JPS5848602A - Production of magnet of intermetallic compound - Google Patents

Production of magnet of intermetallic compound

Info

Publication number
JPS5848602A
JPS5848602A JP56147262A JP14726281A JPS5848602A JP S5848602 A JPS5848602 A JP S5848602A JP 56147262 A JP56147262 A JP 56147262A JP 14726281 A JP14726281 A JP 14726281A JP S5848602 A JPS5848602 A JP S5848602A
Authority
JP
Japan
Prior art keywords
resin
powder
magnet
magnetic field
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56147262A
Other languages
Japanese (ja)
Inventor
Moriyoshi Hata
畑 守中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP56147262A priority Critical patent/JPS5848602A/en
Publication of JPS5848602A publication Critical patent/JPS5848602A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the magnetic characteristics of a resin bound fine powder magnet with an alloy consisting of rare earth components and transition metal components as a raw material by applying a pretreatment of specific conditions to the raw material alloy. CONSTITUTION:An intermetallic compd. consisting of rare earth components such as Y, Sm, Pr, Nd, Ce and transition metals such as Co, Fe, Ni, Mn as raw materials for magnets are pulverized down to 3mu average grain sizes. After the powder is compression molded in a magnetic field, the moldings are sintered in an inert gas such as gaseous Ar and are slowly cooled down to about 300 deg.C at 5 deg.C/hr cooling rate. Thereafter the moldings are further reheated to 850 deg.C and are subjected to an aging treatment for the purpose of improving coercive force. After the sintered bodies are cooled quickly, the bodies are pulverized again and an epoxy resin is added at about 5wt% to the powder and both are mixed. The mixture is compression molded in a magnetic field and is calcined and solidified to the curing temp. of the resin, whereby the permanent magnet having excellent magnetic characteristics is produced.

Description

【発明の詳細な説明】 本発明は、希土類とコバルトを主成分とする永久磁石に
関するもので、特に、樹脂バインド微粉末磁石の製造方
法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet containing rare earth elements and cobalt as main components, and particularly to a method for manufacturing a resin-bound fine powder magnet.

希土類とコバルト等の金属間化合物は、結晶磁気異方性
が非常に大きいことから、これを微粒子化すると、優れ
た永久磁石となることが公知である。
It is known that intermetallic compounds such as rare earth elements and cobalt have very large crystal magnetic anisotropy, and that when they are made into fine particles, they become excellent permanent magnets.

その製造方法を大別すると、焼結法と樹脂バインド法に
分けることができる。
The manufacturing method can be roughly divided into sintering method and resin binding method.

第1図は焼結磁石の製造工程、第2図は樹脂バインド磁
石の製造工程を示したものである。図により、それぞれ
の製造方法九ついて説明する。
FIG. 1 shows the manufacturing process of a sintered magnet, and FIG. 2 shows the manufacturing process of a resin-bound magnet. Each manufacturing method will be explained with reference to the drawings.

まず焼結磁石の製造方法であるが、焼結磁石として適正
な組成を有する合金を数ミクロン以下の単磁区粒子とし
た後、磁界中で圧縮成形する0次いで適宜温度で焼成す
ることにより、理論密度の95%以上までに緻密イLが
促進され、磁気特性が向上する。
First, the manufacturing method for sintered magnets is based on the theory that an alloy having an appropriate composition for a sintered magnet is made into single-domain particles of several microns or less, then compression molded in a magnetic field, and then fired at an appropriate temperature. Dense L is promoted to 95% or more of the density, and the magnetic properties are improved.

しかし焼結の際、寸法変化が非常に大きいため所要の寸
法とするには、二次加工を行なわなければならない。と
ころが、材質的に硬く非常に脆いため、通常の機械加工
は不可能で、加工は専らGo砥石あるいはダイヤモンド
砥石等による研削による方法で行なわれている。仁のた
め加工費が著しく高価となる大きな欠点を有している。
However, during sintering, dimensional changes are very large, so secondary processing must be performed to obtain the required dimensions. However, since the material is hard and extremely brittle, ordinary machining is impossible, and machining is carried out exclusively by grinding with a Go grindstone or a diamond grindstone. It has the major disadvantage that processing costs are extremely high due to its hardness.

