JPH0740433B2 - Semiconductor memory cell - Google Patents

Semiconductor memory cell

Info

Publication number
JPH0740433B2
JPH0740433B2 JP9019283A JP9019283A JPH0740433B2 JP H0740433 B2 JPH0740433 B2 JP H0740433B2 JP 9019283 A JP9019283 A JP 9019283A JP 9019283 A JP9019283 A JP 9019283A JP H0740433 B2 JPH0740433 B2 JP H0740433B2
Authority
JP
Japan
Prior art keywords
potential
electrode
memory cell
fet
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9019283A
Other languages
Japanese (ja)
Other versions
JPS59217292A (en
Inventor
和夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9019283A priority Critical patent/JPH0740433B2/en
Publication of JPS59217292A publication Critical patent/JPS59217292A/en
Publication of JPH0740433B2 publication Critical patent/JPH0740433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Description

【発明の詳細な説明】 本発明は小型化してもアルファ粒子などの放射性粒子に
よって引き起こされるソフトエラーの発生が少ないスタ
ティック型半導体メモリセルに関するものである。
The present invention relates to a static semiconductor memory cell in which soft errors caused by radioactive particles such as alpha particles are less likely to occur even when miniaturized.

アルファ粒子などの放射性粒子が半導体内に入射する
と、半導体内部には多量の電荷が生成される。これらの
電荷が半導体メモリセル内部の電極に流入すると、その
電極の電位を変化させ、その結果ソフトエラーを起す。
半導体メモリセル内の電極が取り扱う電荷量が大きい時
は、このような内部生成電荷の流入の影響は小さく、こ
のメモリセルがソフトエラーを起すことは少ない。しか
し半導体メモリセルが小型化されると、メモリセル内電
極の取り扱う電荷量が減少するため、ソフトエラーの問
題が重大となる。
When radioactive particles such as alpha particles enter a semiconductor, a large amount of charges are generated inside the semiconductor. When these charges flow into the electrode inside the semiconductor memory cell, the potential of the electrode is changed, resulting in a soft error.
When the amount of charges handled by the electrodes in the semiconductor memory cell is large, the influence of such inflow of internally generated charges is small, and this memory cell rarely causes a soft error. However, when the semiconductor memory cell is miniaturized, the amount of charge handled by the electrodes in the memory cell is reduced, and the problem of soft error becomes serious.

従来の半導体メモリセルでは、メモリセル内電極の構造
を改良し、放射性粒子によって生成される電荷のこの電
極への流入を少なくすること、この電極の取り扱う電荷
量を流入電荷量以上に保つことによってソフトエラーを
防いでいた。しかしメモリセル内電極へ流入する電荷量
を減らすことには限界があるため、その電極で取り扱う
電荷量をある値以上に保たなければならない。そのため
従来の半導体メモリセルではその大きさも、その消費電
力もある値以上に保たなければならなかった。このこと
は、この半導体メモリセルの小型化およびこの半導体メ
モリセルを使ったメモリ装置の集積化にとって大きな障
害となっていた。
In the conventional semiconductor memory cell, by improving the structure of the electrode inside the memory cell to reduce the inflow of charges generated by radioactive particles into this electrode, and to keep the amount of charge handled by this electrode above the amount of inflow charges. It was preventing soft errors. However, since there is a limit to reducing the amount of charge flowing into the electrode in the memory cell, it is necessary to keep the amount of charge handled by the electrode above a certain value. Therefore, in the conventional semiconductor memory cell, its size and its power consumption have to be kept above a certain value. This has been a major obstacle to miniaturization of this semiconductor memory cell and integration of a memory device using this semiconductor memory cell.

本発明の目的はアルファ粒子などの放射性粒子によって
引き起されるソフトエラーの発生が極めて少なく、ソフ
トエラー対策のために小型化,集積化が制限されること
の少ない半導体メモリセルを提供することである。
An object of the present invention is to provide a semiconductor memory cell in which generation of soft error caused by radioactive particles such as alpha particles is extremely small, and miniaturization and integration are not limited as a countermeasure for soft error. is there.

