JP2002083706A - Method for manufacturing magnet powder for rare earth bonded magnet - Google Patents

Method for manufacturing magnet powder for rare earth bonded magnet

Info

Publication number
JP2002083706A
JP2002083706A JP2000272767A JP2000272767A JP2002083706A JP 2002083706 A JP2002083706 A JP 2002083706A JP 2000272767 A JP2000272767 A JP 2000272767A JP 2000272767 A JP2000272767 A JP 2000272767A JP 2002083706 A JP2002083706 A JP 2002083706A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
alloy
heat treatment
magnet powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000272767A
Other languages
Japanese (ja)
Other versions
JP4574820B2 (en
Inventor
Etsuo Otsuki
悦夫 大槻
Kenji Konishi
謙治 小西
Sadaaki Nakamatsu
貞晃 中松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2000272767A priority Critical patent/JP4574820B2/en
Publication of JP2002083706A publication Critical patent/JP2002083706A/en
Application granted granted Critical
Publication of JP4574820B2 publication Critical patent/JP4574820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing magnet powder for rare earth bonded magnet, where Sm2Co17-based rare earth magnet powder which has high coercive force and high remanent magnetization and is superior in squareness property can be easily obtained. SOLUTION: In this method for manufacturing magnet powder for rare earth bonded magnet, molten metal of alloy for Sm2Co17-based rare earth magnet powder containing rare earth bonded magnet which contains Sm, Co, Fe, Cu and Zr is poured slantedly on a cooling roll which is rotated at a peripheral speed of 0.1-20 m/sec, and coagulated continuously in thickness of at most 1 mm, and an alloy thin belt is obtained. Continuously, solution heat treatment, aging heat treatment and grinding are performed at a temperature, e.g. at most alloy liquid phase appearing temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Sm2Co17系希
土類磁石粉未と樹脂とを含む希土類ボンド磁石を製造す
るための希土類ボンド磁石用磁石粉末の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth bonded magnet powder for producing a rare earth bonded magnet containing an Sm 2 Co 17 based rare earth magnet powder and a resin.

【0002】[0002]

