JPH0734206A - Rare earth magnet and method and device for manufacturing it - Google Patents

Rare earth magnet and method and device for manufacturing it

Info

Publication number
JPH0734206A
JPH0734206A JP5178950A JP17895093A JPH0734206A JP H0734206 A JPH0734206 A JP H0734206A JP 5178950 A JP5178950 A JP 5178950A JP 17895093 A JP17895093 A JP 17895093A JP H0734206 A JPH0734206 A JP H0734206A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
earth magnet
magnet alloy
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5178950A
Other languages
Japanese (ja)
Inventor
Tetsutaro Imai
徹太郎 今井
Shuji Aizawa
周二 相澤
Etsuo Otsuki
悦夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5178950A priority Critical patent/JPH0734206A/en
Publication of JPH0734206A publication Critical patent/JPH0734206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prepare a powder having high crystal orientational property by controlling crystal growth at the time of ingot casting and uniformizing the direction of crystals in an ingot and to produce a rare earth magnet having high magnetic properties and also to provide the method and device for manufacturing it. CONSTITUTION:In a rare earth magnetic alloy manufacturing process, a molten alloy is cast in a mold 1 where, among the planes to be in contact with the molten alloy, the base 6 has a recessed shape, by which the specific crystal axes of respective crystals in the alloy are aligned in the prescribed direction. Moreover, in a rare earth magnetic alloy manufacturing process, a molten alloy is cast in the mold 1 where, among the planes to be in contact with the molten alloy, the base 6 has a recessed shape and which is constituted of at least two parts consisting of a part to be cooled down to <=500 deg.C and a part to be heated up to 600-1300 deg.C, by which the specific crystal axes of alloy crystals are oriented in a direction parallel to the base of the mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類磁石合金の製造方
法及びその希土類磁石合金を用いて製造された焼結永久
磁石およびプラスチック永久磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth magnet alloy and a sintered permanent magnet and a plastic permanent magnet produced by using the rare earth magnet alloy.

【0002】[0002]

【従来の技術】永久磁石は,各種の電気製品から小型精
密機器,アクチュエータまで幅広い分野で使用されてお
り,重要な電気電子材料のひとつに挙げられる。近年機
器の小型化,高効率化の要求から高特性を有する永久磁
石が求められている。これらの要求に対応して,高特性
を有する永久磁石である希土類永久磁石の需要が非常に
多くなってきている。一般に希土類永久磁石の一種であ
るR−Co系異方性プラスチック磁石(但し,Rは希土
類元素)の製造方法は次のように行われている。まず,
合金組成の溶湯を鋳型に注入して,合金インゴットを得
る。熱処理を施した後そのインゴットを粉砕して粉末と
し,これにエポキシバインダー等を混合する。そして,
この混合粉末を磁場中で磁場配向させながら圧縮成形や
押し出し成形する事により成形体とし,その後,エポキ
シバインダーの種類によって,硬化処理を施し,最後に
塗装を施し,製品とするというものである。
2. Description of the Related Art Permanent magnets are used in a wide range of fields from various electric products to small precision instruments and actuators, and they are one of the important electric and electronic materials. In recent years, there has been a demand for permanent magnets with high characteristics in order to reduce the size and increase the efficiency of equipment. In response to these demands, the demand for rare-earth permanent magnets, which are permanent magnets with high characteristics, has become extremely high. Generally, a method of manufacturing an R—Co anisotropic plastic magnet (where R is a rare earth element), which is a kind of rare earth permanent magnet, is performed as follows. First,
An alloy ingot is obtained by injecting a molten alloy composition into a mold. After heat treatment, the ingot is crushed into powder and mixed with an epoxy binder. And
This mixed powder is subjected to compression molding or extrusion molding while being magnetically oriented in a magnetic field to form a molded body, which is then subjected to a curing treatment depending on the type of epoxy binder and finally coated to obtain a product.

【0003】[0003]

【発明が解決しようとする課題】上述のプラスチック磁
石の製造工程の中で,インゴットを粉砕した粉末の特性
が,製品特性を非常に大きく左右させる要因となるが,
従来のインゴット鋳造では,溶湯凝固時の結晶の成長を
制御できず,インゴットの中の各結晶の方位はランダム
になる。その為,インゴットを粉砕し,粉末の状態にし
ても,結晶配向性が低い為,粉末の磁場配向性も低くな
り低い磁石特性を有する永久磁石しか得られなかった。
In the manufacturing process of the above-mentioned plastic magnet, the characteristics of the powder obtained by crushing the ingot become a factor that greatly affects the characteristics of the product.
In conventional ingot casting, the crystal growth during solidification of the melt cannot be controlled, and the orientation of each crystal in the ingot becomes random. Therefore, even if the ingot is crushed into a powder state, the crystal orientation is low, and the magnetic field orientation of the powder is also low, so that only a permanent magnet having low magnet characteristics can be obtained.

【0004】また,焼結型の希土類磁石の製造方法は,
合金組成の溶湯を鋳型に注入して合金インゴットを得
る。次にそのインゴットを粉砕して粉末とし,この粉末
を磁場中で磁場配向させながら圧縮成形する。そしてこ
の圧粉体を焼結し,その後焼結体に熱処理を施し,さら
に,加工,塗装等の処理を施し,製品とするというもの
である。焼結型の希土類磁石の場合もプラスチック磁石
の場合と同様にインゴット中の結晶配向性の低さが,粉
末の磁場配向性の低下を招き,結果として磁石特性の低
下を招く原因となっていた。
Further, a method of manufacturing a sintered rare earth magnet is as follows.
A molten alloy having an alloy composition is poured into a mold to obtain an alloy ingot. Next, the ingot is crushed into powder, and this powder is compression-molded while being oriented in a magnetic field. Then, the green compact is sintered, and then the sintered body is subjected to heat treatment, and further processed such as processing and painting to obtain a product. In the case of sintered rare earth magnets as well as in the case of plastic magnets, the low crystal orientation in the ingot caused a decrease in the magnetic field orientation of the powder, resulting in a decrease in magnet characteristics. .