本発明による半導体メモリセルは、第1通電電極,第2
通電電極,ゲート電極を有する第1導電型の第1FETと、
第1FETの第1通電電極に接続された第1通電電極,第1F
ETのゲート電極に接続された第2通電電極,第1FETの第
2通電電極に接続されたゲート電極を有する第1導電型
の第2FETと、第1通電電極,第2通電電極,ゲート電極
を有する第2導電型の第3FETと、第3FETの第1通電電極
に接続された第1通電電極,第3FETのゲート電極に接続
された第2通電電極,第3FETの第2通電電極に接続され
たゲート電極を有する第2導電型の第4FETと、第1FETの
第2通電電極と第3FETの第2通電電極の間に接続された
第1ダイオードと、第2FETの第2通電電極と第4FETの第
2通電電極の間に接続された第2ダイオードと、を備え
たことを特徴とする。
The semiconductor memory cell according to the present invention includes a first conducting electrode, a second
A first FET of a first conductivity type having a current-carrying electrode and a gate electrode;
The first conducting electrode connected to the first conducting electrode of the first FET, the first F
A first conductive type second FET having a second conducting electrode connected to the ET gate electrode and a gate electrode connected to the second conducting electrode of the first FET; a first conducting electrode, a second conducting electrode, and a gate electrode. A second FET of the second conductivity type, a first current-carrying electrode connected to the first current-carrying electrode of the third FET, a second current-carrying electrode connected to the gate electrode of the third FET, and a second current-carrying electrode of the third FET. Second conductive type fourth FET having a gate electrode, a first diode connected between the second conducting electrode of the first FET and the second conducting electrode of the third FET, the second conducting electrode of the second FET and the fourth FET And a second diode connected between the second current-carrying electrodes.

次に図を参照しながら、本発明の半導体メモリセルの動
作原理および効果を説明する。
Next, the operating principle and effect of the semiconductor memory cell of the present invention will be described with reference to the drawings.

第1図は本発明のメモリセルをMOSFETとシリコン接合ダ
イオードを用いて構成した一例を示している。この図の
101,102はP型チャネルMOSFET103,104はN型チャネルMO
SFET、105,106は順方向に接続されたシリコン接合ダイ
オード、107,108は選択ゲートとして使用されるN型チ
ャネルMOSFET、109,110は電源線、111,112はワード線、
113,114はビット線をそれぞれ示す。
FIG. 1 shows an example in which the memory cell of the present invention is constructed by using a MOSFET and a silicon junction diode. In this figure
101 and 102 are P-type channel MOSFETs 103 and 104 are N-type channel MO.
SFETs, 105 and 106 are silicon junction diodes connected in the forward direction, 107 and 108 are N-type channel MOSFETs used as select gates, 109 and 110 are power supply lines, 111 and 112 are word lines,
Reference numerals 113 and 114 denote bit lines, respectively.

この図の例ではN型チャネルMOSFET103,104,107,108の
閾値電圧は1V、P型チャネルMOSFET101,102の閾値電圧
は−1Vで、これらのMOSFETはゲートにこの閾値電圧が印
加されたときμAオーダのチャネル電流を流せるものと
仮定する。さらに電源線109,110にはそれぞれ5V,0Vの一
定電位が供給されており、シリコン接合ダイオード105,
106は第2図に示されるような順方向電流−電圧特性を
もつものと仮定する。
In the example of this figure, the threshold voltage of the N-type channel MOSFETs 103, 104, 107 and 108 is 1V, and the threshold voltage of the P-type channel MOSFETs 101 and 102 is -1V. Is assumed to be able to flow. Further, a constant potential of 5 V and 0 V is supplied to the power supply lines 109 and 110, respectively, and the silicon junction diode 105,
106 is assumed to have a forward current-voltage characteristic as shown in FIG.

