomes electronically conductive and is charged. It was estimated that the discharge characteristics deteriorated.

(実施例32)
実施例7から実施例26で作成した電池では、電池素子の周囲に軟化温度が320℃以下の低融点ガラスフリットを用いて、図2に示した構造の全固体リチウム二次電池を作成したが、ここでは、低融点ガラスとして、PbO−B23−SiO2−Al23系のICパッケージ用封着鉛ガラス(ガラスコードNo.LS−1101)を用い、加熱圧縮処理条件として、360℃、30分とした以外、実施例7と全く同様にして、全固体リチウム二次電池を作成した。作成した全固体リチウム二次電池について、実施例7同様の充放電試験および連続二ヶ月の過充電試験を行った所、初期放電容量として、102mAh/grが得られ、理論容量85%の放電性能を与えた。しかし、60℃過充電試験の結果では、初期放電容量68mAh/grを示し、理論容量の57%を示すことが判った。これは、電池シール材として使用した低融点ガラスの中に、電気化学的に還元を受けやすい酸化鉛が存在しているため、これが還元され、シール部分が若干、電子伝導性を持つようになり、充放電特性が低下したものと推定された。
(Example 32)
In the batteries prepared in Examples 7 to 26, an all-solid lithium secondary battery having the structure shown in FIG. 2 was prepared using a low-melting glass frit having a softening temperature of 320 ° C. or less around the battery element. Here, as the low melting point glass, PbO—B 2 O 3 —SiO 2 —Al 2 O 3 based sealed lead glass for IC packages (glass code No. LS-1101) is used, and the heat compression treatment conditions are as follows: An all-solid lithium secondary battery was produced in exactly the same manner as in Example 7 except that the temperature was 360 ° C. for 30 minutes. The prepared all-solid lithium secondary battery was subjected to the same charge / discharge test and continuous two-month overcharge test as in Example 7. As a result, 102 mAh / gr was obtained as the initial discharge capacity, and the discharge performance with a theoretical capacity of 85% was obtained. Gave. However, the result of the 60 ° C. overcharge test showed an initial discharge capacity of 68 mAh / gr, indicating 57% of the theoretical capacity. This is because the low melting point glass used as a battery sealing material contains lead oxide that is susceptible to reduction electrochemically, so that it is reduced and the sealing part has a slight electronic conductivity. It was estimated that the charge / discharge characteristics were deteriorated.

以上、全固体リチウム二次電池をシールするために、使用する低融点ガラス材料としては、電気化学的にも還元を受け易い鉛を含まなく、且つ、硫化物系リチウムイオン伝導性固体電解質中の硫黄成分と反応が進みにくい材料を選定する必要があることが判明した。
この条件としてV25−ZnO−BaO−TeO2の4成分からなる低融点ガラスの使用は好適なものであることが判った。図12には各種低融点ガラスの特性を参考のために添付した。
As described above, in order to seal the all solid lithium secondary battery, the low melting point glass material used does not contain lead that is susceptible to reduction electrochemically, and in the sulfide-based lithium ion conductive solid electrolyte. It has been found that it is necessary to select a material that does not easily react with the sulfur component.
As this condition, it has been found that the use of a low-melting glass composed of four components of V 2 O 5 —ZnO—BaO—TeO 2 is suitable. In FIG. 12, the characteristics of various low melting point glasses are attached for reference.