【0005】そこで,これらの欠点を除去する為,本発
明の技術的課題は,インゴット鋳造時の結晶の成長を制
御し,インゴット中の結晶の方向を揃える事により,結
晶配向性の高い粉末を作製し,これにより高い磁石特性
を有する希土類磁石その製造方法,及びその製造装置を
提供することにある。
Therefore, in order to eliminate these defects, the technical problem of the present invention is to control the growth of crystals during ingot casting and align the directions of the crystals in the ingot to obtain a powder having a high crystal orientation. An object of the present invention is to provide a method of manufacturing a rare earth magnet having high magnet characteristics, and a manufacturing apparatus thereof.

【0006】[0006]

【課題を解決するための手段】本発明によれば,一軸方
向に細長く,前記一軸方向に沿うって一側面が横断面に
おいて外側に凸の曲線をなす形状を備えた希土類磁石合
金のインゴットであって,結晶粒の特定結晶軸が前記一
軸方向に平行な方向に配向されていることを特徴とする
希土類磁石合金が得られる。
According to the present invention, there is provided a rare earth magnet alloy ingot which is elongated in one axis direction and has a shape in which one side surface along the one axis direction forms a convex curve outward in a cross section. Thus, a rare earth magnet alloy is obtained in which the specific crystal axes of crystal grains are oriented in a direction parallel to the uniaxial direction.

【0007】本発明によれば,前記希土類磁石合金にお
いて,Sm−Co系合金及びR2 14B系磁石合金(但
し,Rは希土類元素(Yを包含する),TはFeを主成
分とする遷移金属元素)のうちの少なくとも一種からな
ることを特徴とする希土類磁石合金が得られる。
According to the present invention, in the rare earth magnet alloy, the Sm-Co alloy and the R 2 T 14 B magnet alloy (wherein R is a rare earth element (including Y)) and T is Fe as a main component. A rare earth magnet alloy characterized by comprising at least one of the following transition metal elements).

【0008】本発明によれば,前記いずれかの希土類磁
石合金の粉砕粉末を原料とすることを特徴とする焼結型
希土類磁石が得られる。
According to the present invention, there is obtained a sintered rare earth magnet characterized by using a pulverized powder of any one of the above rare earth magnet alloys as a raw material.

【0009】本発明によれば,前記いずれかの希土類磁
石合金を粉砕し,粉末冶金法によって製造することを特
徴とする焼結型希土類磁石の製造方法が得られる。
According to the present invention, there is provided a method for producing a sintered rare earth magnet, characterized in that any one of the above rare earth magnet alloys is pulverized and produced by powder metallurgy.

【0010】本発明によれば,前記いずれかの希土類磁
石合金の粉砕粉末を原料とすることを特徴とする高分子
複合型希土類磁石が得られる。
According to the present invention, there is obtained a polymer composite type rare earth magnet characterized by using a pulverized powder of any one of the above rare earth magnet alloys as a raw material.

【0011】本発明によれば,前記いずれかの希土類磁
石合金を粉砕し,樹脂混合して圧縮成形することを特徴
とする希土類複合磁石の製造方法が得られる。
According to the present invention, there is provided a method for producing a rare earth composite magnet, characterized in that any one of the rare earth magnet alloys described above is crushed, mixed with a resin and compression-molded.

【0012】本発明によれば,溶融合金を鋳込むための
互いに対向する一対の側面と,この一対の側面の両端辺
を接続する一対の端面と,底面とを有し,これらの各面
に規定される空間内に溶融合金を鋳込むための鋳型であ
って,前記空間の横断面における底面の輪郭が下側に凸
の曲線となるように形成されていることを特徴とする希
土類磁石合金の製造装置が得られる。
According to the present invention, there is provided a pair of side faces facing each other for casting the molten alloy, a pair of end faces connecting both end sides of the pair of side faces, and a bottom face, and each of these faces. A rare earth magnet alloy for casting a molten alloy into a specified space, characterized in that the contour of the bottom surface of the cross section of the space is a downwardly convex curve. Can be obtained.

【0013】本発明によれば,前記希土類磁石合金の製
造装置において,前記鋳型の底部を冷却するための冷却
装置と,前記底部より上側の上部を加熱するためのヒー
タとを備えていることを特徴とする希土類磁石合金の製
造装置が得られる。
According to the present invention, the apparatus for producing a rare earth magnet alloy is provided with a cooling device for cooling the bottom of the mold and a heater for heating the upper part above the bottom. An apparatus for producing a characteristic rare earth magnet alloy is obtained.

【0014】本発明によれば,前記いずれかの希土類磁
石合金の製造装置において,前記希土類磁石合金は,S
m−Co系合金及びR2 14B系磁石合金(但し,Rは
希土類元素(Yを包含する),TはFeを主成分とする
遷移金属元素)のうちの少なくとも一種からなることを
特徴とする希土類磁石合金の製造装置が得られる。
According to the present invention, in any one of the rare earth magnet alloy manufacturing apparatuses, the rare earth magnet alloy is S
It is characterized by comprising at least one of an m-Co alloy and an R 2 T 14 B magnet alloy (where R is a rare earth element (including Y) and T is a transition metal element containing Fe as a main component). An apparatus for producing a rare earth magnet alloy is obtained.

【0015】本発明によれば,希土類磁石合金を溶解し
た溶融合金との接触面の内で底面が凹状の窪みを有する
鋳型に溶融合金を鋳込むことによって,該合金の結晶粒
の特定結晶軸を前記底面と平行な方向に配向させること
を特徴とする希土類磁石合金の製造方法が得られる。
According to the present invention, the molten alloy is cast into a mold having a concave bottom surface in the contact surface with the molten alloy in which the rare earth magnet alloy is melted, whereby the specific crystal axis of the crystal grains of the alloy is cast. Is orientated in a direction parallel to the bottom surface, thereby obtaining a method for producing a rare earth magnet alloy.

【0016】本発明によれば,前記希土類磁石合金の製
造方法において,前記鋳型の垂直方向に2つの部分に分
けられる内の一方を500℃以下に冷却するとともに,
前記2つの部分の内の他方を600〜1300℃以下に
加熱して前記鋳型に溶融合金を鋳込むことを特徴とする
希土類磁石合金の製造方法が得られる。
According to the present invention, in the method for producing a rare earth magnet alloy, one of the two vertical parts of the mold is cooled to 500 ° C. or less, and
A method for producing a rare earth magnet alloy is obtained, in which the other of the two parts is heated to 600 to 1300 ° C. or lower and the molten alloy is cast into the mold.