今、このセルに書き込みを行うときのことを考える。N
型チャネルMOSFET107,108はオフ状態で節点N2の電位と
節点N4の電位がそれぞれ5V,4.4Vの場合を考える。この
ときN型チャネルMOSFET103はオン,P型チャネルMOSFET1
01はオフ状態にある。そのため節点N3の電位は速やかに
0Vとなり、節点N1の電位は、はじめ1V以上あれば、ダイ
オードを流れる電流により徐々に下がり、例えば節点N
1,N2,N3,N4の容量が10-14F程度と仮定すると10ナノ秒オ
ーダの後には0.6Vぐらいになる。この0.6Vというのは第
2図に示されるダイオード電流が1μAオーダになると
きの印加電圧に相当する。その後、時間の経過とともに
ダイオード電流により徐々に節点N1の電位は下がり、例
えば10マイクロ秒オーダの後には約0.4Vとなる。一方、
節点N1の電位と節点N3の電位がそれぞれ0.6V以下,0Vで
あるため、P型チャネルMOSFET102はオン、N型チャネ
ルMOSFET104はオフ状態にある。そのため、節点N2の電
位は5Vが保持され、節点N4の電位はダイオード106を流
れる電流により徐徐に上昇し、10ナノ秒オーダ後には約
4.4V、10マイクロ秒オーダ後には4.6Vぐらい上昇する。
Now, consider writing to this cell. N
Consider a case where the potentials of the node N2 and the node N4 are 5V and 4.4V, respectively, in the off state of the type channel MOSFETs 107 and 108. At this time, the N-type channel MOSFET 103 turns on and the P-type channel MOSFET 1
01 is off. Therefore, the potential of node N3 quickly
The potential at node N1 becomes 0 V, and if the potential at node N1 is 1 V or higher at the beginning, it gradually decreases due to the current flowing through the diode.
Assuming that the capacitance of 1, N2, N3, N4 is about 10 -14 F, it will be about 0.6 V after 10 nanosecond order. This 0.6 V corresponds to the applied voltage when the diode current shown in FIG. 2 is on the order of 1 μA. After that, the potential of the node N1 gradually decreases due to the diode current with the passage of time, and becomes about 0.4 V after, for example, 10 microseconds. on the other hand,
Since the potential of the node N1 and the potential of the node N3 are 0.6 V or less and 0 V, respectively, the P-type channel MOSFET 102 is on and the N-type channel MOSFET 104 is off. Therefore, the potential of the node N2 is maintained at 5V, the potential of the node N4 gradually rises due to the current flowing through the diode 106, and is about 10 nanoseconds later.
4.4V, rises about 4.6V after 10 microsecond order.

このようにして節点N2,N4が高電位、節点N1,N3が低電位
の状態は安定であり、いつまでも保持される。また、本
メモリセルが対称であることから容易にわかるように、
節点N1,N3が高電位で節点N2,N4が低電位という逆の状態
も同様に安定である。本メモリセルはこの2つの安定状
態を2進情報に対応させてメモリセルとして機能する。
In this way, the state in which the nodes N2 and N4 are at high potential and the nodes N1 and N3 are at low potential is stable and held forever. Also, as this memory cell is symmetrical, it is easy to see that
The opposite situation where nodes N1 and N3 are at high potential and nodes N2 and N4 are at low potential is also stable. The present memory cell functions as a memory cell by relating these two stable states to binary information.

書き込み,読み出し動作はワード線111,112を高電位に
し、N型チャネルMOSFET107,108をオン状態にし、ビッ
ト線113,114を通して行われる。
Writing and reading operations are performed through the bit lines 113 and 114 with the word lines 111 and 112 set to a high potential and the N-type channel MOSFETs 107 and 108 turned on.

アルファ粒子等の放射性粒子の入射によって半導体内に
生成された電荷が、この半導体内部の電極に流入する
と、該電極の電位は、該電極とその周囲の半導体との間
の電位差を減らす方向に変化する。よって、もともと半
導体内部電極とその周囲半導体とが同電位の場合には該
電極電位はアルファ粒子等の影響を受けない。
When the charge generated in the semiconductor by the incidence of radioactive particles such as alpha particles flows into the electrode inside the semiconductor, the electric potential of the electrode changes so as to reduce the potential difference between the electrode and the surrounding semiconductor. To do. Therefore, when the semiconductor internal electrode and the surrounding semiconductor are originally at the same potential, the electrode potential is not affected by alpha particles or the like.

