JPS6038864A - Semiconductor memory cell - Google Patents

Semiconductor memory cell

Info

Publication number
JPS6038864A
JPS6038864A JP58146925A JP14692583A JPS6038864A JP S6038864 A JPS6038864 A JP S6038864A JP 58146925 A JP58146925 A JP 58146925A JP 14692583 A JP14692583 A JP 14692583A JP S6038864 A JPS6038864 A JP S6038864A
Authority
JP
Japan
Prior art keywords
node
electrode
potential
currents
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58146925A
Other languages
Japanese (ja)
Inventor
Kazuo Terada
寺田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58146925A priority Critical patent/JPS6038864A/en
Publication of JPS6038864A publication Critical patent/JPS6038864A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Abstract

PURPOSE:To reduce the generation of a soft error induced by radioactive particles such as alpha particles extremely by using currents flowing through an MOSFET as ON currents for the MOSFET. CONSTITUTION:Currents flowing through an MOSFET101 are considerably large because they are used as ON currents for the MOSFET. Consequently, generated currents from alpha particles, etc. are brought to the ON currents or higher, potential at a node N1 elevates at considerably fast speed in order to rise up to 1V order, and its speed is at 0.1 nano sec order. As a result, potential at a node N3 does not drop and reach to potential (approximately 0V) or lower at a node N4 during that time. Accordingly, the nodes N1, N3 return to SV and nodes N2, N4 to 0V, and the state before the projection of alpha particles, etc. is kept. Since a time constant T3 as the product of the capacitance of the node N3 and a resistor 105 and a time constant T4 as the product of the capacitance of the node N4 and a resistor 106 are larger than a time constant Talpha until a recovery by ON currents for the MOSFET after potential at the node N1 or N2 is changed by generated currents from alpha particles, etc., the state of a memory cell is kept, and a soft error is prevented.

Description

【発明の詳細な説明】 本発明は小型化してもアルファ粒子などの放射性粒子に
よって引き起きれるソフトエラーの発生が少ないスタテ
ィック型半導体メモリセルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a static semiconductor memory cell in which soft errors caused by radioactive particles such as alpha particles are less likely to occur even when miniaturized.

アルファ粒子などの放射性粒子が半導体内に入射すると
、半導体内部には多−11の電荷が生成される。これら
の電荷が半導体メモリセル内部の電極に流入すると、そ
の電極の電位を変化させ、その結果ソフトエラーを起す
。半導体メモリセル内の電極が取り扱う電荷量が大きい
時は、このような内部生成電荷の流入の影響は小さく、
このメモリセルがソフトエラーを起すことは少ない。し
かし半導体メモリセルが小型化されると、メモリセル内
電極の取り扱う電荷量が減少するため、ソフトエラーの
問題が重大となる。
When a radioactive particle such as an alpha particle enters a semiconductor, multi-11 charges are generated inside the semiconductor. When these charges flow into the electrodes inside the semiconductor memory cell, they change the potential of the electrodes, resulting in soft errors. When the amount of charge handled by the electrodes in a semiconductor memory cell is large, the influence of this inflow of internally generated charges is small;
This memory cell rarely causes soft errors. However, as semiconductor memory cells become smaller, the amount of charge handled by electrodes within the memory cells decreases, so the problem of soft errors becomes more serious.

従来の半導体メモリセルでは、メモリセル内電極の構造
を改良し、放射性粒子によって生成される電荷のこの電
極への流入を少なくするとと、この電極の取り扱う電荷
量を流入電荷量以上に保つことによってソフトエラーを
防いでいた。しかしメモリセル内・−極へ流入する電荷
量を減らすことには限界があるため、その電極で取り扱
う電荷量をある値以上に保たなければならない。そのた
め従来の半導体メモリセルでは、その大きさもその消費
電力もある値以上に保たなければならなかった。このこ
とはこの半導体メモリセルの小型化およびこの半導体メ
モリセルを使ったメモリ装置の集積化にとって大きな障
害となっていた。
In conventional semiconductor memory cells, the structure of the electrode in the memory cell is improved to reduce the inflow of charges generated by radioactive particles into this electrode, by keeping the amount of charge handled by this electrode greater than the amount of inflowing charge. This prevented soft errors. However, there is a limit to reducing the amount of charge flowing into the negative electrode within the memory cell, so the amount of charge handled by that electrode must be kept above a certain value. Therefore, in conventional semiconductor memory cells, both their size and power consumption must be kept above a certain value. This has been a major obstacle to miniaturization of semiconductor memory cells and integration of memory devices using these semiconductor memory cells.