【0017】本発明によれば,前記いずれかの希土類磁
石合金の製造方法において,前記希土類磁石合金は,S
m−Co系合金及びR2 14B系磁石合金(但し,Rは
希土類元素(Yを包含する),TはFeを主成分とする
遷移金属元素)のうちの少なくとも一種からなることを
特徴とする希土類磁石合金の製造方法が得られる。
According to the present invention, in any one of the methods for producing a rare earth magnet alloy, the rare earth magnet alloy is S
It is characterized by comprising at least one of an m-Co alloy and an R 2 T 14 B magnet alloy (where R is a rare earth element (including Y) and T is a transition metal element containing Fe as a main component). A method for producing a rare earth magnet alloy is obtained.

【0018】[0018]

【実施例】以下,本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本発明の実施例に係る希土類磁石合
金を製造するための鋳型を示す斜視図である。図1で示
すように,鋳型1は,Cu製で,一対の側面2,3,こ
れらの端部同士を連絡する一対の端面4,5及び底部を
なす底面6を備え,溶融合金を鋳込む空間7を形成して
いる。この底面6は,横断面において,下方が凸の曲線
である内円筒面を形成している。
FIG. 1 is a perspective view showing a mold for producing a rare earth magnet alloy according to an embodiment of the present invention. As shown in FIG. 1, the mold 1 is made of Cu and has a pair of side faces 2, 3, a pair of end faces 4, 5 connecting these end portions to each other, and a bottom face 6 which is a bottom part, and casts a molten alloy. A space 7 is formed. The bottom surface 6 forms an inner cylindrical surface which is a curved line with a downward convex in the cross section.

【0020】図2(a)は本発明の他の実施例に係る希
土類磁石合金を製造するための鋳型を示す斜視図,図2
(b)は図2(a)のA−A′線断面図である。図2
(a)及び(b)で示すように,鋳型10は,鋳型上部
11と鋳型下部12とを備えた鋳型本体13と,鋳型本
体13の周囲に設けられたヒータ14とを備えている。
この鋳型本体13には,対向する一対の側面15a,1
5b,この側面15a,15bの両端をそれぞれ連絡す
る一対の端面15c,15d,及び底面15fにより規
定される空間15が設けられている。
FIG. 2A is a perspective view showing a mold for manufacturing a rare earth magnet alloy according to another embodiment of the present invention, FIG.
2B is a sectional view taken along the line AA ′ of FIG. Figure 2
As shown in (a) and (b), the mold 10 includes a mold body 13 having a mold upper portion 11 and a mold lower portion 12, and a heater 14 provided around the mold body 13.
The mold body 13 has a pair of side surfaces 15a, 1 facing each other.
5b, a space 15 defined by a pair of end faces 15c and 15d connecting the both ends of the side faces 15a and 15b, respectively, and a bottom face 15f is provided.

【0021】底面15fを含む鋳型下部12は,冷却水
流路16を備えている。この底面15fは,下方に凸の
内円筒面を形成している。
The lower part 12 of the mold including the bottom surface 15f is provided with a cooling water passage 16. The bottom surface 15f forms an inner cylindrical surface that is convex downward.

【0022】次に,図1及び図2で示す鋳型により発生
する作用について説明する。
Next, the action generated by the mold shown in FIGS. 1 and 2 will be described.

【0023】現在,実用化されている希土類磁石合金に
は,主相の結晶構造という観点から見ると,1−5系,
2−17系,2−14−1系の3種類に分類されるが,
いづれの結晶もC軸方向に一軸異方性を有し,凝固時の
結晶成長の優先方向は,C面方向である。しかし,図3
(b)のように,磁化容易方向はC軸方向21であり,
単純に結晶成長方向であるC面の方向22を一定に揃え
ても磁化容易方向であるC軸方向21はいろいろな方向
をとる事ができる。
From the viewpoint of the crystal structure of the main phase, the rare earth magnet alloys currently in practical use have a 1-5 system,
It is classified into 3 types, 2-17 series and 2-14-1 series.
Each crystal has uniaxial anisotropy in the C-axis direction, and the preferential direction of crystal growth during solidification is the C-plane direction. However, Figure 3
As shown in (b), the easy magnetization direction is the C-axis direction 21,
Even if the C-plane direction 22, which is the crystal growth direction, is simply aligned, the C-axis direction 21, which is the easy magnetization direction, can take various directions.

【0024】しかし,図1及び図2で示す本発明の実施
例に係る希土類磁石合金の鋳型によると,凹形状に窪ん
だ部分(底面6,底面15f)から,結晶成長が始まる
際,凹形状である事に起因して,隣接する結晶粒が,互
いにその成長方位を干渉し合いながら成長する事にな
り,図3(a)のように磁化容易方向であるC軸方向2
1も同一の方向を向く事になる。すなわち,インゴット
中の各結晶の方向は揃う事になりこれを粉砕する事によ
り結晶配向性の高い粉末を得る事が出来る。尚,図中で
符号23は結晶成長方向である。
However, according to the mold of the rare earth magnet alloy according to the embodiment of the present invention shown in FIGS. 1 and 2, when crystal growth starts from the concave portion (bottom surface 6, bottom surface 15f), the concave shape Therefore, adjacent crystal grains grow while interfering their growth directions with each other. As shown in FIG.
1 also faces the same direction. That is, the directions of the respective crystals in the ingot are aligned, and it is possible to obtain a powder having a high crystal orientation by crushing the crystals. In the figure, reference numeral 23 is a crystal growth direction.

【0025】次に本発明を製造の具体例を用いてさらに
詳しく説明する。
Next, the present invention will be described in more detail with reference to specific manufacturing examples.