第1図のメモリセルの例では、節点N1,N2を構成する半
導体領域をP型半導体に限り、それに隣接する半導体領
域を5Vの電位に保たれたN型半導体に限ることができ
る。なぜなら節点N1、N2はP型チャネルMOSFET101、102
のドレイン領域とダイオード105、106のP側領域に接続
されているが、これらの領域は通常P型半導体であり、
さらに、同じ半導体基板上に導電型の違うMOSFETを形成
しているので、これらの領域は5V電位の供給されたNウ
ェルと呼ばれるN型半導体内に形成されるからである。
同様に節点N3,N4を構成する半導体領域をN型半導体に
限り、それに隣接する半導体領域を0Vの電位に保たれた
P型半導体に限ることができる。
In the example of the memory cell of FIG. 1, the semiconductor regions forming the nodes N1 and N2 can be limited to the P-type semiconductor, and the semiconductor regions adjacent to the nodes can be limited to the N-type semiconductor kept at the potential of 5V. Because nodes N1 and N2 are P-type channel MOSFETs 101 and 102.
Connected to the drain region of the diode and the P-side regions of the diodes 105 and 106. These regions are usually P-type semiconductors,
Further, since MOSFETs having different conductivity types are formed on the same semiconductor substrate, these regions are formed in an N-type semiconductor called an N well to which a 5V potential is supplied.
Similarly, the semiconductor regions forming the nodes N3 and N4 can be limited to N-type semiconductors, and the semiconductor regions adjacent thereto can be limited to P-type semiconductors maintained at the potential of 0V.

節点N2,N4が高電位,節点N1,N3が低電位にある状態でα
粒子等の放射性粒子が入射した場合を考える。節点N2,N
3の電位は周囲の半導体領域と同電位であるから、上記
の理由により、ここにα粒子が入射しても本メモリセル
の状態が壊されることはない。尚、α粒子の入射が2つ
以上の節点に同時に影響を及ぼす可能性は極めて低いた
め、ここでは考えないことにする。
Α when the nodes N2 and N4 are at high potential and the nodes N1 and N3 are at low potential
Consider a case where radioactive particles such as particles are incident. Node N2, N
Since the potential of 3 is the same as that of the surrounding semiconductor region, the state of the present memory cell is not destroyed even if the α-particles enter here because of the above reason. Incidentally, since it is extremely unlikely that the incidence of α particles affects two or more nodes at the same time, it will not be considered here.

次に、この状態で、α粒子等が節点N1に入射した場合を
考える。この場合、節点N1を構成するP型半導体領域に
はα粒子等によって生成された正孔が流入し、その電位
は周囲のN型領域の電位と同じ5Vまで急激に上昇する。
このようにP型領域が5Vになると、P型領域付近のポテ
ンシャルが一定になるため、この正孔の流入は止まる。
Next, in this state, consider the case where an α particle or the like is incident on the node N1. In this case, holes generated by α particles or the like flow into the P-type semiconductor region forming the node N1, and the potential thereof sharply rises to 5V, which is the same as the potential of the surrounding N-type region.
In this way, when the P-type region becomes 5 V, the potential near the P-type region becomes constant, so that the inflow of holes is stopped.

そのため、節点N1に流入するα粒子等によって生成され
た正孔の流れは、はじめの数ナノ秒は大きいものの、そ
の後は小さくなり、一般に本メモリセルを構成するMOSF
ETのオン電流に比べると無視できるようになってしま
う。
Therefore, the flow of holes generated by α-particles etc. flowing into the node N1 is large for the first few nanoseconds but becomes smaller thereafter, and in general, the MOSF composing this memory cell is
It becomes negligible compared to the on-current of ET.

