JPS59103308A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS59103308A
JPS59103308A JP57212450A JP21245082A JPS59103308A JP S59103308 A JPS59103308 A JP S59103308A JP 57212450 A JP57212450 A JP 57212450A JP 21245082 A JP21245082 A JP 21245082A JP S59103308 A JPS59103308 A JP S59103308A
Authority
JP
Japan
Prior art keywords
die
mixture
magnetic
powder
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57212450A
Other languages
Japanese (ja)
Other versions
JPH0544161B2 (en
Inventor
Itaru Okonogi
格 小此木
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57212450A priority Critical patent/JPS59103308A/en
Publication of JPS59103308A publication Critical patent/JPS59103308A/en
Publication of JPH0544161B2 publication Critical patent/JPH0544161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a resin bond magnet having a distinguished performance by a process having the steps of charging a die with a mixture containing magnetic powder of 2-17 rare earth metal and a specified amount of organic resin, and shaping the mixture in the die under the influence of a magnetic field at a temperature of 40- 150 deg.C. CONSTITUTION:A mold composed of a lower die 3, punch 4 and a peripheral die 6 is situated within a gap between a pair of solenoids each having a solenoid coil 1 and a pole piece 2. The die 6 is made of a non-magnetic stellite, while the punches 3 and 4 are made of normalized SuJ2. A mixture powder 5 contains R2TM17 rare earth metal magnetic powder consisting of a rare earth metal R and a transition metal TM, and 0.5-5wt% of organic resin as a binder. The mixture powder is charged in the die cavity formed in the die 6. The die is heated to a temperature of 40-150 deg.C by a heating medium which is circulated through a jacket 8 in a case 7 as indicated by arrows. In operation, a hydraulic press cylinder 11 is actuated to lower the punch 4 thereby compacting the mixture powder 5, while the mixture powder 5 is being heated by the heating medium and magnetized by a magnetic field developed between the pole pieces 2, 2. By this method, it is possible to obtain a permanent magnet which is superior both in magnetic property and mechanical strength.

Description

【発明の詳細な説明】 本発明は、樹脂結合損希土類金属間化合物永久磁石の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a resin-bonded rare earth intermetallic compound permanent magnet.

さらに付言すれば、磁石粉末と結合材である高分子有機
物(詞脂を混合し、異方性を与えるため、成形壓内に装
入した前記混合粉末を磁場中配向させながら加熱し、加
圧(圧縮)成形する永久磁石の製造方法に係るものであ
る。
Furthermore, in order to provide anisotropy by mixing magnet powder and a polymeric organic substance (or resin) as a binder, the mixed powder charged into a molding bottle is heated while being oriented in a magnetic field, and then pressurized. This relates to a method of manufacturing a permanent magnet that is (compression) molded.

従来、樹脂結合型希土類金属間化合物磁石は、?a磁場
中圧縮成形する場合、常温でのみ行なわれていた。その
ため、次のような欠点なり問題を有していた。
What are the conventional resin bonded rare earth intermetallic compound magnets? a) Compression molding in a magnetic field was performed only at room temperature. Therefore, it has the following drawbacks or problems.

(1)バインダーの材質は、液状のエポキシ樹脂で粘度
は、2万0F8  以下しか使用できなかった。
(1) The binder material is a liquid epoxy resin with a viscosity of 20,000 F8 or less.

(2)実用に供し得る磁石材料としての磁石粉末の充て
ん率は、最高でも、約80容量係程度であった。このた
め、磁気性能を上げるには限界があった。
(2) The filling ratio of magnet powder as a practically usable magnet material was about 80% by volume at most. For this reason, there was a limit to how much magnetic performance could be improved.

(3)  また空孔率は3〜7%もおるため、磁気特性
を下げる一要因でもあり、さらには、機械的性質を劣化
し易く、且つ長期信頼性(温度。
(3) Furthermore, since the porosity is 3 to 7%, it is a factor that lowers magnetic properties, and furthermore, it tends to deteriorate mechanical properties, and long-term reliability (temperature).

湿度など)に敏感に影響する、 (4)  磁場中、加圧成形後、型より抜き出すと、ス
プリングバック現象で、形状変化あるいは寸法変化を生
じるため、精度を上げられなかった。
(4) When removed from the mold after pressure molding in a magnetic field, the shape or dimensions change due to the springback phenomenon, making it impossible to improve accuracy.