以上、総合すると、種々なる硫化物系リチウムイオン伝導性固体電解質を使用した本発明の全固体リチウム二次電池では、電池内部に存在する電解質を軟化する温度に加温し、全体を圧縮することで、優れた電池性能、特に充放電サイクル寿命における、充放電容量の低下を阻止することが判った。この加温温度としては200℃から320℃の温度範囲が望ましく、また、その処理時間は処理温度が高くなると、短くする必要があるが、2時間以内で処理することが望ましいと言える。また、この加熱圧縮工程は、電極内部で、電極活物質粒子と電解質粒子の接合界面が密となり、その界面接合が改善される結果、電池充放電時において、リチウムイオンの授受が円滑となり、高率充放電が可能となることは、当然予想される効果となる。   In summary, in the all-solid lithium secondary battery of the present invention using various sulfide-based lithium ion conductive solid electrolytes, the electrolyte existing inside the battery is heated to a temperature that softens and the whole is compressed. Thus, it was found that the battery performance, particularly the charge / discharge cycle life, is prevented from decreasing. As the heating temperature, a temperature range of 200 ° C. to 320 ° C. is desirable, and the treatment time needs to be shortened as the treatment temperature increases, but it can be said that the treatment is desirably performed within 2 hours. In addition, this heat compression process makes the bonding interface between the electrode active material particles and the electrolyte particles dense inside the electrode, and the interface bonding is improved. As a result, during the charging and discharging of the battery, the exchange of lithium ions becomes smooth and high. The possibility of rate charging / discharging is naturally an expected effect.

また、作成する電池の作動電圧の高いものを得るには、負極活物質としてリチウムイオンの可逆析出反応またはカーボンリチウムの反応を用いることが望ましいが、このような負極活物質材料を用いると、電解質中にSi,Ge等の半導体が存在れば、これらが充電中に還元され、特に連続した過充電状態において、電解質層が電子伝導性を有するようになり、好ましくないことが判った。硫化物系リチウムイオン伝導性固体電解質としてSi,Geを含まない電解質として、Li2S−B23あるいはLi2S−P25の二元系電解質が知られているが、これらは単独ではイオン伝導率が2×10-4S/cm2と低く、実用的で無かった。しかし、この硫化物系リチウムイオン伝導体にα−アルミナを混合すること、また、これらをガラス化したものでは、約2×10-3S/cm2を示し、実用的な電解質となることが判明した。電解質中に存在するα−アルミナはリチウムイオンの酸化還元反応が起こる電位では、何ら電池反応を阻害しないことは実施例15の電池における負極活物質としてAlを使用しても、なんら充放電性能に影響と与えないことからも実証されており、このガラス状電解質の電池への応用は極めて、優れた電池性能を有する製品を提供できるものとなり、工業的価値の高いものとなる。 Further, in order to obtain a battery having a high operating voltage, it is desirable to use a reversible precipitation reaction of lithium ions or a reaction of carbon lithium as the negative electrode active material. When such a negative electrode active material is used, an electrolyte can be obtained. It has been found that if semiconductors such as Si and Ge are present, they are reduced during charging, and the electrolyte layer becomes electronically conductive particularly in a continuous overcharged state, which is not preferable. As a sulfide-based lithium ion conductive solid electrolyte, a Li 2 S—B 2 S 3 or Li 2 S—P 2 S 5 binary electrolyte is known as an electrolyte not containing Si or Ge. Alone, the ionic conductivity was as low as 2 × 10 −4 S / cm 2 , which was not practical. However, when α-alumina is mixed with this sulfide-based lithium ion conductor, and those obtained by vitrification thereof, it shows about 2 × 10 −3 S / cm 2 and can be a practical electrolyte. found. The α-alumina present in the electrolyte does not inhibit the battery reaction at the potential at which the redox reaction of lithium ions occurs. Even if Al is used as the negative electrode active material in the battery of Example 15, no charge / discharge performance is obtained. It has also been proved from the fact that it has no influence, and the application of this glassy electrolyte to a battery can provide a product having excellent battery performance and has a high industrial value.