このようにして節点N1の電位が5Vになるとダイオード10
5を通して電流が流れ、節点N3の電位は1ナノ秒オーダ
の後には4.4Vぐらいまで上昇する。一方、α粒子等の入
射が、本メモリセルへの書き込み動作が行われてから、
10マイクロ秒オーダ以上経った時に生じたと仮定する
と、節点N4の電位は4.6V以上になっている。上で述べた
ように、α粒子等が入射して数ナノ秒経過した後ではα
粒子等による生成電流はほとんど無視できることから、
それ以後は、ダイオード105を流れ、節点N3の電位を引
上げる電流は考えなくてもよい。そうすると、数ナノ秒
には、節点N3、N4の電位はそれぞれ4.4V、4.6V以上にな
り、僅かであるがN3、N4の間に電位差(0.2V以上)が残
り、これはその後MOSFET103、104で構成される差動増幅
器によって増幅される。すなわち、節点N3の電位は節点
N4よりも低いため下がり0Vとなり、節点N4の電位は節点
N3そしてN1の電位低下によってMOSFET102がオンするた
め、高電位に引き上げられる。
In this way, when the potential of the node N1 becomes 5V, the diode 10
A current flows through 5, and the potential of the node N3 rises to about 4.4V after 1 nanosecond order. On the other hand, the incidence of α particles and the like, after the writing operation to the memory cell is performed,
Assuming that this occurred when the order of 10 microseconds or more had passed, the potential of the node N4 was 4.6V or more. As mentioned above, after a few nanoseconds have passed since the α particles etc. are incident,
Since the current generated by particles etc. can be almost ignored,
After that, it is not necessary to consider the current that flows through the diode 105 and raises the potential of the node N3. Then, in a few nanoseconds, the potentials of the nodes N3 and N4 are 4.4 V and 4.6 V or higher, respectively, and a slight potential difference (0.2 V or higher) remains between the N3 and N4, which are subsequently MOSFETs 103 and 104. It is amplified by the differential amplifier composed of. That is, the potential of node N3 is
Since it is lower than N4, it drops to 0 V, and the potential of node N4 is the node
Since the MOSFET 102 is turned on by the decrease in the potentials of N3 and N1, the potential is pulled up to a high potential.

このようにして節点N1にα粒子等の放射性粒子が入射し
ても、本メモリセルの状態が壊されることはない。この
ことは節点N4にα粒子等が入射した場合にも、本メモリ
セルがもう一方の状態すなわち節点N1,N3が高電位で節
点N2,N4が低電位の状態の場合にも全く同様に成立す
る。以下N4にα線が入射した場合を説明する。前述の実
施例と同じく電源電圧を5Vとし、ノードN1,N2の電圧が
それぞれ0.4、5V、N3,N4がそれぞれ0、4.6Vで安定状態
であるとする。この状態でα線がN4に入射したとする
と、電子が周囲から流入し電位はN4の周囲を囲むp型領
域の0Vと同じ電位まで下降する(p型領域は0Vに接続さ
れている)。要するに情報が破壊される。α線によって
電流が流れる時間は数ナノ秒なので、この数ナノ秒の間
にダイオード106を通して電流が流れN2が0.6V程度まで
下降する。一方N1は0.4Vなので、N2との間に電位差が0.
2V残っている。N3,N4の方は情報が破壊されているが、N
1,N2の間に情報が残っている。それがトランジスタ10
1、102で増幅され元に戻る。つまりN2の電位がN1より高
いので102がON,101がOFFになっていき元の状態に戻る。
そのため本メモリセルはα粒子等の入射によって記憶状
態が壊されることの少ないメモリセルである。
In this way, even if radioactive particles such as α particles enter the node N1, the state of the memory cell is not destroyed. This is true even when α particles enter the node N4 when the memory cell is in the other state, that is, when the nodes N1 and N3 are at high potential and the nodes N2 and N4 are at low potential. To do. The case where α rays are incident on N4 will be described below. It is assumed that the power supply voltage is 5V, the voltages of the nodes N1 and N2 are 0.4 and 5V, and that the voltages of N3 and N4 are 0 and 4.6V, respectively, as in the above-mentioned embodiment, which is a stable state. If α rays enter N4 in this state, electrons flow in from the surroundings and the potential drops to the same potential as 0V of the p-type region surrounding N4 (the p-type region is connected to 0V). In short, information is destroyed. Since the time for the current to flow by the α-ray is several nanoseconds, the current flows through the diode 106 during this several nanoseconds, and N2 drops to about 0.6V. On the other hand, N1 is 0.4V, so the potential difference with N2 is 0.
2V remains. Information is destroyed in N3 and N4, but N
Information remains between 1 and N2. It's a transistor 10
It is amplified by 1 and 102 and returns to the original state. That is, since the potential of N2 is higher than N1, 102 is turned on and 101 is turned off, and the original state is restored.
Therefore, the present memory cell is a memory cell whose storage state is less likely to be destroyed by the incidence of α particles or the like.