一方、樹脂バインド磁石は、樹脂バインド磁石用として
適正な組成の合金を10ミクロン〜50ミクロン程度に
微粉末化した後、樹脂と混合し、磁界中で圧縮成形、ま
fcは圧縮成掃後に樹脂を含浸させた後、加熱固化する
工程を経てつくられるが、高温焼成を必要としないので
、二次加工を省略できる利点がある。しかしながら非磁
性体である樹脂が介在することに加え、酸化及び粉砕に
よる機械的歪発生の関係で、粉末粒子を単磁区粒子まで
微粉末化が困難なタア、粉末の配回も劣り、磁気特性は
焼結磁石に比べ、相当低下してしまう欠点がある。
On the other hand, resin-bound magnets are made by pulverizing an alloy with an appropriate composition for resin-bound magnets into a powder of about 10 to 50 microns, mixing it with resin, and compression-molding it in a magnetic field. It is produced through a step of impregnating it with heat and solidifying it, but it does not require high-temperature firing, so it has the advantage of omitting secondary processing. However, in addition to the presence of non-magnetic resin, it is difficult to micronize powder particles to single-domain particles due to mechanical strain caused by oxidation and crushing, and the distribution of powder is poor, resulting in poor magnetic properties. The disadvantage is that it is considerably lower than that of sintered magnets.

本発明は、上記欠点を解決すべくなされたものであり、
樹脂バインド磁石製造過程において、原料となる合金を
前処理することにより、樹脂バインド磁石の磁気特性が
著しく向上することに基づくものである。すなわち、適
正な組成を有する合金を一度、数ミクロン以下の単磁区
粒子としり後、磁界中で圧縮成形し、適宜温度で焼結後
、室温付近まで可能な限りゆっくり冷却し、次いで85
°0℃付近で熱時効することにより磁気特性が改良され
ることを見い出したものである。
The present invention has been made to solve the above drawbacks,
This is based on the fact that the magnetic properties of resin-bound magnets are significantly improved by pre-treating the raw material alloy in the process of manufacturing resin-bound magnets. That is, an alloy having an appropriate composition is once reduced to single magnetic domain particles of several microns or less, compression molded in a magnetic field, sintered at an appropriate temperature, cooled as slowly as possible to around room temperature, and then heated to 85°C.
It has been discovered that magnetic properties are improved by thermal aging at around 0°C.

以下、本発明を実施例により説明する。The present invention will be explained below with reference to Examples.

〔実施例1〕 まず公知の方法により、比較となる試料を図2に示した
手順により作製した。すなわちBmが重量比でshy@
含有する8m0O合金を振動ミルにより平均粒径15ミ
クロンに粉砕し、この粉末にエポキシ樹脂を約5wt%
添加・混合して、磁界中圧縮成形した。得られた成形体
を樹脂の硬化温度に加熱固化し次後、磁気特性を測定し
た。
[Example 1] First, a comparative sample was prepared by a known method according to the procedure shown in FIG. 2. In other words, Bm is shy@ in weight ratio
The containing 8m0O alloy is ground to an average particle size of 15 microns using a vibration mill, and about 5 wt% of epoxy resin is added to this powder.
They were added, mixed, and compression molded in a magnetic field. The obtained molded body was cured by heating to the curing temperature of the resin, and then its magnetic properties were measured.

磁気特性は以下の通りであった。The magnetic properties were as follows.

Br:4500G、BHc:43000・(BH)sa
g  :  9  M−G、Oe次に第5図により、本
発明の製造方法について説明する。/fiじめに、8m
が重量比で55%含有する8m0o合金を用意し、振動
ミルにより粉末の平均粒径が3ミクロンになるまで微粉
末化した後、磁界中5 ton/aiで圧縮成形した。
Br: 4500G, BHc: 43000・(BH)sa
g: 9 MG, Oe Next, the manufacturing method of the present invention will be explained with reference to FIG. /fi damp, 8m
An 8m0o alloy containing 55% by weight was prepared, and after being pulverized using a vibration mill until the average particle size of the powder became 3 microns, compression molding was performed in a magnetic field at 5 ton/ai.