【従来の技術】Sm−Co系2−17型ボンド磁石用磁
石粉末は、Sm、Co、Fe、Cu及びZrを必須成分
元素とする。この粉末は、原料成分を所定量配合して真
空又は不活性ガス雰囲気で溶解して鋳型に鋳込み、凝固
させて合金インゴットを製造し、真空又は不活性ガス雰
囲気中において、所定の条件でインゴットを熱処理して
1−7型不規則高温相の単相組織とする溶体化熱処理及
び時効熱処理を行なった後に粉砕する方法により製造さ
れている。前記溶体化処理によって得られる合金は、そ
の保磁力が1kOe以下の軟磁性を示す。しかし、時効
熱処理を行なうことにより、Cuが濃縮した1−5相が
網目上に析出してなるセル構造が、2−17母相に形成
されて保磁力が増大し永久磁石特性が発現される。従っ
て、従来においては、溶体化処理以降の工程における組
織変化に注目して磁石特性の改善がなされており、さら
にボンド磁石化工程において磁石粉末の充填率向上のた
め粉体物性の最適化に意が注がれ、現在では(BH)max
>12MGOeの高特性ボンド磁石が生産されるに至っ
ている。ところで、近年、ボンド磁石はその成形の容易
性、機械強度の信頼性等のため、その用途が広がってお
り、それを用いた機器の小型化、省エネルギー化の要求
が益々厳しくなっており、さらに高エネルギー積及び高
保磁力を有し、また角型性が改善されるSm−Co系ボ
ンド磁石の開発が望まれている。
2. Description of the Related Art Sm-Co type 2-17 type magnet powder for bonded magnets contains Sm, Co, Fe, Cu and Zr as essential components. This powder is prepared by blending a predetermined amount of raw material components, melting in a vacuum or an inert gas atmosphere, casting into a mold, solidifying to produce an alloy ingot, and forming the ingot under a predetermined condition in a vacuum or an inert gas atmosphere. It is manufactured by a method of performing a solution heat treatment and an aging heat treatment to form a single-phase structure of a 1-7 type irregular high temperature phase by heat treatment, and then pulverizing. The alloy obtained by the solution treatment exhibits soft magnetism having a coercive force of 1 kOe or less. However, by performing the aging heat treatment, a cell structure in which the Cu-enriched 1-5 phase precipitates on the mesh is formed in the 2-17 matrix, which increases the coercive force and develops permanent magnet characteristics. . Therefore, conventionally, the magnet properties have been improved by focusing on the structural change in the steps after the solution treatment, and further, in the bond magnetizing step, the powder properties have been optimized to improve the filling ratio of the magnet powder. Is poured, and now (BH) max
High performance bonded magnets of> 12 MGOe have been produced. By the way, in recent years, the use of bonded magnets has been widespread due to its ease of molding, reliability of mechanical strength, etc., and the demand for miniaturization and energy saving of equipment using it has become more and more severe. There is a demand for the development of an Sm-Co-based bonded magnet having a high energy product and a high coercive force and having improved squareness.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、高保
磁力、高残留磁化で、しかも角型性の良い、Sm2Co1
7系希土類磁石粉未を、容易に得ることができる希土類
ボンド磁石用磁石粉末の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide Sm 2 Co 1 having a high coercive force, a high remanence magnetization, and a good squareness.
An object of the present invention is to provide a method for producing a rare earth bonded magnet magnet powder that can easily obtain a 7 series rare earth magnet powder.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した。まず、Sm−Co系2
−17型希土類磁石粉末の製造過程における各合金組織
を詳細に観察し、磁石特性と合金組織との関係を探求し
た。その結果、凝固合金組織に存在するZrリッチ相
(成分組成分析ではSmCo3相又はSm2Co7相に近
い)が時効処理後でも存在し、結果的に2−17母相の
Zr含有量の不足にともなう保磁力低下をきたしている
ことが判った。そこで、高保磁力を有する磁石粉末を得
るために、凝固合金組織中、あるいは溶体化処理前の合
金組織中にZrリッチ相が出現しない方法について検討
し、各種溶解鋳造法を試みた。その結果、合金溶湯をあ
る冷却速度以上の範囲で鋳造することによりZrリッチ
相の出現が抑制され、さらに冷却速度が速すぎると結晶
粒が微細化しすぎて磁場成形時の結晶配向が不十分とな
り残留磁化を劣化させることが判った。そこで、このよ
うな条件を容易に満たすことが可能な方法として、溶湯
を一定の速度で冷却することができ、しかも効率良く連
続的な生産が可能なストリップキャスト法による条件を
見出した。更に、インゴットの各部の組織を詳細に調査
したところ、インゴットのなかで最後に凝固する箇所、
すなわち引け巣の領域にZrリッチ相の存在比の高い領
域と組成偏析があり、また表面領域酸化物の濃縮相があ
り、これらの組織不整が磁石特性の特に角型性を劣化さ
せることが判った。これらの問題もストリップキャスト
法により解決できることを突き止めた。また、ストリッ
プキャスト法により得られる薄帯は、鋳型により得られ
るインゴットよりも機械的な粉砕が容易で、微粉の発生
が抑制され特性劣化、作業性の問題も解決できる。更
に、従来の溶体化工程において、焼結型磁石の工程に類
似して液相出現温度で熱処理を加えているが、その工程
においてストリップキャスト法による薄帯の微細組織が
粗大化してその後の熱処理では解消しがたい組織不均一
をきたし、ひいては磁気特性が劣化することが判った。
そこで、溶体化熱処理を液相出現温度より低い温度で行
なうことにより、微細なストリップキャスト合金がダイ
レクトに単相に変化して均質な組織が得られ、磁気特性
が改善されることを見出して本発明を完成した。
Means for Solving the Problems The present inventors have intensively studied to solve the above problems. First, Sm-Co system 2
Each alloy structure during the manufacturing process of the -17 type rare earth magnet powder was observed in detail, and the relationship between the magnet properties and the alloy structure was explored. As a result, the Zr-rich phase existing in the solidified alloy structure
(Close to the SmCo 3 phase or Sm 2 Co 7 phase in the component composition analysis) even after the aging treatment, and as a result, the coercive force was reduced due to the shortage of the Zr content in the 2-17 parent phase. understood. Therefore, in order to obtain a magnet powder having a high coercive force, a method in which a Zr-rich phase does not appear in a solidified alloy structure or an alloy structure before a solution treatment was examined, and various melting casting methods were tried. As a result, the appearance of the Zr-rich phase is suppressed by casting the molten alloy at a certain cooling rate or higher, and when the cooling rate is too high, the crystal grains become too fine and the crystal orientation during magnetic field forming becomes insufficient. It was found that the remanent magnetization deteriorated. Therefore, as a method capable of easily satisfying such conditions, the present inventors have found a condition by a strip casting method capable of cooling a molten metal at a constant rate and capable of efficient and continuous production. Furthermore, when the organization of each part of the ingot was examined in detail, the last solidification part in the ingot,
That is, in the shrinkage cavity region, there is a region where the abundance ratio of the Zr-rich phase is high and composition segregation, and there is a concentrated phase of surface region oxide. It is found that these structural irregularities deteriorate magnet properties, particularly the squareness. Was. It has been found that these problems can also be solved by the strip casting method. Further, the ribbon obtained by the strip casting method is easier to mechanically pulverize than the ingot obtained by the mold, and the generation of fine powder is suppressed, and the problems of property deterioration and workability can be solved. Furthermore, in the conventional solution heat treatment, heat treatment is performed at the liquid phase appearance temperature in a manner similar to that of the sintered magnet, but in that process, the fine structure of the ribbon formed by the strip casting method becomes coarse, and the subsequent heat treatment is performed. Then, it was found that the non-uniformity of the structure was inevitable, and the magnetic properties were deteriorated.
Therefore, it was found that by performing the solution heat treatment at a temperature lower than the liquid phase appearance temperature, the fine strip cast alloy was directly changed to a single phase, a homogeneous structure was obtained, and the magnetic properties were improved. Completed the invention.