従来の全固体リチウム二次電池の試験セルの構想。Concept of a test cell for a conventional all-solid lithium secondary battery. 本発明の全固体リチウム二次電池の基本構成面図。The basic composition side view of the all-solid-state lithium secondary battery of this invention. 本発明の電池に用いる電極集電体構造図。FIG. 3 is a structure diagram of an electrode current collector used in the battery of the present invention. 本発明で用いた電極構成図。The electrode block diagram used by this invention. 本発明の他の電池構成図。The other battery block diagram of this invention. 電極成型用金型の構成面。Configuration surface of the electrode molding die. 本発明の電池素子作成用金型図面。The metal mold drawing for battery element creation of the present invention. 本発明電池素子の作成フローチャート。The creation flowchart of this invention battery element. 電池作成工程のフローチャート。The flowchart of a battery creation process. 加熱温度、時間による、イオン伝導率(S/cm2)への影響を示す図。The figure which shows the influence on ionic conductivity (S / cm < 2 >) by heating temperature and time. 加熱処理温度と時間による、初期放電容量(mAh/gr)への影響を示す図。The figure which shows the influence on the initial stage discharge capacity (mAh / gr) by heat processing temperature and time. 各種低融点ガラスの持つ諸特性を示す図。The figure which shows the various characteristics which various low melting glass has.

符号の説明Explanation of symbols

(I)…正極、(II)…負極、1…正極リード板、2…正極集電体、3…正電極合材、4…負電極端子、5…負極リード板、6…負極集電体、7…負電極合材、8…電解質層、9…正電極端子、10…シール部。   (I) ... positive electrode, (II) ... negative electrode, 1 ... positive electrode lead plate, 2 ... positive electrode current collector, 3 ... positive electrode mixture, 4 ... negative electrode terminal, 5 ... negative electrode lead plate, 6 ... negative electrode current collector , 7 ... Negative electrode mixture, 8 ... Electrolyte layer, 9 ... Positive electrode terminal, 10 ... Seal part.

Claims (13)