本メモリセルの動作を説明するため、第1図の実施例で
はダイオードとしてシリコン接合ダイオードを用いた
が、本発明はこれに限る必要はない。
In order to explain the operation of this memory cell, a silicon junction diode is used as the diode in the embodiment of FIG. 1, but the present invention is not limited to this.

第2図にその特性を示すように、電流−電圧特性が指数
関数的なものであれば他のダイオードであっても構わな
い。例えばカリウム砒素接合ダイオードでも構わない
し、2つ以上のシリコン接合ダイオードを並列または直
列につないだものでも構わないし、第3図にその実施例
を示すようにMOSFETの一方の通電電極とゲート電極を併
合させたダイオードでも構わない。
Other diodes may be used as long as their current-voltage characteristics are exponential, as shown in FIG. For example, a potassium arsenic junction diode may be used, or two or more silicon junction diodes may be connected in parallel or in series. As shown in the embodiment of FIG. It may be a diode.

第3図は本発明のメモリセルの他の実施例を示してい
る。第1図のシリコン接合ダイオード105,106の代り
に、一方の通電電極とゲート電極を併合したN型チャネ
ルMOSFETで構成したダイオードが使われている他は第1
図の実施例と同じである。各部を示す番号の1桁目と2
桁目は第1図のそれと対応している。この実施例ではダ
イオードの電流−電圧特性をMOSFETの閾値電圧やゲイン
定数を変えることにより、自由に変えられる特徴があ
る。
FIG. 3 shows another embodiment of the memory cell of the present invention. Instead of the silicon junction diodes 105 and 106 of FIG. 1, a diode composed of an N-type channel MOSFET in which one current-carrying electrode and gate electrode are combined is used.
This is the same as the illustrated embodiment. First digit and 2 of the number indicating each part
The digit corresponds to that in FIG. This embodiment is characterized in that the current-voltage characteristic of the diode can be freely changed by changing the threshold voltage and the gain constant of the MOSFET.

本発明のメモリセルの動作の説明において、書き込み動
作後10マイクロ秒オーダ以上経ってからα粒子等が入射
した場合を考えた。しかし本発明のメモリセルの効果は
α粒子等の入射がこれよりも早くてもなくなることはな
い。α粒子等の入射がもっと早い場合、節点N3とN4の電
位差が上記の例の0.2Vよりももっと小さくなるが、その
分上記の差動増幅器の感度が高ければ、記憶状態が壊さ
れないからである。
In the description of the operation of the memory cell of the present invention, it is considered that α particles or the like are incident after a time of 10 microseconds or more has passed after the writing operation. However, the effect of the memory cell of the present invention does not disappear even if the incidence of α particles or the like is earlier than this. If the incidence of α particles etc. is earlier, the potential difference between nodes N3 and N4 will be smaller than 0.2 V in the above example, but if the sensitivity of the above differential amplifier is correspondingly high, the memory state will not be destroyed. is there.

さらにダイオードの特性を変えればα粒子等入射時にお
ける節点N3,N4間の電位差をもっと大きくすることが可
能である。例えば、第1図のダイオード105,106とし
て、第2図の電流−電圧特性をもつシリコン接合ダイオ
ードを2つ直列につないだものを使えば、書き込み後10
マイクロ秒オーダ後にα粒子等が入射した時の接点N3,N
4間の電位差を約0.4Vと倍にすることができる。これは
シリコン接合ダイオードを2つ直列につないだダイオー
ドの電流−電圧特性の傾きが第2図のそれの半分になる
からである。
Furthermore, if the characteristics of the diode are changed, it is possible to further increase the potential difference between the nodes N3 and N4 when an α particle or the like is incident. For example, as the diodes 105 and 106 in FIG. 1, if two silicon junction diodes having the current-voltage characteristics shown in FIG.
Contact points N3, N when α particles etc. are incident after microsecond order
The potential difference between 4 can be doubled to about 0.4V. This is because the slope of the current-voltage characteristic of the diode in which two silicon junction diodes are connected in series is half of that in FIG.