次に成形体をアルゴンガス雰囲気中で1050℃×1時
間の条件で焼結を行ない、焼結後5℃/Hの冷却速度で
300℃まで冷却した。この後頁に−850℃に再加熱
し、保磁力を高めるための時効処理を施し穴。この様に
して作製した焼結体1に原料とし、以降、従来方法と同
様の条件で粉砕、成形、加熱固化を行ない、本発明によ
る樹脂バインド磁石を作製し次。
Next, the compact was sintered in an argon gas atmosphere at 1050°C for 1 hour, and after sintering was cooled to 300°C at a cooling rate of 5°C/H. After this, the holes were reheated to -850°C and subjected to aging treatment to increase the coercive force. The sintered body 1 produced in this manner was used as a raw material, and thereafter crushed, molded, and heated to solidify under the same conditions as in the conventional method to produce a resin-bound magnet according to the present invention.

このときの磁気特性は次の通りであった。The magnetic properties at this time were as follows.

Br:6800G、BHc:55000e(BH)wa
x : 1 (14M−G、Oe〔実施例2〕 比較試料とし実施例1で使用した8m0o合金を振動ミ
ルにより平均粒径10ミクロンに微粉末化し几後、磁界
中S tO即−で圧縮成形した。
Br:6800G, BHc:55000e(BH)wa
x: 1 (14M-G, Oe [Example 2] The 8m0o alloy used in Example 1 as a comparison sample was pulverized to an average particle size of 10 microns using a vibrating mill, and after cooling, it was immediately compression-molded with S tO in a magnetic field. did.

次いで成形品をエポキシ系樹脂融液に浸漬し、エポキシ
樹脂を含浸(減圧雰囲気中)させた後、硬化温度に加熱
固化した。磁気特性は以下の通りであった。
Next, the molded product was immersed in an epoxy resin melt to impregnate the epoxy resin (in a reduced pressure atmosphere), and then heated and solidified to a curing temperature. The magnetic properties were as follows.

Br:61300G、  BHc:50000s(13
1)wax: 次に本発明の製造方法は、重量比でElmが35−含有
する8m00合金を、振動オルにより平均粒径3ミクロ
ンとした後、粉末を磁界中S ton/iで圧縮成形し
た、得られ几成形体をアルゴンガス中で1050℃×1
時間の条件で焼結後、室温まで1℃/Mの冷却速度で冷
却した。この後850Cに再加熱し、加熱後はシリコン
油中に急冷した。
Br: 61300G, BHc: 50000s (13
1) Wax: Next, in the manufacturing method of the present invention, an 8m00 alloy containing 35% of Elm by weight was made into an average particle size of 3 microns using a vibrating orifice, and then the powder was compression molded in a magnetic field at S ton/i. The obtained compacted body was heated at 1050°C x 1 in argon gas.
After sintering under the conditions of 100 hrs., the sample was cooled to room temperature at a cooling rate of 1° C./M. Thereafter, it was reheated to 850C, and after heating, it was rapidly cooled in silicone oil.

以降、前記工程を経て作製した焼結体を原料とし、実施
例2に記載した従来方法により本発明の試料を作製した
Thereafter, samples of the present invention were produced by the conventional method described in Example 2 using the sintered bodies produced through the above steps as raw materials.

このときの磁気特性は Brニア200G、BHc:65000s(13H) 
m&s : 11 S M−G、osであった。
The magnetic properties at this time are Br near 200G, BHc: 65000s (13H)
m&s: 11 SM-G, os.