硫化物系リチウムイオン伝導性固体電解質を含み、
前記硫化物系リチウムイオン伝導性固体電解質は、α−アルミナを含むことを特徴とする硫化物系リチウムイオン伝導性固体電解質ガラス。
Including sulfide-based lithium ion conductive solid electrolyte,
The sulfide-based lithium ion conductive solid electrolyte glass, wherein the sulfide-based lithium ion conductive solid electrolyte contains α-alumina.
前記硫化物系リチウムイオン伝導性固体電解質が、硫化リチウム−硫化燐、または、硫化リチウム−硫化ホウ酸、を含むことを特徴とする請求項1に記載の硫化物系リチウムイオン伝導性固体電解質ガラス。   The sulfide-based lithium ion conductive solid electrolyte glass according to claim 1, wherein the sulfide-based lithium ion conductive solid electrolyte contains lithium sulfide-phosphorus sulfide or lithium sulfide-sulfuric boric acid. . 固定電解質として、硫化物系リチウムイオン伝導性固体電解質ガラスを有し、
前記硫化物系リチウムイオン伝導性固体電解質ガラスは、α−アルミナを含むことを特徴とする全固体リチウム二次電池。
As a fixed electrolyte, it has sulfide-based lithium ion conductive solid electrolyte glass,
The all-solid-state lithium secondary battery, wherein the sulfide-based lithium ion conductive solid electrolyte glass contains α-alumina.
前記硫化物系リチウムイオン伝導性固体電解質ガラスが、硫化リチウム−硫化燐、または、硫化リチウム−硫化ホウ酸、を含むことを特徴とする請求項3に記載の全固体リチウム二次電池。   The all-solid-state lithium secondary battery according to claim 3, wherein the sulfide-based lithium ion conductive solid electrolyte glass contains lithium sulfide-phosphorus sulfide or lithium sulfide-sulfur boric acid. 正極層および負極層からなる一対の電極間に前記固体電解質層を介在させた全固体リチウム二次電池素子を用いたことを特徴とする請求項3または請求項4に記載の全固体リチウム二次電池。   The all-solid lithium secondary battery element according to claim 3 or 4, wherein the all-solid lithium secondary battery element in which the solid electrolyte layer is interposed between a pair of electrodes composed of a positive electrode layer and a negative electrode layer is used. battery. 前記全固体リチウム二次電子素子は、前記正極層または前記負極層のいずれかと、前記固体電解質層とが、一体化成型されたものであることを特徴とする請求項5に記載の全固体リチウム二次電池。   6. The all solid lithium secondary electronic device according to claim 5, wherein either the positive electrode layer or the negative electrode layer and the solid electrolyte layer are integrally molded. Secondary battery. α−アルミナを含む、硫化物系リチウムイオン伝導性固体電解質の混合物を加熱溶融する第1の工程と、
加熱溶融した前記混合物を急冷する第2の工程と、
を有する硫化物系リチウムイオン伝導性固体電解質ガラスの製造工程を含むことを特徴とする全固体リチウム二次電池の製造方法。
a first step of heating and melting a mixture of sulfide-based lithium ion conductive solid electrolyte containing α-alumina;
A second step of quenching the heated and melted mixture;
The manufacturing method of the all-solid-state lithium secondary battery characterized by including the manufacturing process of the sulfide type lithium ion conductive solid electrolyte glass which has this.
正極層および負極層からなる一対の電極の間に、前記硫化物系リチウムイオン伝導性固体電解質ガラスから生成した電解質ガラス粉末からなる層と、正極層または負極層のいずれかと、を、加熱、圧縮することにより、電極層と電解質層とを一体化した全固体リチウム二次電池素子を形成する第3の工程を含むことを特徴とする請求項7に記載の全固体リチウム二次電池の製造方法。   Between a pair of electrodes consisting of a positive electrode layer and a negative electrode layer, a layer made of the electrolyte glass powder produced from the sulfide-based lithium ion conductive solid electrolyte glass and either the positive electrode layer or the negative electrode layer are heated and compressed. The manufacturing method of the all-solid-state lithium secondary battery of Claim 7 including the 3rd process of forming the all-solid-state lithium secondary battery element which integrated the electrode layer and the electrolyte layer by doing . 前記加熱を行う温度条件は、前記硫化物系リチウムイオン伝導性固体電解質ガラスのガラス軟化温度領域の範囲内であり、
前記加熱を行う時間は、前記硫化物系リチウムイオン伝導性固定電解質ガラスの結晶化が進行しない時間範囲で行うことを特徴とする請求項8に記載の全固体リチウム二次電池の製造方法。
The temperature condition for the heating is within the range of the glass softening temperature region of the sulfide-based lithium ion conductive solid electrolyte glass,
The method for producing an all-solid lithium secondary battery according to claim 8, wherein the heating is performed in a time range in which crystallization of the sulfide-based lithium ion conductive fixed electrolyte glass does not proceed.
前記ガラス軟化温度領域は200℃〜300℃であり、
前記結晶化が進行しない時間範囲は、5時間以内であることを特徴とする請求項9に記載の全固体リチウム二次電池の製造方法。
The glass softening temperature region is 200 ° C to 300 ° C,
The method for producing an all-solid-state lithium secondary battery according to claim 9, wherein the time range in which the crystallization does not proceed is within 5 hours.
前記全固体リチウム二次電池素子の少なくとも一部を、軟化温度が350℃以下の低融点ガラスにより封止する第4の工程を備えることを特徴とする請求項8乃至10のいずれか一項に記載の全固体リチウム二次電池の製造方法。   11. The method according to claim 8, further comprising a fourth step of sealing at least a part of the all solid lithium secondary battery element with a low-melting glass having a softening temperature of 350 ° C. or lower. The manufacturing method of the all-solid-state lithium secondary battery of description. 前記低融点ガラスは、V25,ZnO,BaOおよびTeO2の4成分からなるガラスであることを特徴とする請求項11に記載の全固体リチウム二次電池の製造方法。 The method for producing an all-solid-state lithium secondary battery according to claim 11, wherein the low-melting glass is a glass composed of four components of V 2 O 5 , ZnO, BaO and TeO 2 . 前記第1の工程、前記第2の工程、前記第3の工程および前記第4の工程が、乾燥した不活性ガス雰囲気中で連続処理されることを特徴とする請求項11または請求項12に記載の全固体リチウム二次電池の製造方法。   The said 1st process, the said 2nd process, the said 3rd process, and the said 4th process are continuously processed in the dry inert gas atmosphere, The Claim 11 or Claim 12 characterized by the above-mentioned. The manufacturing method of the all-solid-state lithium secondary battery of description.
JP2008270610A 2007-12-03 2008-10-21 Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery Active JP5277859B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008270610A JP5277859B2 (en) 2007-12-03 2008-10-21 Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery
US12/327,343 US8778543B2 (en) 2007-12-03 2008-12-03 Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method for manufacturing all-solid lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007312070 2007-12-03
JP2007312070 2007-12-03
JP2008270610A JP5277859B2 (en) 2007-12-03 2008-10-21 Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery

Publications (3)

Publication Number Publication Date
JP2009158476A true JP2009158476A (en) 2009-07-16
JP2009158476A5 JP2009158476A5 (en) 2011-10-20
JP5277859B2 JP5277859B2 (en) 2013-08-28

Family

ID=40924776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270610A Active JP5277859B2 (en) 2007-12-03 2008-10-21 Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery

Country Status (2)

Country Link
JP (1) JP5277859B2 (en)
CN (1) CN101494299A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090003A (en) * 2008-10-09 2010-04-22 Idemitsu Kosan Co Ltd Method of producing sulfide-based solid electrolyte
JP2011142007A (en) * 2010-01-07 2011-07-21 Toyota Motor Corp Method of producing solid electrolyte-electrode assembly
JP2012186135A (en) * 2011-02-18 2012-09-27 Fujitsu Ltd Secondary battery, and method for manufacturing the same
WO2013140565A1 (en) * 2012-03-22 2013-09-26 株式会社 東芝 Electrochemical cell, method for producing electrochemical cell, battery pack, and vehicle
JP2014093260A (en) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd Solid electrolyte compact, process of manufacturing the same, and all solid battery
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP2015111532A (en) * 2013-12-06 2015-06-18 株式会社オハラ All-solid battery
JP2015122177A (en) * 2013-12-21 2015-07-02 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar battery and method for producing the same
JPWO2014073467A1 (en) * 2012-11-07 2016-09-08 株式会社村田製作所 All solid battery
JP2016164888A (en) * 2016-04-26 2016-09-08 株式会社東芝 Bipolar battery, battery pack, and car
US9531036B2 (en) 2013-08-23 2016-12-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type ion conducting oxide, complex, lithium secondary battery, manufacturing method of garnet-type ion conducting oxide and manufacturing method of complex
KR20170104461A (en) * 2014-12-02 2017-09-15 폴리플러스 배터리 컴퍼니 Vitreous solid electrolyte sheets of li ion conducting sulfur-based glass and associated structures, cells and methods
JP2018170297A (en) * 2018-08-09 2018-11-01 株式会社オハラ All-solid-state battery
CN110391451A (en) * 2018-04-18 2019-10-29 丰田自动车株式会社 All-solid-state battery
US10468724B2 (en) 2015-10-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha All-solid-state battery
US10530015B2 (en) 2011-06-20 2020-01-07 Kabushiki Kaisha Toyota Chuo Kenkyusho All-solid-state lithium secondary battery and method for producing the same
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
WO2020105604A1 (en) * 2018-11-19 2020-05-28 三井金属鉱業株式会社 Solid electrolyte, electrode mix, solid electrolyte layer, and all-solid-state battery
JP2020095952A (en) * 2018-11-30 2020-06-18 パナソニックIpマネジメント株式会社 All-solid battery and manufacturing method thereof
US10707536B2 (en) 2016-05-10 2020-07-07 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
US10833361B2 (en) 2014-12-02 2020-11-10 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
CN117977044A (en) * 2024-04-01 2024-05-03 四川新能源汽车创新中心有限公司 Method for recycling sulfide-based all-solid-state battery material
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
US12034116B2 (en) 2020-08-04 2024-07-09 Polyplus Battery Company Glass solid electrolyte layer, methods of making glass solid electrolyte layer and electrodes and battery cells thereof
US12051824B2 (en) 2020-07-10 2024-07-30 Polyplus Battery Company Methods of making glass constructs