本発明のメモリセルの動作の説明において、節点N1にα
粒子等が入射すると節点N1の電位は周囲のN型半導体領
域と同じ5Vになると述べたが、実際には短い時間ではあ
るが5Vを越える可能性がある。この場合でも、P型チャ
ネルMOSFET101が1μAオーダの電流を流す閾値電圧よ
りもダイオード105が1μAオーダの電流を流す閾値電
圧を低くしておけば問題はない。何故ならば、P型チャ
ネルMOSFET101のゲート電圧は5Vであるから、節点N1の
電位が5VからP型チャネルMOSFET101の閾値電圧を引い
た値以上になると、P型チャネルMOSFET101がオンする
ため、節点N1の電位はこの値以上にならないからであ
る。
In the description of the operation of the memory cell of the present invention, the node N1 is α
It was stated that the potential of the node N1 becomes 5V, which is the same as that of the surrounding N-type semiconductor region, when a particle or the like is incident, but it may exceed 5V in a short time in reality. Even in this case, there is no problem if the threshold voltage at which the diode 105 passes a current of 1 μA order is lower than the threshold voltage at which the P-type channel MOSFET 101 passes a current of 1 μA order. Because the gate voltage of the P-type channel MOSFET 101 is 5V, when the potential of the node N1 becomes 5V or more minus the threshold voltage of the P-type channel MOSFET 101, the P-type channel MOSFET 101 turns on. This is because the potential of does not exceed this value.

上述のごとく、節点N1の電位の最大値は、その周囲にあ
るN型半導体領域の電位ばかりでなくP型チャネルMOSF
ET101の閾値電圧でも決まる。
As described above, the maximum value of the potential of the node N1 is not only the potential of the N-type semiconductor region around it but also the P-type channel MOSF.
It is also determined by the threshold voltage of ET101.

そのため本メモリセルを構成するMOSFETの基板電位は第
1図の例に示したようにP型チャネルMOSFETは5V、N型
チャネルMOSFETは0Vと限定する必要はない。
Therefore, it is not necessary to limit the substrate potential of the MOSFETs constituting this memory cell to 5V for the P-type channel MOSFET and 0V for the N-type channel MOSFET as shown in the example of FIG.