本発明の目的は、アルファ粒子などの放射性粒子によっ
て引き起されるソフトエラーの発生が極めて少なく、ソ
フトエラ一対策のために小型化、集積化が制限されるこ
との少ない半導体メモリセルを提供することである。
An object of the present invention is to provide a semiconductor memory cell in which the occurrence of soft errors caused by radioactive particles such as alpha particles is extremely low, and miniaturization and integration are not limited in order to prevent soft errors. It is.

本発明による半導体メモリセルは、第1通電電極、第2
通電電極、ゲート電極を有する第1導成型の第1FET
と第1FETの第1通世4極に接続された第1通世4極
、第1通電電極、ゲート電極を有する第1導電型の第2
FETと、第1通電電極、第1FETの第2通・ポ電イ
阪に接続された第2通電電極、第lFETのゲート電極
に接続されたゲート′rs、極を有する第2導電型の第
31!” 1.; ’rと第3FETの第1通電電極に
接続された第1通電電極、第2F’BTの第2通1(L
成極に接続された第2通電電極、第2FETのゲート電
極に接続されたゲート電極を有する第2導電製の第4 
、E’ E Tと第1F’ETのゲートに様と第2 F
 E Tの第2通電電極の間に接続された第1抵抗と、
2+’ 2 F L!: Tのゲート電極と第1FET
のホ2通電電イIiの[1■に接続された第2抵抗と、
 を備えたこと を特徴とする。
The semiconductor memory cell according to the present invention includes a first current-carrying electrode, a second current-carrying electrode, and a second current-carrying electrode.
A first FET of a first conductive type having a current-carrying electrode and a gate electrode.
and a second transistor of the first conductivity type, which has a first quadrupole connected to the first quadrupole of the first FET, a first current-carrying electrode, and a gate electrode.
FET, a first current-carrying electrode, a second current-carrying electrode connected to the second conductive electrode of the first FET, a gate 'rs connected to the gate electrode of the first FET, and a second conductive type electrode having a pole. 31! ``1.; 'r and the first current-carrying electrode connected to the first current-carrying electrode of the third FET, the second electrode 1 (L) of the second F'BT
a second current-carrying electrode connected to the polarization, a fourth conductive electrode having a gate electrode connected to the gate electrode of the second FET;
, E' ET and the gate of the 1st F'ET and the 2nd F
a first resistor connected between the second current-carrying electrodes of ET;
2+' 2 F L! : T gate electrode and first FET
A second resistor connected to [1■ of Ii],
It is characterized by having the following.

次に、図を参照しながら本発明の半導体メモリセルの動
作原理および効果を説明する。第1図は本発明のメモリ
セルをtVOS F E Tを用いて構成した一例を示
している。この図の101.1024″l:P型チャネ
ルMO8FET・103.104はN型チャネルMO8
FET105、106は抵抗、107.108は選択ケ
ートとして使用されるN型チャネルへ108F’E’l
’、 109.110は電源線、111.112はワー
ド線、113,114はビット線をそれぞれ示す。この
図の例ではNJMチャネル−MO8FET 103.1
04.107.108 CDH値電圧i’t、 I V
 。
Next, the operating principle and effects of the semiconductor memory cell of the present invention will be explained with reference to the drawings. FIG. 1 shows an example of a memory cell of the present invention constructed using a tVOS FET. In this figure, 101.1024″l: P-type channel MO8FET, 103.104 is N-type channel MO8
FETs 105 and 106 are resistors, and 107 and 108 are connected to N-type channels used as selection gates.
', 109 and 110 are power supply lines, 111 and 112 are word lines, and 113 and 114 are bit lines, respectively. In the example in this figure, the NJM channel - MO8FET 103.1
04.107.108 CDH value voltage i't, I V
.