以上記載した様に、本発明の製造方法によれば、樹脂バ
インダー磁石の磁気特性を向上させることが明らかであ
る。この様に磁気特性が向上するのは、原料となる合金
を一度、特殊な熱処理することにより保磁力を向上させ
る効果があることと、前処理として、一度単磁区粒子ま
で粉砕することにより粉末の配向性が改善されるπめと
推測する。
As described above, it is clear that the manufacturing method of the present invention improves the magnetic properties of the resin binder magnet. This improvement in magnetic properties is due to the fact that special heat treatment of the raw material alloy has the effect of improving coercive force, and that the powder is pulverized to single-domain particles as a pretreatment. It is assumed that the orientation is improved at the πth point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結磁石の製造工程説明図、第2図は従来の樹
脂バインド磁石・、の製造工程説明図、第3図は本発明
による樹脂パイ・ンド磁石の製造工程説明図である。 以上
FIG. 1 is an explanatory diagram of the manufacturing process of a sintered magnet, FIG. 2 is an explanatory diagram of the manufacturing process of a conventional resin-bound magnet, and FIG. 3 is an explanatory diagram of the manufacturing process of a resin-bound magnet according to the present invention. that's all

Claims (1)

【特許請求の範囲】 希土類成分(Y、 Sm、 Pr、 kld、 Ce等
の一種又は二種以上の組合せ)と遷移金属成分(Co。 Fθ、Ni、Mn との組合せ)からなるRMsであ−
られされる微粉末金属間化合物を樹脂バインダーで固化
する樹脂バインド磁石の製造において、原料となる前記
組成物を数ミクロン以下の単磁区粒子とした後、磁界中
圧縮成形し、得られた成形体を適宜温度で焼結後、室温
付近まで徐冷し、次いで850℃前後で熱時効を施し、
処理温度から室温まで急冷したことを特徴とする金属間
化合物磁石の製造方法。
[Claims] RMs consisting of a rare earth component (one or a combination of two or more of Y, Sm, Pr, KLD, Ce, etc.) and a transition metal component (a combination of Co, Fθ, Ni, Mn).
In the production of resin-bound magnets, in which a finely powdered intermetallic compound is solidified with a resin binder, the composition as a raw material is made into single-domain particles of several microns or less, and then compression molded in a magnetic field, resulting in a molded product. After sintering at an appropriate temperature, it was slowly cooled to around room temperature, and then thermally aged at around 850°C.
A method for producing an intermetallic compound magnet characterized by rapid cooling from a processing temperature to room temperature.
JP56147262A 1981-09-18 1981-09-18 Production of magnet of intermetallic compound Pending JPS5848602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147262A JPS5848602A (en) 1981-09-18 1981-09-18 Production of magnet of intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147262A JPS5848602A (en) 1981-09-18 1981-09-18 Production of magnet of intermetallic compound

Publications (1)

Publication Number Publication Date
JPS5848602A true JPS5848602A (en) 1983-03-22

Family

ID=15426250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147262A Pending JPS5848602A (en) 1981-09-18 1981-09-18 Production of magnet of intermetallic compound

Country Status (1)

Country Link
JP (1) JPS5848602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640828A1 (en) * 1988-07-21 1990-06-22 Seiko Epson Corp ELECTROMAGNETIC ACTUATOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640828A1 (en) * 1988-07-21 1990-06-22 Seiko Epson Corp ELECTROMAGNETIC ACTUATOR

Similar Documents

Publication Publication Date Title
JPS62291904A (en) Mafufacture of permanent magnet
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
US3873379A (en) Method of producing rare earth-cobalt permanent magnet using special cooling rates
JPH0551656B2 (en)
US4099995A (en) Copper-hardened permanent-magnet alloy
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPS5848602A (en) Production of magnet of intermetallic compound
JPS6181607A (en) Preparation of rare earth magnet
JPS6181605A (en) Preparation of rare earth magnet
JPS62177150A (en) Permanent magnet material and its production
JP2892013B2 (en) Manufacturing method of rare earth plastic magnet
JPH0544161B2 (en)
JPS63216307A (en) Alloy powder for magnet
JPS6245685B2 (en)
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JP2892012B2 (en) Manufacturing method of rare earth polar anisotropic permanent magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH02205305A (en) Manufacture of high-molecular composite type rare earth magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPS62281308A (en) Manufacture of nd-fe-b plastic magnet
JPS63213317A (en) Rare earth iron permanent magnet
JPH0444403B2 (en)
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPH0775204B2 (en) Method for manufacturing polymer composite rare earth magnet
JPS62281307A (en) Nd-fe-b plastic magnet and its manufacture