【0005】すなわち本発明によれば、Sm、Co、F
e、Cu及びZrを含む、Sm2Co17系希土類磁石粉
末含有希土類ボンド磁石用合金溶湯を、周速0.1〜2
0m/秒で回転する冷却ロールに傾注し、連続的に厚さ
1mm以下に凝固させて合金薄帯を得、次いで、溶体化
熱処理、時効熱処理及び粉砕することを特徴とする希土
類ボンド磁石用磁石粉末の製造方法が提供される。また
本発明によれば、前記溶体化熱処理を、合金液相出現温
度以下で行うことを特徴とする前記製造方法が提供され
る。
That is, according to the present invention, Sm, Co, F
e, Cu and Zr-containing Sm 2 Co 17- based rare earth magnet powder-containing alloy melt for rare earth bonded magnets, at a peripheral speed of 0.1 to 2
A rare earth bonded magnet magnet characterized by being poured into a cooling roll rotating at 0 m / sec, continuously solidifying to a thickness of 1 mm or less to obtain an alloy ribbon, then solution heat treatment, aging heat treatment and pulverization. A method for producing a powder is provided. Further, according to the present invention, there is provided the above-mentioned manufacturing method, wherein the solution heat treatment is performed at a temperature not higher than an alloy liquid phase appearance temperature.

【0006】[0006]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の製造方法は、Sm2Co17系希土類磁石粉
末含有希土類ボンド磁石用合金溶湯を、特定条件下に凝
固させて薄帯を得、次いで、溶体化熱処理、時効熱処理
及び粉砕することを特徴とし、本発明の目的を損なわな
い範囲で、通常のボンド磁石用粉末の製造方法で行なわ
れるその他の工程を含んでいても良い。本発明の製造方
法により得られる希土類ボンド磁石用磁石粉末は、Sm
−Co系2−17型希土類磁石粉末を含むボンド磁石に
使用する粉末であって、Sm、Co、Fe、Cu及びZ
rを必須成分として含む。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The production method of the present invention is characterized in that a molten alloy for a rare-earth bonded magnet containing a Sm 2 Co 17- based rare-earth magnet powder is solidified under specific conditions to obtain a ribbon, and then subjected to solution heat treatment, aging heat treatment and pulverization. In addition, other steps performed by a usual method for producing a powder for bonded magnets may be included as long as the object of the present invention is not impaired. The magnet powder for a rare earth bonded magnet obtained by the production method of the present invention is Sm
Powder used for a bonded magnet containing a Co-based 2-17 type rare earth magnet powder, comprising Sm, Co, Fe, Cu and Z
r as an essential component.

【0007】本発明の製造方法において、薄帯は、S
m、Co、Fe、Cu及びZrを含むSm2Co17系希
土類磁石原料用の合金溶湯を、周速0.1〜20m/秒
で回転する冷却ロールに傾注し、連続的に厚さ1mm以
下、好ましくは0.01〜1.0mmに凝固させて得る
ことができる。薄帯の厚さが1.0mmを超えると、フ
リーサーフェース面(冷却ロールに接触しない側)で冷却
速度低下に起囚するZr量の増大が生じる。合金溶湯の
組成は、Sm、Co、Fe、Cu及びZrを含み、Sm
2Co17系が得られるものであれば、特に限定されず、
公知の組成等を参照して適宜決定することができる。
In the manufacturing method of the present invention, the ribbon is S
An alloy melt for Sm 2 Co 17- based rare earth magnet raw material containing m, Co, Fe, Cu and Zr is poured onto a cooling roll rotating at a peripheral speed of 0.1 to 20 m / sec, and continuously has a thickness of 1 mm or less. , Preferably 0.01 to 1.0 mm. If the thickness of the ribbon exceeds 1.0 mm, the Zr amount increases on the free surface surface (the side not in contact with the cooling roll) due to a decrease in cooling rate. The composition of the molten alloy contains Sm, Co, Fe, Cu and Zr.
There is no particular limitation as long as a 2 Co 17 system can be obtained.
It can be determined appropriately with reference to known compositions and the like.