本発明の目的は、上記従来法の欠点全改善するもので、
樹脂結合型希土類金属間化合物磁石の磁気性能を高め、
且つ機誠的性質、長期信頼性、量産性をも改良した永久
磁石を提供することにある。
The purpose of the present invention is to overcome all the drawbacks of the above-mentioned conventional methods.
Improving the magnetic performance of resin-bonded rare earth intermetallic compound magnets,
Another object of the present invention is to provide a permanent magnet with improved mechanical properties, long-term reliability, and mass productivity.

以下、上記目的を達成するための本発明方法を詳述する
Hereinafter, the method of the present invention for achieving the above object will be explained in detail.

寸ず本発明の対象物は、樹脂結合型R,T M17系希
土類金属間化合物永久磁石の製造方法である。
The object of the present invention is a method for producing a resin bonded R,T M17 rare earth intermetallic compound permanent magnet.

R,TM17型化合物の組成tよ、次のようなものであ
る。一般式で表わせば、R(Oo 1−u−v−w l
ll’e v Ouu My)w(ここで、Rは8m、
Oe、Pr、Y、La を中心とした希土類元素の1種
又は2種以上の組み合わせであり、Mid、Si、Ti
、2:r、Hf、Nb、V。
The composition of R, TM17 type compound is as follows. If expressed as a general formula, R(Oo 1-u-v-w l
ll'e v Ouu My)w (Here, R is 8m,
One or a combination of two or more rare earth elements, mainly Oe, Pr, Y, La, Mid, Si, Ti
, 2:r, Hf, Nb, V.

Or、Mo、¥nの1種または2種以上の組み合わせ)
で、次の組成範囲からなる2−17系希土類金属間化合
物合金を適用できる。[1,1≦V≦0,4゜0.06
≦U≦0.15.uoυ1≦W≦0.05. 。
One or a combination of two or more of Or, Mo, ¥n)
Therefore, a 2-17 rare earth intermetallic compound alloy having the following composition range can be applied. [1,1≦V≦0,4゜0.06
≦U≦0.15. uoυ1≦W≦0.05. .

10≦2≦85であって、前記組成範囲になるよう溶解
し、鋳造した合金インゴットを使用する。
An alloy ingot is used which is melted and cast so as to have the above composition range, where 10≦2≦85.

合金インゴットハ、マクロ組織は、主体的に柱状晶化の
進んだ状態でなければならない。次に該合金インゴット
のまま非酸化雰囲気中で熱処理を行なう。まず合金均質
化のため、1100℃〜1200℃で、1時間〜100
時間溶体化処理し、常温まで急冷処理してから、500
℃〜900℃に再加熱し、析出硬化処理を行ない、磁気
的硬化を施す。
The macrostructure of the alloy ingot must be primarily in a state of advanced columnar crystallization. Next, the alloy ingot is subjected to heat treatment in a non-oxidizing atmosphere. First, in order to homogenize the alloy, it was heated at 1100℃~1200℃ for 1 hour~100℃.
After time solution treatment and rapid cooling treatment to room temperature, 500
C. to 900.degree. C., precipitation hardening treatment, and magnetic hardening.

続いて、該合金インゴットは、ハンマークラッシャー′
による粗粉砕工程、ボールミル、ジェットミルなどを用
いた微粉砕工程を経て、粒度2μ、〜10口μの磁石粉
末とする。この2−17系析出硬化型磁石粉末と結合材
である有機物樹脂を混合。
Subsequently, the alloy ingot is passed through a hammer crusher'
After a coarse pulverization step using a ball mill, a fine pulverization step using a ball mill, a jet mill, etc., magnetic powder with a particle size of 2 μm to 10 μm is obtained. This 2-17 precipitation hardening magnet powder is mixed with an organic resin as a binder.

乳鉢あるいは、大量に行なう場合は攪拌型混線機で、磁
石粉末と樹脂を良く混ぜ合わせる。ここで磁石粉末と樹
脂の比率は、重量比で樹脂は0.5%〜5%が好ましい
。0.5%以下では、本発明方法によるも、機械的性質
の劣化を生じ易い。磁石粉末を完全に結合材で被覆する
ことが困難となる。
Mix the magnet powder and resin well in a mortar or in a mixing mixer if large quantities are used. Here, the ratio of the magnet powder to the resin is preferably 0.5% to 5% by weight of the resin. If it is less than 0.5%, mechanical properties tend to deteriorate even when the method of the present invention is used. It becomes difficult to completely cover the magnet powder with the binder.