P型チャネルMO8FET 101.102の閾値電圧
は、−IV、節点N3の容量と抵抗105−の積である
時定数T3と節点N4の容量と抵抗106の積である時
定数T4がともに1ナノ秒オーグであり、電源線109
、110には、それぞれ5V、 oVの一定電位が供給
されている。
The threshold voltage of the P-type channel MO8FET 101.102 is -IV, the time constant T3 which is the product of the capacitance of node N3 and the resistance 105-, and the time constant T4 which is the product of the capacitance of node N4 and the resistance 106 are both 1 nanosecond. It is an og, power line 109
, 110 are supplied with constant potentials of 5V and oV, respectively.

仲、節点Nl、Naの電位が5V、fflj点N2.N
4の電位がOvの場合を考える。この場合1vlO8P
ET101、104がオン、102.103がオフ状態
となり、節点N1.N3の11位5VとN1点N2.N
4(D電位OVが保持される。このようにして節点Nl
、Naが尚電位、節点N2.N4が低電位の状態は安定
であり、いつまでも保持される。また、本メモリセルが
対称であることから容易にわかるように節点N2.N4
が高電位で節点Nl、N3が低電位という逆の状、帽も
同様に安定である。本メモリセルは、この2つの安定状
態を2進情報に対応tメモリセルとしての機能する。
Naka, the potential of nodes Nl and Na is 5V, and fflj point N2. N
Consider the case where the potential of 4 is Ov. In this case 1vlO8P
ET101, 104 are on, ET102, 103 are off, and node N1. N3's 11th place 5V and N1 point N2. N
4 (D potential OV is held. In this way, the node Nl
, Na is still at potential, node N2. The state where N4 is at a low potential is stable and is maintained indefinitely. Furthermore, since this memory cell is symmetrical, it can be easily seen that the node N2. N4
In the opposite situation, where N1 and N3 are at a high potential and nodes Nl and N3 are at a low potential, the cap is similarly stable. This memory cell functions as a t memory cell that corresponds to binary information between these two stable states.

書き込み読み出し動作はワード線111. i12を高
電位にし、N型チャネルMO8FET107,108を
オン状態にし、ビット線113.114を通して行なわ
れる。
Write/read operations are performed on word line 111. This is done through the bit lines 113 and 114 by bringing i12 to a high potential and turning on the N-type channel MO8FETs 107 and 108.

アルファ粒子等の放射性粒子の入射によって半導体内に
生成された電荷が、この半導体内部の電極に流入すると
、該電極の電位は該電極とその周囲の半導体との間の電
位差を減らす方向に変化する。第1図のメモリセルの場
合、節点Nl、N2とも、少なくとも5vに保たれたP
MチャネルMO8li’BTの基板領域に内接するP)
型半導体と0■に保たれたN、1チャネルMO8FET
の基板領域に隣接するN型半導体の両生導体で構成され
る。
When charges generated within a semiconductor due to the incidence of radioactive particles such as alpha particles flow into an electrode inside the semiconductor, the potential of the electrode changes in a direction that reduces the potential difference between the electrode and the surrounding semiconductor. . In the case of the memory cell of FIG. 1, both nodes Nl and N2 have P
P) inscribed in the substrate region of M channel MO8li'BT
type semiconductor and N, 1 channel MO8FET kept at 0■
consists of an N-type semiconductor amphitheater conductor adjacent to the substrate region.

そのため節点Nl、N2ともα粒子等の入射により、5
■あるいはOvの電源電圧伺近まで、どちらへも変動す
ることがありうる。
Therefore, due to the incidence of α particles etc. at both nodes Nl and N2, 5
(2) Or it may fluctuate in either direction until the power supply voltage of Ov approaches.