以上本発明の半導体メモリセルの動作を第1図の実施例
を用い、特に節点N1の電位を中心に説明したが、本発明
はこれに限ることはない。
The operation of the semiconductor memory cell according to the present invention has been described above with reference to the embodiment shown in FIG. 1, particularly focusing on the potential at the node N1, but the present invention is not limited to this.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のメモリセルをMOSFETとシリコン接合ダ
イオードを用いて構成した一例を示す回路図。 第2図は第1図で用いたシリコン接合ダイオードの順方
向電流−電圧特性を示す図。 第3図は本発明のメモリセルの他の実施例を示す回路
図。 図において、101,301,102,302……P型チャネルMOSFE
T、103,303,104,304,107,307,108,308……N型チャネル
MOSFET、105,106……シリコン接合ダイオード、305,306
……一方の通電電極とゲート電極を併合して構成したダ
イオード、109,309,110,310……電源線、111,311,112,3
12……ワード線、113,313,114,314……ビット線
FIG. 1 is a circuit diagram showing an example in which a memory cell of the present invention is configured by using a MOSFET and a silicon junction diode. FIG. 2 is a diagram showing the forward current-voltage characteristics of the silicon junction diode used in FIG. FIG. 3 is a circuit diagram showing another embodiment of the memory cell of the present invention. In the figure, 101, 301, 102, 302 ... P-type channel MOSFE
T, 103,303,104,304,107,307,108,308 ... N type channel
MOSFET, 105,106 ... Silicon junction diode, 305,306
...... Diode composed by combining one current-carrying electrode and gate electrode, 109,309,110,310 …… Power supply line, 111,311,112,3
12 …… Word line, 113,313,114,314 …… Bit line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1通電電極,第2通電電極,ゲート電極
を有する第1導電型の第1FETと、第1FETの第1通電電極
に接続された第1通電電極,第1FETのゲート電極に接続
された第2通電電極,第1FETの第2通電電極に接続され
たゲート電極を有する第1導電型の第2FETと、第1通電
電極,第2通電電極,ゲート電極を有する第2導電型の
第3FETと、第3FETの第1通電電極に接続された第1通電
電極,第3FETのゲート電極に接続された第2通電電極,
第3FETの第2通電電極に接続されたゲート電極を有する
第2導電型の第4FETと、第1FETの第2通電電極と第3FET
の第2通電電極の間に接続された第1ダイオードと、第
2FETの第2通電電極と第4FETの第2通電電極の間に接続
された第2ダイオードと、を備えたことを特徴とする半
導体メモリセル。
1. A first FET of a first conductivity type having a first conducting electrode, a second conducting electrode, and a gate electrode, a first conducting electrode connected to the first conducting electrode of the first FET, and a gate electrode of the first FET. A second conductive type having a second conductive electrode connected thereto and a gate electrode connected to the second conductive electrode of the first FET, and a second conductive type having a first conductive electrode, a second conductive electrode and a gate electrode The third FET, the first conducting electrode connected to the first conducting electrode of the third FET, the second conducting electrode connected to the gate electrode of the third FET,
A second conductive type fourth FET having a gate electrode connected to the second conducting electrode of the third FET, a second conducting electrode of the first FET and a third FET
A first diode connected between the second conducting electrodes of
A semiconductor memory cell, comprising: a second conducting electrode of a 2FET and a second diode connected between a second conducting electrode of a fourth FET.
JP9019283A 1983-05-23 1983-05-23 Semiconductor memory cell Expired - Lifetime JPH0740433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9019283A JPH0740433B2 (en) 1983-05-23 1983-05-23 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9019283A JPH0740433B2 (en) 1983-05-23 1983-05-23 Semiconductor memory cell

Publications (2)

Publication Number Publication Date
JPS59217292A JPS59217292A (en) 1984-12-07
JPH0740433B2 true JPH0740433B2 (en) 1995-05-01

Family

ID=13991613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9019283A Expired - Lifetime JPH0740433B2 (en) 1983-05-23 1983-05-23 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPH0740433B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192069A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Insulated gate field effect semiconductor device

Also Published As

Publication number Publication date
JPS59217292A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
US4495693A (en) Method of integrating MOS devices of double and single gate structure
KR0156233B1 (en) Arrangement with self-amplifying dynamic mos transistor storage cells
KR960000964B1 (en) Semiconductor integrated circuit device
US6064590A (en) Non-volatile static random access memory device
US5686752A (en) Semiconductor device having a CMOS element as a buffer
US4653029A (en) MOS amplifier and semiconductor memory using the same
JPH02282995A (en) Semiconductor storage device
JPH02185793A (en) Semiconductor storage device
JPH0152906B2 (en)
JPS5922359A (en) Integrated semiconductor storage device
JPS6058666A (en) Static memory cell
TWI777588B (en) Anti-fuse device and program method of anti-fuse cell
JP2829034B2 (en) Semiconductor circuit
JPH0740433B2 (en) Semiconductor memory cell
JPS60246671A (en) Semiconductor memory cell
JPH065714B2 (en) Semiconductor memory cell
JPS6038864A (en) Semiconductor memory cell
JP2662800B2 (en) Semiconductor storage device
KR100285511B1 (en) Signal Sensing Circuit for Memory Systems Using Dynamic Gain Memory Cells
JPH1092954A (en) Semiconductor storage device
JPH0325946B2 (en)
JPH02355A (en) Semiconductor storage device
JP3263876B2 (en) Semiconductor storage device
JP2823294B2 (en) Gallium arsenide semiconductor memory device
JPH05283610A (en) Semiconductor storage device