【0026】(実施例1)Sm2 Co17系合金として,
23.5wt%Sm−14.0wt%Fe−4.5wt
%Cu−2.5wt%Zr−balCoの合金組成にな
るように各元素を秤量後,Ar雰囲気中で高周波溶解
し,図1に示したような鋳型1にタンディッシュを介し
て溶解合金を鋳込み,厚さ20mm,長さ150mmの
合金インゴットを作製した。鋳型1は銅製のもので,底
部の横断面の輪郭が円弧を形成する凹形状の窪み(底面
6)を有している。
Example 1 As an Sm 2 Co 17 type alloy,
23.5 wt% Sm-14.0 wt% Fe-4.5 wt
% Cu-2.5wt% Zr-balCo alloying elements are weighed, high-frequency melted in an Ar atmosphere, and the melted alloy is cast into a mold 1 as shown in FIG. 1 through a tundish. An alloy ingot having a thickness of 20 mm and a length of 150 mm was produced. The mold 1 is made of copper, and has a concave recess (bottom surface 6) whose bottom cross-sectional contour forms an arc.

【0027】次にそのインゴットをAr雰囲気中118
0℃で15時間溶体化処理した。その後,時効処理とし
て800℃で2時間保持後800℃より−1℃/分の冷
却速度で,降温した。そのインゴットをディスクミルを
用いて,粉末粒径500μm以下に粉砕した。次にその
粉末に,バインダーとして熱硬化型エポキシ樹脂を,重
量比で,粉末97対エポキシ樹脂3の割合で混合した
後,20kOeの磁場中5トン/cm2 の圧力で圧縮成
形した。その成形体を80℃で5時間保持し,バインダ
ーを硬化させ,プラスチック磁石とした。その磁石特性
をB−Hトレーサーで測定した結果を下表1に示す。ま
た比較例1として鋳型に銅製で底面が平面である鋳型を
用い,他は,実施例1と同様に同一条件で作製したプラ
スチック磁石の磁石特性も下表1に併せて示した。
Next, the ingot is 118 in Ar atmosphere.
Solution treatment was performed at 0 ° C. for 15 hours. Then, as an aging treatment, the temperature was held at 800 ° C. for 2 hours, and then the temperature was lowered from 800 ° C. at a cooling rate of −1 ° C./min. The ingot was crushed to a powder particle size of 500 μm or less using a disc mill. Next, a thermosetting epoxy resin as a binder was mixed with the powder in a weight ratio of powder 97 to epoxy resin 3, and then compression molded at a pressure of 5 ton / cm 2 in a magnetic field of 20 kOe. The molded body was kept at 80 ° C. for 5 hours to harden the binder to obtain a plastic magnet. The results of measuring the magnet characteristics with a BH tracer are shown in Table 1 below. Further, as Comparative Example 1, a mold made of copper and having a flat bottom surface was used as the mold, and the magnetic properties of the plastic magnet manufactured under the same conditions as in Example 1 were also shown in Table 1 below.

【0028】[0028]

【表1】 [Table 1]

【0029】上記表1より,底面が凹形状の窪みを有す
る鋳型1を使用して作製したインゴットを用いる事によ
り,R−Co系異方性プラスチック磁石の磁石特性が向
上する事がわかる。
From Table 1 above, it can be seen that the magnet characteristics of the R—Co anisotropic plastic magnet are improved by using the ingot produced by using the mold 1 having the concave recess on the bottom surface.

【0030】(実施例2)Sm2 Co17系合金として,
25.5wt%Sm−14.0wt%Fe−4.5wt
%Cu−2.5wt%Zr−balCoの合金組成にな
るように各元素を秤量後,Ar雰囲気中で高周波溶解
し,実施例1と同一の鋳型1にタンディッシュを介し
て,溶解合金を鋳込み,厚さ20mm,長さ150mm
の合金インゴットを作製した。次にそのインゴットをデ
ィスクミルを用いて,500μm以下に粗粉砕し,続い
て,この粉末をジェットミルを用いて,平均粒径3μm
に微粉砕した。この微粉砕粉末を20kOeの磁場中
で,磁場と垂直方向に,1.5トン/cm2 の圧力で成
形した。次にこの圧粉体を1210℃で30分間真空中
で焼結し,その後1200℃で1時間,Ar雰囲気中で
溶体化処理後,室温まで急冷した。つづいて時効処理と
してこの焼結体を800℃で2時間保持後800℃より
1℃/分の冷却速度で400℃まで冷却し,その後急冷
し,焼結磁石とした。その磁化特性を,B−Hトレーサ
ーで測定した結果を下表2に示した。また,比較例2と
して,銅製で底面が平面である鋳型を用い,他は実施例
2と同様に同一の条件で作製した焼結磁石の磁石特性
も,同じ下表2に併せて示した。
Example 2 As an Sm 2 Co 17 type alloy,
25.5 wt% Sm-14.0 wt% Fe-4.5 wt
% Cu-2.5 wt% Zr-balCo alloying elements are weighed and then high-frequency melted in an Ar atmosphere, and the molten alloy is cast into the same mold 1 as in Example 1 through a tundish. , Thickness 20mm, length 150mm
An alloy ingot of was produced. Next, the ingot was coarsely crushed to a size of 500 μm or less using a disc mill, and then the powder was jet milled to have an average particle size of 3 μm.
Finely crushed. This pulverized powder was molded in a magnetic field of 20 kOe in a direction perpendicular to the magnetic field at a pressure of 1.5 ton / cm 2 . Next, this green compact was sintered in vacuum at 1210 ° C. for 30 minutes, then solution-treated at 1200 ° C. for 1 hour in an Ar atmosphere, and then rapidly cooled to room temperature. Subsequently, as an aging treatment, this sintered body was held at 800 ° C. for 2 hours, cooled from 800 ° C. to 400 ° C. at a cooling rate of 1 ° C./minute, and then rapidly cooled to obtain a sintered magnet. The results of measuring the magnetization characteristics with a BH tracer are shown in Table 2 below. Further, as Comparative Example 2, a mold having a flat bottom surface made of copper was used, and the magnet characteristics of a sintered magnet produced under the same conditions as in Example 2 are also shown in Table 2 below.

【0031】[0031]

【表2】 [Table 2]

【0032】上記表2から,底面が凹形状の窪み(図1
の底面6)を有する鋳型1を使用して作製したインゴッ
トを用いる事により,R−Co系焼結磁石の磁石特性が
向上する事がわかる。
From Table 2 above, the bottom surface has a concave shape (see FIG. 1).
It can be understood that the magnet characteristics of the R—Co based sintered magnet are improved by using the ingot produced by using the mold 1 having the bottom surface 6) of FIG.