ま1ζ、5チをこえると、圧縮成形で、樹脂の浸み出し
、成形体が型から取れなくなり、且つヒビ割れなどの欠
陥を生じ易いため、これまでとした。
If the thickness exceeds 1ζ or 5, the resin will ooze out during compression molding, the molded product will not be able to be removed from the mold, and defects such as cracks will easily occur, so this is what has been described above.

次に、温間磁場中圧縮成形法の一例は、第1図に示した
方法によって行なわれる。
Next, an example of the compression molding method in a warm magnetic field is performed by the method shown in FIG.

1の電磁石コイルと2のポールピースで構成された電磁
石のギャップ間に、3,4.6から構成される金型がセ
ットされる。外型6は、非磁性ステライトでつくられ、
4は上パンチ、3は下パンチで、5uJZを調質した材
料でつくられている。
A mold consisting of 3, 4, and 6 pieces is set between the gap between the electromagnets consisting of 1 electromagnet coil and 2 pole pieces. The outer mold 6 is made of non-magnetic stellite,
4 is the upper punch, 3 is the lower punch, and they are made of a material tempered from 5uJZ.

5はR,TM17磁石粉末と樹脂結合材からなる混合粉
末を装入しである。次に7は、金型を40〜150℃に
加熱するためのケースで、この空間内8は矢印のごとく
、加熱媒体を流す構造となる。
5 is charged with a mixed powder consisting of R, TM17 magnet powder and a resin binder. Next, 7 is a case for heating the mold to 40 to 150°C, and the space 8 has a structure in which a heating medium flows as shown by the arrow.

加熱媒体は、9から入v10に出ることによって6の外
型を加熱小米、これによって5の混合粉末を加熱しなが
ら、2の上下ポールピース間に磁場を発生させて、11
の油圧プレスシリンダーを押し下けて圧縮成形する。こ
の加圧力は、1tOrV/crA〜4 t、on/c+
1  で行なう。加熱温度は、40℃以下では結合濁の
有機物樹脂、すなわち本発明方法では主に熱硬性樹脂を
対象とするが、この流れ性。
The heating medium enters from 9 and exits from v10 to heat the outer mold of 6. While heating the mixed powder of 5 with this, a magnetic field is generated between the upper and lower pole pieces of 2.
Compression molding is performed by pressing down a hydraulic press cylinder. This pressing force is 1tOrV/crA~4t, on/c+
Do it with 1. When the heating temperature is 40° C. or lower, organic resins with binding turbidity, that is, thermosetting resins are mainly used in the method of the present invention, but this fluidity is affected.

磁粉との濡れ性を改良する効果に乏しく、且つ、150
℃をこえると、樹脂の分解、磁粉が酸化するため、目的
とする高性能化を阻害する。
It has a poor effect on improving wettability with magnetic particles, and
If the temperature exceeds ℃, the resin decomposes and the magnetic particles are oxidized, which impedes the desired high performance.

このように、磁場中圧縮成形時に、加熱することにより
、バインダー(結合材)である熱硬化性樹脂は、磁石粉
末の表面に濡れ易く、その量が少なくなればなる程、効
果は大きいことが、実験によシ判明した。また加熱によ
って、結合材の粘度は一時的に下がり、その低下度合は
、常温の半分以下になるものも得られ、特に高粘度、具
体的には1万0P8〜10万0PS  O熱硬化性樹脂
では効果が大きかった。このような作用によって、前記
混合粉を圧縮成形を行なうと、成形体中の空気は、大変
抜は易く、気孔率を低めることも判明した。すなわち、
高密度化を容易に達成出来た。
In this way, by heating during compression molding in a magnetic field, the thermosetting resin that is the binder (binding material) easily wets the surface of the magnet powder, and the smaller the amount, the greater the effect. It was found by experiment. In addition, by heating, the viscosity of the binder temporarily decreases, and the degree of decrease is less than half of that at room temperature, making it possible to obtain products with particularly high viscosity, specifically 10,000 P8 to 100,000 PSO thermosetting resins. The effect was great. It has also been found that due to this effect, when the mixed powder is compression molded, the air in the molded product can be removed very easily and the porosity can be lowered. That is,
High density could be easily achieved.

以1、実施例に従って本発明方法を詳述する。Hereinafter, the method of the present invention will be explained in detail according to Examples.

実施例1゜ 次の組成からなるR2 T Mlγ系希土類金属間化合
物合金を溶解・鋳造し、合金インゴットを得た。
Example 1 An R2 T Mlγ rare earth intermetallic compound alloy having the following composition was melted and cast to obtain an alloy ingot.