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101227236B1 (en) 2009-11-25 2013-01-28 도요타 지도샤(주) Method for producing electrode laminate and electrode laminate
US8917095B2 (en) * 2009-12-17 2014-12-23 Toyota Jidosha Kabushiki Kaisha Vehicle system and method for detecting hydrogen sulfide
CN103081215B (en) * 2010-09-16 2015-07-22 丰田自动车株式会社 Solid-state battery and regeneration method therefor
US9017582B2 (en) * 2011-05-27 2015-04-28 Chemetall Gmbh Process for preparing lithium sulfide
CN110416478A (en) * 2012-03-01 2019-11-05 约翰逊Ip控股有限责任公司 Solid union barrier film, its manufacturing method and solid state rechargeable lithium battery
US10522873B2 (en) * 2015-12-15 2019-12-31 Sila Nanotechnologies Inc. Solid state electrolytes for safe metal and metal-ion batteries
JP6763965B2 (en) 2015-12-21 2020-09-30 ジョンソン・アイピー・ホールディング・エルエルシー Solid-state batteries, separators, electrodes and manufacturing methods
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
JP6934727B2 (en) * 2017-01-31 2021-09-15 日立造船株式会社 All-solid-state battery and its manufacturing method
WO2018231731A2 (en) * 2017-06-09 2018-12-20 The Regents Of The University Of California Self-forming solid state batteries and self-healing solid electrolytes
JP6799714B2 (en) * 2018-03-30 2020-12-16 富士フイルム株式会社 Manufacturing method of solid electrolyte sheet, negative electrode sheet for all-solid secondary battery and all-solid secondary battery
JP7245437B2 (en) * 2020-03-05 2023-03-24 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676828A (en) * 1992-08-27 1994-03-18 Matsushita Electric Ind Co Ltd Solid electrolyte mold body
JPH06279049A (en) * 1993-03-26 1994-10-04 Matsushita Electric Ind Co Ltd Sulfide-based lithium ion-conductive solid electrolyte and synthesis thereof
JPH06340446A (en) * 1993-05-28 1994-12-13 Matsushita Electric Ind Co Ltd Sulfide based light ion conductive solid electrolyte and synthetic method therefor
JPH08138724A (en) * 1994-11-01 1996-05-31 Matsushita Electric Ind Co Ltd Manufacture of all solid lithium secondary battery
JP2004152659A (en) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd Lithium ion conducting solid electrolyte and all-solid battery using it
JP2004250276A (en) * 2003-02-19 2004-09-09 Yamato Denshi Kk Lead-free low melting point glass for sealing
JP2004265685A (en) * 2003-02-28 2004-09-24 Idemitsu Petrochem Co Ltd Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic
WO2005112180A1 (en) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2008103146A (en) * 2006-10-18 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte and secondary battery using it
WO2009038037A1 (en) * 2007-09-21 2009-03-26 Idemitsu Kosan Co., Ltd. Heat-resistant positive electrode mixture and all-solid-state lithium secondary battery using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217826A (en) * 1990-07-31 1993-06-08 Matsushita Electric Industrial Co., Ltd. Lithium-ion conducting solid electrolyte
BR0315274B1 (en) * 2002-10-15 2012-04-03 electrochemical device component, protective composite battery separator, method for fabricating an electrochemical device component, battery cell, and method for producing the same.
CN100431216C (en) * 2004-05-14 2008-11-05 松下电器产业株式会社 Lithium ion secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676828A (en) * 1992-08-27 1994-03-18 Matsushita Electric Ind Co Ltd Solid electrolyte mold body
JPH06279049A (en) * 1993-03-26 1994-10-04 Matsushita Electric Ind Co Ltd Sulfide-based lithium ion-conductive solid electrolyte and synthesis thereof
JPH06340446A (en) * 1993-05-28 1994-12-13 Matsushita Electric Ind Co Ltd Sulfide based light ion conductive solid electrolyte and synthetic method therefor
JPH08138724A (en) * 1994-11-01 1996-05-31 Matsushita Electric Ind Co Ltd Manufacture of all solid lithium secondary battery
JP2004152659A (en) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd Lithium ion conducting solid electrolyte and all-solid battery using it
JP2004250276A (en) * 2003-02-19 2004-09-09 Yamato Denshi Kk Lead-free low melting point glass for sealing
JP2004265685A (en) * 2003-02-28 2004-09-24 Idemitsu Petrochem Co Ltd Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic
WO2005112180A1 (en) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2008103146A (en) * 2006-10-18 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte and secondary battery using it
WO2009038037A1 (en) * 2007-09-21 2009-03-26 Idemitsu Kosan Co., Ltd. Heat-resistant positive electrode mixture and all-solid-state lithium secondary battery using the same