【0033】(実施例3)Nd2 Fe14B系合金とし
て,33.4wt%Nd−65.5et%Fe−1.1
wt%Bの合金組成となるように各元素を秤量後,Ar
雰囲気中で,高周波溶解し,実施例1と同一の鋳型1
に,テンディッシュを介して溶融合金を鋳込み,厚さ2
0mm,長さ150mmの合金インゴットを作製した。
次にそのインゴットをディスクミルを用いて,500μ
m以下に粗粉砕し,続いて,この粉末をボールミルを用
いて,平均粒径2.4μmに微粉砕した。この微粉砕粉
末を20kOeの磁場中で,磁場と垂直方向に,1.5
トン/cm2 の圧力で成形した。次にこの圧粉体を10
80℃で2時間真空中で焼結した。その後630℃で1
時間の熱処理を施し,焼結磁石とした。その磁石特性を
B−Hトレーサーで測定した結果を下表3に示した。ま
た,比較例3として,銅製で底面が平面である鋳型を用
い,他は実施例3と同様に同一の条件で作製した焼結磁
石の磁石特性も下表3に併せて示した。
Example 3 As an Nd 2 Fe 14 B type alloy, 33.4 wt% Nd-65.5et% Fe-1.1
After weighing each element so that the alloy composition is wt% B, Ar
High-frequency melting in an atmosphere, and the same mold 1 as in Example 1
Then, the molten alloy is cast through the tender to a thickness of 2
An alloy ingot having a length of 0 mm and a length of 150 mm was produced.
Next, the ingot is 500μ using a disc mill.
The powder was coarsely pulverized to a particle size of not more than m, and then the powder was finely pulverized with a ball mill to an average particle size of 2.4 μm. This finely pulverized powder was applied in a magnetic field of 20 kOe in the direction perpendicular to the magnetic field for 1.5
It was molded at a pressure of ton / cm 2 . Next, the green compact 10
Sintered in vacuum at 80 ° C. for 2 hours. Then at 630 ℃ 1
Heat treatment was applied for a period of time to obtain a sintered magnet. The results of measuring the magnet characteristics with a BH tracer are shown in Table 3 below. In addition, as Comparative Example 3, a magnet characteristic of a sintered magnet manufactured under the same conditions as in Example 3 except that a mold made of copper and having a flat bottom surface was used is also shown in Table 3 below.

【0034】[0034]

【表3】 [Table 3]

【0035】上記表3から,底面が凹形状の窪み(図1
の底面6)を有する鋳型1を使用して作製したインゴッ
トを用いる事により,Nd−Fe−B系焼結磁石の磁石
特性が向上する事がわかる。
From Table 3 above, the bottom surface has a concave shape (see FIG. 1).
It can be seen that the magnet characteristics of the Nd-Fe-B system sintered magnet are improved by using the ingot produced by using the mold 1 having the bottom surface 6).

【0036】(実施例4)Sm2 Co17系合金として,
23.5wt%Sm−14.0wt%Fe−4.5wt
%Cu−2.5wt%Zr−balCoの合金組成にな
るように各元素を秤量後,Ar雰囲気中で高周波溶解
し,図2に示したような鋳型10に,タンディッシュを
介して溶融合金を鋳込み,厚さ9mm,長さ120mm
の合金インゴットを作製した。鋳型下部11は水冷流路
13を有する水冷機構を備えた銅製のもので,150℃
〜200℃に冷やされており,図2(a)及び(b)に
示すように底部に,横断面が円弧を形成する凹形状の窪
み(底面15f)を有している。鋳型上部12は銅製
で,ヒーター15により700℃〜800℃に加熱され
ている。
Example 4 As an Sm 2 Co 17 type alloy,
23.5 wt% Sm-14.0 wt% Fe-4.5 wt
% Cu-2.5 wt% Zr-balCo, each element is weighed and then high-frequency melted in an Ar atmosphere, and the molten alloy is put into a mold 10 as shown in FIG. 2 through a tundish. Casting, thickness 9mm, length 120mm
An alloy ingot of was produced. The lower part 11 of the mold is made of copper with a water-cooling mechanism having a water-cooling channel 13 and has a temperature of 150 ° C.
It has been cooled to ˜200 ° C., and as shown in FIGS. 2 (a) and 2 (b), it has a concave recess (bottom surface 15f) whose cross section forms an arc. The upper part 12 of the mold is made of copper and is heated to 700 ° C. to 800 ° C. by the heater 15.

【0037】次にそのインゴットをAr雰囲気中118
0℃で15時間溶体化処理した。その後時効処理とし
て,800℃で2時間保持後800℃より1℃/分の冷
却速度で降温した。そのインゴットをディスクミルを用
いて粉末粒径500μm以下に粉砕した。次にその粉末
に,バインダーとして熱硬化型エポキシ樹脂を重量比で
粉末97対エポキシ樹脂3の割合で混合した後,20k
Oeの磁場中5トン/cm2 の圧力で圧縮成形した。そ
の成形体を80℃で5時間保持し,バインダーを硬化さ
せ,プラスチック磁石とした。その磁石特性をB−Hト
レーサーで測定した結果を下表4に示す。また,比較例
4として,鋳型に銅製で,底面は平面であり,鋳型下部
は水冷機構を備えているが,鋳型上部は加熱されていな
い鋳型を用い他は実施例4と同様に,同一条件で作製し
たプラスチック磁石の磁石特性も下表4に併せて示し
た。
Next, the ingot is 118 in Ar atmosphere.
Solution treatment was performed at 0 ° C. for 15 hours. Then, as an aging treatment, the temperature was kept at 800 ° C. for 2 hours, and then the temperature was lowered from 800 ° C. at a cooling rate of 1 ° C./min. The ingot was crushed to a powder particle size of 500 μm or less using a disc mill. Then, the powder was mixed with a thermosetting epoxy resin as a binder in a weight ratio of powder 97: epoxy resin 3 and then 20 k
Compression molding was performed in a magnetic field of Oe at a pressure of 5 ton / cm 2 . The molded body was kept at 80 ° C. for 5 hours to harden the binder to obtain a plastic magnet. The results of measuring the magnet characteristics with a BH tracer are shown in Table 4 below. In Comparative Example 4, the mold is made of copper, the bottom surface is flat, and the lower part of the mold is equipped with a water cooling mechanism, but the upper part of the mold is an unheated mold. The magnetic properties of the plastic magnet manufactured in Step 1 are also shown in Table 4 below.