組成は、一般式で表わせば、S m (Ooo−1I。The composition can be expressed as a general formula: Sm (Ooo-1I.

Cuo、o7Feo、12 Zro、02 )s、s 
(D 2−17系化合物である。なお、溶解は、Arガ
スを用いた低周波炉で行ない、金型に鋳造した。この時
の鋳湯温度は1580℃でちった。
Cuo, o7Feo, 12 Zro, 02 ) s, s
(This is a D 2-17 type compound. The melting was carried out in a low frequency furnace using Ar gas and cast into a mold. The temperature of the casting metal at this time was 1580°C.

得う:?′!、たインゴットのマクロ組織は、80チ以
上(句柱状晶であった。このような鋳造方案でつくられ
た合金インゴットを、析出硬化熱処理を以下の手段で行
なった。Arガス雰囲気炉中で、1160℃X4時間加
熱後、約200℃まで30〜b/分の冷却速度で急冷処
理した。
Get:? ′! The macrostructure of the ingot was 80 cm or more (columnar crystals). The alloy ingot produced by such a casting method was subjected to precipitation hardening heat treatment by the following method. In an Ar gas atmosphere furnace, After heating at 1160°C for 4 hours, it was rapidly cooled to about 200°C at a cooling rate of 30 to 10 b/min.

以降、常温まで冷却したインボッ)’に、Arガス炉中
で800℃×2時間+740℃X3時間加熱2段時効処
理し、常温まで60〜b 冷却した。ケ、にインゴットハ、ハンマーミルで粗粉砕
し、次に、遠心ボールミルで、粒度3μ〜80μの分布
を持った微粉末2つくった。この微粉末(磁石粉末)に
、粘度80000PS(センチボイズ)のエポキシ樹脂
をそれぞれ所定量加え、混線機で混合し、磁場成形前原
料とした。続いて、第1表の条件で永久磁石を製造した
Thereafter, the ingot which had been cooled to room temperature was subjected to a two-stage aging treatment in an Ar gas furnace at 800° C. for 2 hours + 740° C. for 3 hours, and then cooled to room temperature for 60 to 50 minutes. The ingot was coarsely ground using a hammer mill, and then a centrifugal ball mill was used to produce two fine powders having a particle size distribution of 3 μm to 80 μm. A predetermined amount of epoxy resin with a viscosity of 80,000 PS (centivoids) was added to each of the fine powders (magnetic powder) and mixed in a mixer to form a raw material before magnetic field molding. Subsequently, permanent magnets were manufactured under the conditions shown in Table 1.

第1表製造条件 11以上の製造条件で得られた磁石の%性を、第2図、
第3図に示した。
Table 1 Manufacturing Conditions Figure 2 shows the percentage properties of magnets obtained under manufacturing conditions 11 or higher.
It is shown in Figure 3.

第2図は、試料扁1−1〜1−4および従来法で得た2
−17系樹脂磁石の磁気特性(b)と密度の関係(a、
 )を示す。磁場成形加熱温度との相関を示した。成形
時に加熱することによって、バインダーのエポキシ樹脂
は、磁粉の表面に濡れ易く、且つ、圧縮成形能力をも高
めることが、密度の変化からもとらえられた。
Figure 2 shows sample plates 1-1 to 1-4 and 2 pieces obtained by the conventional method.
Relationship between magnetic properties (b) and density (a,
) is shown. The correlation with magnetic field forming heating temperature was shown. It was also found from the change in density that heating during molding allows the binder epoxy resin to easily wet the surface of the magnetic powder, and also improves the compression molding ability.

また第5図では、温間磁場成形温度を45℃一定の時の
結合拐の量と磁気特性である(BE)maxについて調
べた。なお従来法は、第1図に示した磁場圧縮成形装置
を用い、金型を加熱せず、常温で実験したものである。
Further, in FIG. 5, the amount of bond removal and the magnetic property (BE)max were investigated when the warm magnetic field forming temperature was kept constant at 45°C. In the conventional method, experiments were conducted using the magnetic field compression molding apparatus shown in FIG. 1 at room temperature without heating the mold.

その結果、本発明方法は、結合材の童にかかわらず高い
(BH)maxを得られた。特に結合材の少ない領域で
は、効果の大きいことがわかった。
As a result, the method of the present invention was able to obtain a high (BH)max regardless of the strength of the binder. It was found that the effect is particularly large in areas where there is little binding material.