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090003A (en) * 2008-10-09 2010-04-22 Idemitsu Kosan Co Ltd Method of producing sulfide-based solid electrolyte
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP2011142007A (en) * 2010-01-07 2011-07-21 Toyota Motor Corp Method of producing solid electrolyte-electrode assembly
JP2012186135A (en) * 2011-02-18 2012-09-27 Fujitsu Ltd Secondary battery, and method for manufacturing the same
US10530015B2 (en) 2011-06-20 2020-01-07 Kabushiki Kaisha Toyota Chuo Kenkyusho All-solid-state lithium secondary battery and method for producing the same
US20140193689A1 (en) * 2012-03-22 2014-07-10 Kabushiki Kaisha Toshiba Electrochemical cell, method of producing electrochemical cell, battery pack, and car
JPWO2013140565A1 (en) * 2012-03-22 2015-08-03 株式会社東芝 Electrochemical cell, method for producing electrochemical cell, battery pack and vehicle
WO2013140565A1 (en) * 2012-03-22 2013-09-26 株式会社 東芝 Electrochemical cell, method for producing electrochemical cell, battery pack, and vehicle
JP2014093260A (en) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd Solid electrolyte compact, process of manufacturing the same, and all solid battery
JPWO2014073467A1 (en) * 2012-11-07 2016-09-08 株式会社村田製作所 All solid battery
US9531036B2 (en) 2013-08-23 2016-12-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type ion conducting oxide, complex, lithium secondary battery, manufacturing method of garnet-type ion conducting oxide and manufacturing method of complex
JP2015111532A (en) * 2013-12-06 2015-06-18 株式会社オハラ All-solid battery
JP2015122177A (en) * 2013-12-21 2015-07-02 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar battery and method for producing the same
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
JP2017538266A (en) * 2014-12-02 2017-12-21 ポリプラス バッテリー カンパニーPolyPlus Battery Company Lithium ion conductive sulfur-based glassy solid electrolyte sheet, and related structures, batteries, and methods
KR20170104461A (en) * 2014-12-02 2017-09-15 폴리플러스 배터리 컴퍼니 Vitreous solid electrolyte sheets of li ion conducting sulfur-based glass and associated structures, cells and methods
US10833361B2 (en) 2014-12-02 2020-11-10 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
US10840546B2 (en) 2014-12-02 2020-11-17 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US11646444B2 (en) 2014-12-02 2023-05-09 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US11646445B2 (en) 2014-12-02 2023-05-09 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
KR102515808B1 (en) * 2014-12-02 2023-03-29 폴리플러스 배터리 컴퍼니 Vitreous solid electrolyte sheets of li ion conducting sulfur-based glass and associated structures, cells and methods
US10468724B2 (en) 2015-10-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha All-solid-state battery
JP2016164888A (en) * 2016-04-26 2016-09-08 株式会社東芝 Bipolar battery, battery pack, and car
US10707536B2 (en) 2016-05-10 2020-07-07 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
US11171364B2 (en) 2016-05-10 2021-11-09 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
US10840547B2 (en) 2017-07-07 2020-11-17 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US11239495B2 (en) 2017-07-07 2022-02-01 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US11444270B2 (en) 2017-07-07 2022-09-13 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US11817569B2 (en) 2017-07-07 2023-11-14 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
CN110391451B (en) * 2018-04-18 2022-12-20 丰田自动车株式会社 All-solid-state battery
CN110391451A (en) * 2018-04-18 2019-10-29 丰田自动车株式会社 All-solid-state battery
JP2018170297A (en) * 2018-08-09 2018-11-01 株式会社オハラ All-solid-state battery
JP6709886B1 (en) * 2018-11-19 2020-06-17 三井金属鉱業株式会社 Sulfide solid electrolyte
WO2020105604A1 (en) * 2018-11-19 2020-05-28 三井金属鉱業株式会社 Solid electrolyte, electrode mix, solid electrolyte layer, and all-solid-state battery
JP2020095952A (en) * 2018-11-30 2020-06-18 パナソニックIpマネジメント株式会社 All-solid battery and manufacturing method thereof
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US11876174B2 (en) 2020-01-15 2024-01-16 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US12051824B2 (en) 2020-07-10 2024-07-30 Polyplus Battery Company Methods of making glass constructs
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
US12034116B2 (en) 2020-08-04 2024-07-09 Polyplus Battery Company Glass solid electrolyte layer, methods of making glass solid electrolyte layer and electrodes and battery cells thereof
CN117977044A (en) * 2024-04-01 2024-05-03 四川新能源汽车创新中心有限公司 Method for recycling sulfide-based all-solid-state battery material