【0038】[0038]

【表4】 [Table 4]

【0039】上記表4から,図2で示す底面が凹形状の
窪み(図2の15f)を有し,鋳型下部12が水冷され
鋳型上部11が加熱されている鋳型10を使用して作製
したインゴットを用いる事によりR−Co系異方性プラ
スチック磁石の磁石特性が向上する事がわかる。
From Table 4 above, it was prepared by using the mold 10 shown in FIG. 2 in which the bottom surface has a concave depression (15f in FIG. 2), the lower mold portion 12 is water-cooled, and the upper mold portion 11 is heated. It can be seen that the magnet characteristics of the R-Co anisotropic plastic magnet are improved by using the ingot.

【0040】(実施例5)Sm2 Co17系合金として,
25.5wt%Sm−14.0wt%Fe−4.5wt
%Cu−2.5wt%Zr−balCoの合金組成にな
るように各元素を秤量後,Ar雰囲気中で高周波溶解
し,実施例4と同一の鋳型10にタンディッシュを介し
て溶融合金を鋳込み,厚さ9mm,長さ120mmの合
金インゴットを作製した。次にそのインゴットをディス
クミルを用いて500μm以下に粗粉砕し,続いてこの
粉末をジェットミルを用いて,平均粒径3μmに微粉砕
した。この微粉砕粉末を20kOeの磁場中で,磁場と
垂直方向に,1.5トン/cm2 の圧力で成形した。次
にこの圧粉体を1210℃で30分間真空中で焼結し,
その後1200℃で1時間Ar雰囲気中で溶体化処理
後,室温まで急冷した。続いて時効処理として,この焼
結体を800℃で2時間保持後,800℃より1℃/分
の冷却速度で400℃まで冷却し,その後急冷し,焼結
磁石とした。その磁石特性をB−Hトレーサーで測定し
た結果を下表5に示した。また,比較例5として,銅製
で底面は平面であり,鋳型下部は水冷機構を備えている
が,鋳型上部は加熱されていない鋳型を用い,他は実施
例5と同様に同一条件で作製した焼結磁石の磁石特性も
下表5に併せて示した。
Example 5 As an Sm 2 Co 17 type alloy,
25.5 wt% Sm-14.0 wt% Fe-4.5 wt
% Cu-2.5 wt% Zr-balCo alloying elements were weighed and then high-frequency melted in an Ar atmosphere, and the molten alloy was cast into the same mold 10 as in Example 4 through a tundish, An alloy ingot having a thickness of 9 mm and a length of 120 mm was produced. Next, the ingot was coarsely pulverized to a size of 500 μm or less using a disc mill, and then the powder was finely pulverized to an average particle size of 3 μm using a jet mill. This pulverized powder was molded in a magnetic field of 20 kOe in a direction perpendicular to the magnetic field at a pressure of 1.5 ton / cm 2 . Then the green compact was sintered in vacuum at 1210 ° C for 30 minutes,
After that, after solution treatment at 1200 ° C. for 1 hour in an Ar atmosphere, it was rapidly cooled to room temperature. Subsequently, as an aging treatment, the sintered body was held at 800 ° C. for 2 hours, cooled from 800 ° C. to 400 ° C. at a cooling rate of 1 ° C./minute, and then rapidly cooled to obtain a sintered magnet. The results of measuring the magnet characteristics with a BH tracer are shown in Table 5 below. As Comparative Example 5, a copper mold was used, the bottom surface was flat, the lower part of the mold was equipped with a water-cooling mechanism, and the upper part of the mold was an unheated mold. The magnet characteristics of the sintered magnet are also shown in Table 5 below.

【0041】[0041]

【表5】 [Table 5]

【0042】上記表5から,底部に凹形状の窪み(図2
の底面15f)を有し,鋳型下部12が水冷され鋳型上
部11が加熱されている鋳型10を使用して作製したイ
ンゴットを用いる事によりR−Co系焼結磁石の磁石特
性が向上する事がわかる。
From Table 5 above, a concave recess (see FIG. 2) is formed on the bottom.
It is possible to improve the magnet characteristics of the R-Co based sintered magnet by using an ingot manufactured by using the mold 10 having the bottom surface 15f) of the mold, the mold lower part 12 being water cooled and the mold upper part 11 being heated. Recognize.

【0043】(実施例6)Nd2 Fe14B系合金とし
て,33.4wt%Nd−65.5et%Fe−1.1
wt%Bの合金組成となるように各元素を秤量後,Ar
雰囲気中で,高周波溶解し,実施例4と同一の鋳型10
にタンディッシュを介して溶融合金を鋳込み,厚さ9m
m,長さ120mmの合金インゴットを作製した。次に
そのインゴットをディスクミルを用いて500μm以下
に粗粉砕し,続いてこの粉末をボールミルを用いて,平
均粒径2.4μmに微粉砕した。この微粉砕粉末を20
kOeの磁場中で,磁場と垂直方向に,1.5トン/c
2 の圧力で成形した。次にこの圧粉体を1080℃で
2時間真空中で焼結した。その後630℃で2時間の熱
処理を施し,焼結磁石とした。その磁石特性をB−Hト
レーサーで測定した結果を下表6に示した。また,比較
例6として,銅製で底面が平面であり鋳型下部は水冷機
構を備えているが鋳型上部は加熱されていない鋳型を用
い,他は実施例6と同様に同一の条件で作製した焼結磁
石の磁石特性も下記表6に併せて示した。
Example 6 As an Nd 2 Fe 14 B-based alloy, 33.4 wt% Nd-65.5et% Fe-1.1
After weighing each element so that the alloy composition is wt% B, Ar
High-frequency melting in an atmosphere, and the same mold 10 as in Example 4
Molten alloy is cast into the tundish and the thickness is 9m
An alloy ingot having a length of m and a length of 120 mm was produced. Next, the ingot was coarsely pulverized to 500 μm or less using a disc mill, and then the powder was finely pulverized to an average particle size of 2.4 μm using a ball mill. 20 of this finely ground powder
1.5 t / c in the direction perpendicular to the magnetic field of kOe
Molded at a pressure of m 2 . Next, this green compact was sintered in vacuum at 1080 ° C. for 2 hours. After that, heat treatment was performed at 630 ° C. for 2 hours to obtain a sintered magnet. The results of measuring the magnet characteristics with a BH tracer are shown in Table 6 below. Further, as Comparative Example 6, a mold made of copper and having a flat bottom surface and a water cooling mechanism at the lower part of the mold but not heated at the upper part of the mold was used. The magnetic properties of the binder magnet are also shown in Table 6 below.