この事は、樹脂結合型永久磁石の高性能化を達成するの
に大変有利である。特に磁粉の充てん率を高めることを
容易にできる利点がある。
This is very advantageous in achieving high performance of resin-bonded permanent magnets. In particular, it has the advantage of making it easy to increase the filling rate of magnetic particles.

実施例2゜ 8 m (OO,sls cub、07 Feo、1 
Z ro、oty )?、8  なる一般式であられせ
る2−17系希土類金属間化合物合金を溶解、鋳造し2
V4のインゴットをつくった。
Example 2゜8 m (OO, sls cube, 07 Feo, 1
Zro, oty)? , 8 A 2-17 rare earth intermetallic compound alloy prepared by the general formula is melted and cast.
I made a V4 ingot.

次にArガス雰囲気中で1140℃×20時間加熱後、
500℃までは、80℃/分の速度で冷却した。この俗
体化処理を終えた合金インゴットを、800℃×20時
間加熱し、時効処理を行なった。
Next, after heating at 1140°C for 20 hours in an Ar gas atmosphere,
Cooling was performed at a rate of 80°C/min up to 500°C. The alloy ingot that had been subjected to the generalization treatment was heated at 800° C. for 20 hours to undergo an aging treatment.

この合金インゴットを粗粉砕し、ボールミル法で粒度5
μ〜80μの微粉末を製造した。該磁粉に、2.0wt
%の一液性エポキシ樹脂を加え、混#!機で混合した。
This alloy ingot was coarsely ground, and the particle size was 5
A fine powder of μ to 80 μ was produced. 2.0wt to the magnetic powder
Add % of one-component epoxy resin and mix #! Mixed in a machine.

この混合粉末を第1図に示す磁場成形装置を用いて1、
試料形状4X8X30%の角柱状磁石金つくった。なお
、本発明法の磁場成形圧縮時の加熱温度は50℃、従来
法は20℃で行なった。
This mixed powder was processed using the magnetic field forming apparatus shown in Fig. 1.
A gold prismatic magnet with a sample shape of 4 x 8 x 30% was made. The heating temperature during magnetic field molding and compression in the method of the present invention was 50°C, and in the conventional method, it was 20°C.

なお、前記成形条件では、磁石成形物を各10個ずつ成
形した時の特性平均値および、バラツキを第2表に示し
た。
Note that Table 2 shows the characteristic average values and variations when 10 magnet molded products were molded under the above molding conditions.

本発明法は、磁気特性はもちろん、機械的性質。The method of the present invention can improve not only magnetic properties but also mechanical properties.

密度の向上も達成された。また特徴点として、各特性の
バラツキを小さくする効果もあり、このことは、量産す
る上で、コスト低減を有利にできる利点に結びつくもの
である。なおバインダー(結合材)は、熱硬化性樹脂で
あれば、同様の効果を得られている。−18た、2−1
7系希土類金属間化合物であれば、他の組成に関して゛
も、同様な結果を得らf′Lだ。
An increase in density was also achieved. Another feature is that it has the effect of reducing variations in each characteristic, which leads to the advantage of being able to reduce costs in mass production. Note that similar effects can be obtained if the binder (binding material) is a thermosetting resin. -18, 2-1
In the case of 7-series rare earth intermetallic compounds, similar results can be obtained for other compositions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法に係る温間磁場中圧縮成形装置の
断面図。 1・・・・・・磁化コイル 2・・・・・・磁極(ポールピース) 6・・・・・・金型の下パンチ 4・・・…l上β 5・・・・・・混合粉末 6・・・・・・金型の外型 7・・・・・・金型加熱ケース 8・・・・・・金型加熱媒体 9・・・・・・  I  lの入口 10・・・川  l  lの出口 11・・・・・・プレス用ラム 第2図、第3図は、本発明方法の実施例1で得られた特
性を示す図。 第2図は磁気特性の(BH)rnax  と加熱温度第
5図は          と結合材の置場   上 出願人 株式会社 諏訪精工舎 代理人 弁理士 最上  務 第1図 0   1             4H登O/I童
(帆2)第3しI
FIG. 1 is a sectional view of a compression molding apparatus in a warm magnetic field according to the method of the present invention. 1... Magnetizing coil 2... Magnetic pole (pole piece) 6... Lower punch of mold 4... Upper β 5... Mixed powder 6...Mold outer mold 7...Mold heating case 8...Mold heating medium 9...I l inlet 10...River l l outlet 11... Press ram Figures 2 and 3 are diagrams showing the characteristics obtained in Example 1 of the method of the present invention. Figure 2 shows the magnetic properties (BH)rnax and heating temperature Figure 5 shows the location of the binder 2) Third part I