節点N1.N3が酩電位のとき、節点N1を構成するN
型半導体領域とそれに防接するOvに保たれたP型半導
体領域にα粒子等が入射した場1を想定する。この場合
、節点N1を構成するN型領域にはα粒子等によって生
成された電子が流入し、その電位は周囲のP、!!l!
!領域の′電位と同じOVまで急激に下降する。正確に
は、節点N1を構成するN型領截とその周囲のP型領域
との間にル成されたPN接合ダイオードに順方向電流が
ある程度流れる電圧まで、節点Nuの電位は下降する。
Node N1. When N3 is at a drunken potential, N constituting node N1
Suppose a case 1 in which α particles or the like are incident on a P-type semiconductor region and a P-type semiconductor region that is kept in contact with the P-type semiconductor region. In this case, electrons generated by α particles etc. flow into the N-type region constituting the node N1, and the potential of the surrounding P,! ! l!
! It rapidly drops to OV, which is the same as the potential of the region. More precisely, the potential at the node Nu decreases to a voltage at which a certain amount of forward current flows through the PN junction diode formed between the N-type region constituting the node N1 and the surrounding P-type region.

ここではこの値を一〇、7vと仮定する。このようにN
)M領域のポテンシャルが周囲のP型領域のポテンシャ
ルよりも1届くなると、α粒子等によって生成された電
子の流入は止まる。
Here, this value is assumed to be 10.7V. Like this N
) When the potential of the M region reaches 1 higher than the potential of the surrounding P-type region, the influx of electrons generated by α particles and the like stops.

そのため、節点N1に流入するα粒子等によって生成さ
れた4子の流れは、初めの0.1ナノ秒オーダは大きい
ものの、その後は小さくなり、一般に本メモリセルを構
成するMOSFETのオン電流に比べると無視できるよ
うになってしまう。
Therefore, although the flow of quadruplets generated by α particles flowing into node N1 is large on the order of 0.1 nanoseconds at the beginning, it becomes smaller after that, and is generally compared to the on-state current of the MOSFET that constitutes this memory cell. It becomes possible to ignore it.

このようにα粒子等による生成電流の影響が、0.1ナ
ノ秒オーダと短いため、この短時間内に節点N1の電位
変化が節点N3まで伝わることはほとんどない。そのた
め節点N2の電位はOv付近のままであり、節点N4の
電位はMO8F]1iliTの寄生容量を通しての影響
でOVから少し低下する程度でMO8F’ETIOIは
オン状態、MO8li”ET 10314オフ状態とい
う状態は変らない。そのため節点N1にはMO8FET
101を通して引き続き電流が流れる。このMO8FE
T101を流れる′i1! viuはN3点N1の電位
を5vに上げようとし、一方α粒子冶・の生成電流は節
点Nlの電位をO■以下に下げようとする。
As described above, since the influence of the current generated by α particles and the like is short, on the order of 0.1 nanoseconds, a potential change at the node N1 is hardly transmitted to the node N3 within this short time. Therefore, the potential of node N2 remains near Ov, and the potential of node N4 drops slightly from OV due to the influence of the parasitic capacitance of MO8F]1iliT, and MO8F'ETIOI is in the on state and MO8li"ET 10314 is in the off state. does not change.Therefore, MO8FET is installed at node N1.
Current continues to flow through 101. This MO8FE
'i1 flowing through T101! viu tries to raise the potential at the node N1 to 5V, while the current generated by the α particle tries to lower the potential at the node Nl to below O■.

本発明の半導体メモリセルでは、上記のMO8F−IB
’L’101を流れる電流がMOS に’ IうTのオ
ン電流であるため、かなり大きい。そのためα粒子等生
成電流がこのオン電流以下になり、rJfi点N1点検
1が1■オーグに上昇するのはかなり速く、01ナノ秒
オーダである。そのためこの間に節点N3の電位が下降
して節点N4の電位(約OV)以下になることはなく、
結局節点Nl、N3は879節点N2.N4はOVに戻
り、α粒子等入射前の状態が保たれることになる。
In the semiconductor memory cell of the present invention, the above MO8F-IB
Since the current flowing through 'L' 101 is the on-current of the T connected to the MOS, it is quite large. Therefore, the α particle generation current becomes less than this on-state current, and the rJfi point N1 check 1 rises to 1 og fairly quickly, on the order of 0.01 nanoseconds. Therefore, during this time, the potential of node N3 does not fall below the potential of node N4 (approximately OV),
After all, nodes Nl and N3 are 879 nodes N2. N4 returns to OV, and the state before the incidence of α particles etc. is maintained.