Also Published As

Publication number Publication date
JP5277859B2 (en) 2013-08-28
CN101494299A (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP5277859B2 (en) Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery
US8778543B2 (en) Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method for manufacturing all-solid lithium secondary battery
JP4478706B2 (en) Lithium ion conductive solid electrolyte and all solid lithium secondary battery using the same
JP4741559B2 (en) Secondary battery and secondary battery unit
US9257718B2 (en) Secondary battery
JP4612664B2 (en) All-solid secondary battery, method for producing all-solid secondary battery
JP4516588B2 (en) All-solid lithium secondary battery and method for producing all-solid lithium secondary battery
AU2008235900B2 (en) Mixed material layer, method for production of the mixed material layer, solid battery, and method for production of the solid battery
US8870976B2 (en) Method for manufacturing a secondary battery
US20100040952A1 (en) Solid state battery and method of producing the same
US9190659B2 (en) Secondary battery and a method for manufacturing the secondary battery
US20140377627A1 (en) Secondary battery, manufacturing method of secondary battery, electrode for secondary battery, and electronic device
JP2009054484A (en) All solid lithium secondary battery and its manufacturing method
JP2009093968A (en) Whole-solid lithium secondary battery
JP7129144B2 (en) All-solid-state battery and manufacturing method thereof
JP2012221749A (en) Nonaqueous electrolyte battery
CN109565028A (en) The manufacturing method and electrochemical cell of electrochemical cell with lithium electrode
JP2012160379A (en) Nonaqueous electrolyte battery and method for manufacturing the same
JP6748909B2 (en) All solid state battery
US11817549B2 (en) All-solid-state battery and method for manufacturing same
JP2013093241A (en) Nonaqueous electrolyte battery and method for manufacturing nonaqueous electrolyte battery
WO2020085015A1 (en) Electrode and solid-state lithium ion secondary battery
JP2021150063A (en) Composite positive electrode for all-solid-state battery, all-solid-state battery, and manufacturing method of composite positive electrode for all-solid-state battery
CN117501508A (en) Battery cell
JP2020068181A (en) Positive electrode and solid-state lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5277859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350