Claims (1)

【特許請求の範囲】[Claims] 希土類金属(以下Rと呼ぶ)と遷移金属(以下TMと呼
ぶ)からなる、R2TM17型希土類金属間化合物を@
解−鋳造法により合金インゴットをつくり、該合金を熱
処理、粉末工稈を経てつくられた磁石粉末と結合材とし
て有機物樹脂を0.5重量%〜5重量受含む混合物を、
成形型に装入し、さらに磁場を加えながら、前記混合物
i40℃〜150℃に加熱して温間成形して製造するこ
とを特徴とする永久磁石の製造方法。
R2TM17 type rare earth intermetallic compound consisting of rare earth metal (hereinafter referred to as R) and transition metal (hereinafter referred to as TM) @
An alloy ingot is made by the dissolution casting method, the alloy is heat treated, and a mixture containing magnet powder made through a powder mill and 0.5% to 5% by weight of an organic resin as a binder is prepared.
A method for manufacturing a permanent magnet, which comprises charging the mixture into a mold, heating the mixture to 40° C. to 150° C. and warm-forming the mixture while applying a magnetic field.
JP57212450A 1982-12-03 1982-12-03 Manufacture of permanent magnet Granted JPS59103308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212450A JPS59103308A (en) 1982-12-03 1982-12-03 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212450A JPS59103308A (en) 1982-12-03 1982-12-03 Manufacture of permanent magnet

Publications (2)

Publication Number Publication Date
JPS59103308A true JPS59103308A (en) 1984-06-14
JPH0544161B2 JPH0544161B2 (en) 1993-07-05

Family

ID=16622816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212450A Granted JPS59103308A (en) 1982-12-03 1982-12-03 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS59103308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147301A (en) * 1986-12-11 1988-06-20 Inoue Japax Res Inc Manufacture of resinated magnet
US20160298582A1 (en) * 2015-04-13 2016-10-13 Rolf Prettl Magnetic coil manufacturing, magnetic coil for a magnetic actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162204A (en) * 1979-06-05 1980-12-17 Tdk Corp Manufacture of anisotropic cylindrical polymer magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162204A (en) * 1979-06-05 1980-12-17 Tdk Corp Manufacture of anisotropic cylindrical polymer magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147301A (en) * 1986-12-11 1988-06-20 Inoue Japax Res Inc Manufacture of resinated magnet
US20160298582A1 (en) * 2015-04-13 2016-10-13 Rolf Prettl Magnetic coil manufacturing, magnetic coil for a magnetic actuator
US10170239B2 (en) * 2015-04-13 2019-01-01 Rolf Prettl Magnetic coil manufacturing

Also Published As

Publication number Publication date
JPH0544161B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JPH056323B2 (en)
JPS59103308A (en) Manufacture of permanent magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JP3275055B2 (en) Rare earth bonded magnet
JP4240988B2 (en) Rare earth alloy granulated powder manufacturing method, rare earth alloy granulated powder manufacturing apparatus, and rare earth alloy sintered body manufacturing method
JPS62282417A (en) Manufacture of rare earth magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPS5830107A (en) Manufacture of permanent magnet
JPH01125907A (en) High intensity rare earth based cobalt magnet and manufacture thereof
JPH07331394A (en) Production of rare earth alloy ingot and alloy powder for permanent magnet, and bond magnet
JPS5877546A (en) Permanent magnet and its manufacture
JPH04176805A (en) Production of rare earth element-cobalt bonded magnet powder
JPH04304380A (en) Production of magnetic powder for anisotropic bonded magnet
JPH03114206A (en) Manufacture of permanent magnet
JPS5966103A (en) Preparation of macromolecular compound rare-earth magnet
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JPH0140482B2 (en)
JPS5848602A (en) Production of magnet of intermetallic compound
JPH01297805A (en) Magnetic anisotropic powder and anisotropic plastic magnet
JPH01181502A (en) Manufacture of rare earth permanent magnet
JPS63308904A (en) Manufacture of bond magnet
JPS5827321B2 (en) Permanent magnet manufacturing method
JPS61119007A (en) Manufacture of permanent magnet
JPH03114205A (en) Sintered type permanent magnet