本発明のメモリセルでは、節点N3の容量と抵抗105
の積である時定&T3とflfj点N4の容量と抵抗1
06の積である時定数T4が、α粒子等生成電流によっ
て節点N1またはN2の電位が変えられたあとMOS 
F E Tのオン電流に上って回復するまでの時定数T
αよりも大きいため、メモリセルの状態が保たれ、ソフ
トエラーが妨げるのである。
In the memory cell of the present invention, the capacitance of the node N3 and the resistance 105
The product of time constant &T3 and flfj point N4 capacitance and resistance 1
The time constant T4, which is the product of
Time constant T until the on-current of FET rises and recovers
Since it is larger than α, the state of the memory cell is maintained and soft errors are prevented.

だから時定数T3.T4の値は上記の例で述べた1ナノ
秒オーダにする必要はなく、時定数Tαよりも、ある程
度大きければよい。しかし、時定数T3.qr、iの値
は本半導体メモリセルの書き込み時間を決めるため、や
たら大きくできない。
Therefore, the time constant T3. The value of T4 does not need to be on the order of 1 nanosecond as described in the above example, and may be larger than the time constant Tα to some extent. However, the time constant T3. Since the values of qr and i determine the writing time of this semiconductor memory cell, they cannot be made too large.

第2図は本発明の半導体メモリセルの他の実施例を示し
ている。節点N1.′N4′間と節点N2ζN3’間に
それぞれ容i 215.216が挿入されている他は第
1図の実施例と同じである。各部を示す番号の1桁目は
第1図のそれと対応している。この実施例では例えば節
点N 1 /の電位がα粒子等の入射により5vから下
がった時、その変化が節点N4’に伝わり節点N 4 
/の値がO■以下になり、そのためMO8FE′v20
1のオン電流は、第1図の実施例よりも大きくなり、節
点Nl’の電位が回復する時定数Tαが小さくなる特徴
がある。これは時定数T3.T4を小さくして本メモリ
セルの書き込み時間を短くするのに好都合である。
FIG. 2 shows another embodiment of the semiconductor memory cell of the present invention. Node N1. The embodiment is the same as the embodiment shown in FIG. 1, except that capacitors i 215 and 216 are inserted between 'N4' and between nodes N2ζN3', respectively. The first digit of the number indicating each part corresponds to that in FIG. In this embodiment, for example, when the potential at the node N 1 / drops from 5V due to the incidence of α particles, the change is transmitted to the node N4', and the potential at the node N 4
The value of / becomes less than O■, so MO8FE'v20
The on-current of No. 1 is larger than that of the embodiment shown in FIG. 1, and the time constant Tα for recovering the potential of the node Nl' is smaller. This is the time constant T3. This is convenient for reducing T4 and shortening the writing time of this memory cell.

以上本発明の半導体メモリセルの動作を説明するためi
ij 源電圧としてOV、5vを映い、第1図の実施例
で節点N1の電位が5■からα粒子等生成電流で下降す
る場合を中心に説明したが、本発明の半導体メモリセル
の効果は他の場合も同様である。
In order to explain the operation of the semiconductor memory cell of the present invention, i.
ij The explanation has focused on the case where the source voltage is OV, 5V, and the potential at the node N1 drops from 5V due to the α particle generation current in the embodiment of FIG. 1, but the effect of the semiconductor memory cell of the present invention is The same applies to other cases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体メモリセルをMOSFETを用
いて構成した一例を示す回路図。第2図は本発明の半導
体メモリセルの他の実1m例を示す回路図。
FIG. 1 is a circuit diagram showing an example of a semiconductor memory cell of the present invention configured using MOSFETs. FIG. 2 is a circuit diagram showing another 1m example of the semiconductor memory cell of the present invention.