【0044】[0044]

【表6】 [Table 6]

【0045】上記表6から,底部に凹形状の窪み(図2
の底面15f)を有し,鋳型下部12が水冷され鋳型上
部11が加熱されている鋳型10を使用して作製したイ
ンゴットを用いる事によりNd−Fe−B系焼結磁石の
磁石特性が向上する事がわかる。
From Table 6 above, a concave recess (see FIG.
The magnet characteristics of the Nd-Fe-B system sintered magnet are improved by using the ingot produced by using the mold 10 having the bottom surface 15f) of the mold, the mold lower part 12 being water cooled and the mold upper part 11 being heated. I understand things.

【0046】なお,上記した各実施例に於ては,それぞ
れひとつの組成の合金について述べたが,各合金成分を
一定量変化させても,あるいは2,3の元素を添加した
合金についても同様の効果があることは当業者が容易に
推定できることは言うまでもない。
In each of the above-mentioned embodiments, an alloy having one composition has been described, but the same applies to alloys in which a certain amount of each alloy component is changed or alloys containing a few elements are added. Needless to say, those skilled in the art can easily estimate that the above effect is obtained.

【0047】[0047]

【発明の効果】以上述べたごとく,本発明によれば,高
特性を有する希土類磁石を製造できる希土類磁石合金を
提供することが可能になり,これにより,高特性の焼結
型又は高分子複合型希土類磁石を提供することが可能と
なった。
As described above, according to the present invention, it is possible to provide a rare earth magnet alloy capable of producing a rare earth magnet having high characteristics, whereby a sintered type or polymer composite having high characteristics can be provided. It has become possible to provide type rare earth magnets.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る希土類磁石合金の製造に
用いる鋳型を示す図である。
FIG. 1 is a view showing a mold used for producing a rare earth magnet alloy according to an example of the present invention.

【図2】本発明の他の実施例に係る希土類磁石合金の製
造に用いる鋳型および加熱装置を示す図である。
FIG. 2 is a view showing a mold and a heating device used for manufacturing a rare earth magnet alloy according to another embodiment of the present invention.

【図3】結晶成長方向と,結晶方位の関係を示した図で
あり,(A)は本発明,(B)は一般的な一方向凝固の
場合をそれぞれ示している。
3A and 3B are diagrams showing a relationship between a crystal growth direction and a crystal orientation, FIG. 3A showing the present invention, and FIG. 3B showing a general case of unidirectional solidification.

【符号の説明】[Explanation of symbols]

1 鋳型 2,3 側面 4,5 端面 6 底面 7 空間 10 鋳型 11 鋳型上部 12 鋳型下部 13 鋳型本体 14 ヒーター 15 空間 16 冷却水流路 21 C軸方向 22 C面方向 23 結晶成長方向 1 Mold 2, 3 Sides 4, 5 End Face 6 Bottom 7 Space 10 Mold 11 Mold Upper 12 Mold Lower 13 Mold Main Body 14 Heater 15 Space 16 Cooling Water Flow Channel 21 C-axis Direction 22 C-Plane Direction 23 Crystal Growth Direction

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 一軸方向に細長く,前記一軸方向に沿っ
て一側面が横断面において外側に凸の曲線をなす形状を
備えた希土類磁石合金のインゴットであって,結晶粒の
特定結晶軸が前記一軸方向に平行な方向に配向されてい
ることを特徴とする希土類磁石合金。
1. An ingot of a rare earth magnet alloy, which is elongated in a uniaxial direction and has a shape in which one side surface forms a convex curve outward in a cross section along the uniaxial direction, wherein a specific crystal axis of a crystal grain is A rare earth magnet alloy characterized by being oriented in a direction parallel to the uniaxial direction.
【請求項2】 請求項1記載の希土類磁石合金におい
て,Sm−Co系合金及びR2 14B系磁石合金(但
し,Rは希土類元素(Yを包含する),TはFeを主成
分とする遷移金属元素)のうちの少なくとも一種からな
ることを特徴とする希土類磁石合金。
2. The rare earth magnet alloy according to claim 1, wherein the Sm—Co alloy and the R 2 T 14 B magnet alloy (wherein R is a rare earth element (including Y)) and T is Fe as a main component. Transition metal element), which is a rare earth magnet alloy.
【請求項3】 請求項1又は2記載の希土類磁石合金の
粉砕粉末を原料とすることを特徴とする焼結型希土類磁
石。
3. A sintered rare earth magnet, characterized by using the pulverized powder of the rare earth magnet alloy according to claim 1 as a raw material.
【請求項4】 請求項1又は2記載の希土類磁石合金を
粉砕し,粉末冶金法によって製造することを特徴とする
焼結型希土類磁石の製造方法。
4. A method for producing a sintered rare earth magnet, which comprises pulverizing the rare earth magnet alloy according to claim 1 or 2 and producing the alloy by powder metallurgy.
【請求項5】 請求項1又は2記載の希土類磁石合金の
粉砕粉末を原料とすることを特徴とする高分子複合型希
土類磁石。
5. A polymer composite type rare earth magnet, which is made of the pulverized powder of the rare earth magnet alloy according to claim 1 or 2.
【請求項6】 請求項1又は2記載の希土類磁石合金を
粉砕し,樹脂混合して圧縮成形することを特徴とする希
土類複合磁石の製造方法。
6. A method for producing a rare earth composite magnet, which comprises crushing the rare earth magnet alloy according to claim 1 or 2 and mixing with a resin to perform compression molding.
【請求項7】 溶融合金を鋳込むための互いに対向する
一対の側面と,この一対の側面の両端辺を接続する一対
の端面と,底面とを有し,これらの各面に規定される空
間内に溶融合金を鋳込むための鋳型であって,前記空間
の横断面における底面の輪郭が下側に凸の曲線となるよ
うに形成されていることを特徴とする希土類磁石合金の
製造装置。
7. A space defined by a pair of side surfaces facing each other for casting a molten alloy, a pair of end surfaces connecting both end sides of the pair of side surfaces, and a bottom surface, and defined by each of these surfaces. 1. A rare earth magnet alloy manufacturing apparatus, which is a mold for casting a molten alloy therein, wherein a bottom surface of a cross section of the space has a contour that is convex downward.
【請求項8】 請求項7記載の希土類磁石合金の製造装
置において,前記鋳型の底部を冷却するための冷却装置
と,前記底部より上側の上部を加熱するためのヒータと
を備えていることを特徴とする希土類磁石合金の製造装
置。
8. The apparatus for producing a rare earth magnet alloy according to claim 7, further comprising a cooling device for cooling the bottom portion of the mold, and a heater for heating an upper portion above the bottom portion. Characteristic rare earth magnet alloy manufacturing equipment.
【請求項9】 請求項7又は8記載の希土類磁石合金の
製造装置において,前記希土類磁石合金は,Sm−Co
系合金及びR2 14B系磁石合金(但し,Rは希土類元
素(Yを包含する),TはFeを主成分とする遷移金属
元素)のうちの少なくとも一種からなることを特徴とす
る希土類磁石合金の製造装置。
9. The apparatus for producing a rare earth magnet alloy according to claim 7, wherein the rare earth magnet alloy is Sm—Co.
Rare earths characterized by comprising at least one of a group alloy and an R 2 T 14 B system magnet alloy (where R is a rare earth element (including Y) and T is a transition metal element containing Fe as a main component). Magnet alloy manufacturing equipment.
【請求項10】 希土類磁石合金を溶解した溶融合金と
の接触面の内で底面が凹状の窪みを有する鋳型に溶融合
金を鋳込むことによって,該合金の結晶粒の特定結晶軸
を前記底面と平行な方向に配向させることを特徴とする
希土類磁石合金の製造方法。
10. The molten alloy is cast into a mold having a concave bottom surface in the contact surface with the molten alloy in which the rare earth magnet alloy is melted, whereby specific crystal axes of crystal grains of the alloy are A method for producing a rare earth magnet alloy, which comprises orienting in a parallel direction.
【請求項11】 請求項10記載の希土類磁石合金の製
造方法において,前記鋳型の垂直方向に2つの部分に分
けられる内の一方を500℃以下に冷却するとともに,
前記2つの部分の内の他方を600〜1300℃以下に
加熱して前記鋳型に溶融合金を鋳込むことを特徴とする
希土類磁石合金の製造方法。
11. The method for producing a rare earth magnet alloy according to claim 10, wherein one of the two vertical parts of the mold is cooled to 500 ° C. or less,
A method for producing a rare earth magnet alloy, characterized in that the other of the two parts is heated to 600 to 1300 ° C. or less and a molten alloy is cast into the mold.
【請求項12】 請求項10又は11記載の希土類磁石
合金の製造方法において,前記希土類磁石合金は,Sm
−Co系合金及びR2 14B系磁石合金(但し,Rは希
土類元素(Yを包含する),TはFeを主成分とする遷
移金属元素)のうちの少なくとも一種からなることを特
徴とする希土類磁石合金の製造方法。
12. The method for producing a rare earth magnet alloy according to claim 10, wherein the rare earth magnet alloy is Sm.
-Co alloy and R 2 T 14 B magnet alloy (Here, R includes a rare earth element (Y), T is a transition metal element as a main component Fe) and characterized in that it consists of at least one of A method for producing a rare earth magnet alloy.
JP5178950A 1993-07-20 1993-07-20 Rare earth magnet and method and device for manufacturing it Pending JPH0734206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5178950A JPH0734206A (en) 1993-07-20 1993-07-20 Rare earth magnet and method and device for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5178950A JPH0734206A (en) 1993-07-20 1993-07-20 Rare earth magnet and method and device for manufacturing it

Publications (1)

Publication Number Publication Date
JPH0734206A true JPH0734206A (en) 1995-02-03

Family

ID=16057493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5178950A Pending JPH0734206A (en) 1993-07-20 1993-07-20 Rare earth magnet and method and device for manufacturing it

Country Status (1)

Country Link
JP (1) JPH0734206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075616A1 (en) * 2006-12-20 2008-06-26 Sagami Chemical Metal Co., Ltd. Running gear utilizing permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075616A1 (en) * 2006-12-20 2008-06-26 Sagami Chemical Metal Co., Ltd. Running gear utilizing permanent magnet
JPWO2008075616A1 (en) * 2006-12-20 2010-04-08 株式会社相模化学金属 Traveling device using permanent magnets

Similar Documents

Publication Publication Date Title
JPH0734206A (en) Rare earth magnet and method and device for manufacturing it
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH10189319A (en) Manufacture of material powder for anisotropic permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH048923B2 (en)
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH0696927A (en) Rare-earth sintered magnet
JPH04176805A (en) Production of rare earth element-cobalt bonded magnet powder
JPS59103308A (en) Manufacture of permanent magnet
JPS6318604A (en) Resin-bonded permanent magnet and manufacture thereof
JPS6238841B2 (en)
JPH0641655A (en) Rare earth metal alloy for magnet and production thereof
JP2002083706A (en) Method for manufacturing magnet powder for rare earth bonded magnet
JPH0533076A (en) Rare earth permanent magnet alloy and its production
JPH01706A (en) Rare earth magnet manufacturing method
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JPH05251221A (en) Manufacture of powder for rare earth sintered magnet
JPS63312915A (en) Production of permanent magnet
JPH01146308A (en) Manufacture of rare-earth magnet
JPH01146309A (en) Manufacture of rare earth magnet
JPH0775204B2 (en) Method for manufacturing polymer composite rare earth magnet
JPS6347907A (en) Manufacture of rare earth magnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040630