Claims (1)

【特許請求の範囲】 第1通電電極、第2通社電極、ゲート電極を有する第1
4也型の第1PETと、第1FETの第1通電電極に接
続された第1通電電極、第2通電電極、ゲート電極を有
する第1導電型の第2 FETと、第1通電電極、第1
. F hi Tの第2通電電極に接続された第2通t
−を極1.[lFETのゲート電極に接続されたゲート
電極を有する第2導電型の第a F I] ’rと、第
3 Ii” E Tの第1通電電極に接続された第1通
電電極、第2FETの第2通電電極に接続された第2通
4電極、第2FETのゲート・電極に接続されたゲート
電極を有する第2導電型の第4 F E Tと、第1F
ETのゲート電極と第2F」Tの第2通電電極の間に接
続された第1抵抗と第2FETのゲート電極と第1FE
Tの第2通電電極の間に接続された第2抵抗と を 備えたことを特徴とする半導体メモリセル−
[Claims] A first conductive electrode having a first conductive electrode, a second conductive electrode, and a gate electrode.
A 4-type first PET, a first conductive type second FET having a first conductive electrode connected to the first conductive electrode of the first FET, a second conductive electrode, and a gate electrode;
.. The second t connected to the second energized electrode of F hi T
- to pole 1. [a F I of the second conductivity type having a gate electrode connected to the gate electrode of the IFET]'r, a first current-carrying electrode connected to the first current-carrying electrode of the third Ii''ET, and a first current-carrying electrode connected to the first current-carrying electrode of the second FET. a fourth FET of the second conductivity type having a second conductive four electrode connected to the second conductive electrode, a gate electrode connected to the gate/electrode of the second FET;
A first resistor connected between the gate electrode of the ET and the second current-carrying electrode of the second FET, the gate electrode of the second FET, and the first FE
a second resistor connected between the second current-carrying electrodes of the semiconductor memory cell.
JP58146925A 1983-08-11 1983-08-11 Semiconductor memory cell Pending JPS6038864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146925A JPS6038864A (en) 1983-08-11 1983-08-11 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146925A JPS6038864A (en) 1983-08-11 1983-08-11 Semiconductor memory cell

Publications (1)

Publication Number Publication Date
JPS6038864A true JPS6038864A (en) 1985-02-28

Family

ID=15418670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146925A Pending JPS6038864A (en) 1983-08-11 1983-08-11 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPS6038864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150062A (en) * 1988-11-30 1990-06-08 Nec Corp Cmos type static memory
US5406107A (en) * 1993-02-12 1995-04-11 Nec Corporation Static semiconductor memory device having capacitors for increased soft error immunity
US5917212A (en) * 1988-09-07 1999-06-29 Texas Instruments Incorporated Memory cell with capacitance for single event upset protection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917212A (en) * 1988-09-07 1999-06-29 Texas Instruments Incorporated Memory cell with capacitance for single event upset protection
JPH02150062A (en) * 1988-11-30 1990-06-08 Nec Corp Cmos type static memory
US5406107A (en) * 1993-02-12 1995-04-11 Nec Corporation Static semiconductor memory device having capacitors for increased soft error immunity

Similar Documents

Publication Publication Date Title
US4879690A (en) Static random access memory with reduced soft error rate
KR0184281B1 (en) Highly stable semiconductor memory with a small memory cell area
EP0281741A2 (en) CMOS flip-flop storage cell
KR900002621B1 (en) Complementary semiconductor memory device
US6999338B1 (en) Semiconductor storage device
US7651905B2 (en) Apparatus and method for reducing gate leakage in deep sub-micron MOS transistors using semi-rectifying contacts
JPS6038864A (en) Semiconductor memory cell
JPH0810556B2 (en) Semiconductor memory circuit
JP6333832B2 (en) Memory circuit
JPH0777075B2 (en) Decoder-driver circuit
EP0149403A2 (en) Sense amplifier for static MOS memory
JPS6028262A (en) Semiconductor memory cell
JPH0687499B2 (en) Semiconductor memory device
JPH0740433B2 (en) Semiconductor memory cell
JPS6124092A (en) Memory device for semiconductor
JPH03116490A (en) Static ram
JPH05347097A (en) Static ram cell
JPH0644395B2 (en) Semiconductor memory device
JPS58147889A (en) Semiconductor device
JP3061875B2 (en) Static semiconductor memory device
JP2823294B2 (en) Gallium arsenide semiconductor memory device
JPH054400U (en) Memory cell circuit
JPS6233393A (en) Semiconductor non-volatile memory device
JPS58125290A (en) Semiconductor storage device
JPS63104300A (en) Voltage decision circuit