【0008】合金溶湯の冷却は、周速0.1〜20m/
秒で回転する冷却ロールに傾注し、連続的に上記厚さと
なるように行なう、特定条件のストリップキャスト法を
採用する。この際、Cu鋳型への鋳造法により、厚い鋳
型壁を用いて薄い鋳塊を製造する方法も考えられるが、
効率が悪く、しかも特定な冷却条件を保持することが困
難であるため、本発明の方法により得られる磁石粉末と
同様な磁石粉末は得られ難い。合金溶湯を回転する冷却
ロールに傾注する場合、冷却条件を一定にし、ロールへ
の供給量を一定にするために、例えば、タンディッシュ
又はノズル等を介して冷却ロールに傾注することが好ま
しい。この際、冷却ロールの材質は熱伝導度の高い金属
であればよく、Cu、Mo等が最適である。
Cooling of the molten alloy is performed at a peripheral speed of 0.1 to 20 m /
A strip casting method under specific conditions is adopted, in which the cooling roll is tilted in seconds, and the thickness is continuously adjusted to the above-mentioned thickness. At this time, a method of manufacturing a thin ingot using a thick mold wall by a casting method to a Cu mold is also considered,
Since the efficiency is low and it is difficult to maintain specific cooling conditions, it is difficult to obtain a magnet powder similar to the magnet powder obtained by the method of the present invention. In the case of casting the molten alloy into a rotating cooling roll, it is preferable to inject the molten alloy into the cooling roll via a tundish or a nozzle, for example, in order to keep the cooling conditions constant and the amount of supply to the roll. At this time, the material of the cooling roll may be a metal having high thermal conductivity, and Cu, Mo, or the like is optimal.

【0009】本発明の製造方法において、溶体化熱処理
は、得られた薄帯を、真空又は不活性ガス雰囲気におい
て、合金相の一部が溶解する液相出現温度域に保持し、
その後多相組織を1−7不規則構造高温相の単相組織に
するため固相線より低い温度に保持して溶体化し、急冷
する公知の方法に基づいて行なうことができる。なお、
液相出現温度及び溶体化温度は合金組成により変化し、
適宜条件を設定ことができる。溶体化熱処理は、上記方
法に基づく以外に、本発明においては、液相出現温度よ
り低い温度、例えば、液相出現温度より3〜20℃低い
温度で加熱し、溶体化処理を行なうことが好ましい。こ
のような溶体化熱処理を行なうことにより、より合金組
織を均一化させ、優れた磁気特性を付与することが可能
となる。
In the production method of the present invention, the solution heat treatment includes maintaining the obtained ribbon in a liquid phase appearance temperature range in which a part of the alloy phase is dissolved in a vacuum or an inert gas atmosphere,
Thereafter, in order to convert the multi-phase structure into a single-phase structure having a 1-7 irregular structure high-temperature phase, a solution can be maintained at a temperature lower than the solidus line, and the solution can be rapidly cooled by a known method. In addition,
The liquid phase appearance temperature and solution temperature change depending on the alloy composition,
Conditions can be set as appropriate. In the present invention, the solution heat treatment is preferably performed at a temperature lower than the liquid phase appearance temperature, for example, at a temperature lower by 3 to 20 ° C. than the liquid phase appearance temperature, in addition to the method based on the above method. . By performing such a solution heat treatment, the alloy structure can be made more uniform, and excellent magnetic properties can be imparted.

【0010】本発明の製造方法において、時効熱処理
は、上記溶体化熱処理よる合金の組成等を勘案して、通
常の条件等から適宜選択して行なうことができ、この際
所望の永久磁石特性を発現させることができる。時効熱
処理は、例えば、800〜900℃において、1〜10
時間程度の条件範囲から適宜選択することができる。
In the production method of the present invention, the aging heat treatment can be appropriately selected from ordinary conditions and the like in consideration of the composition of the alloy by the solution heat treatment, and the desired permanent magnet characteristics are obtained. Can be expressed. The aging heat treatment is performed, for example, at 800 to 900 ° C. for 1 to 10 hours.
It can be appropriately selected from a condition range of about time.

【0011】本発明の製造方法において、粉砕は、公知
の方法で良く、例えば、機械的な粗粉砕及びジェットミ
ル等を用いた微粉砕等により行なうことができる。粉砕
して得られる粉末の平均粒径は、特に限定されないが、
通常、平均粒径10〜30μm程度とすることができ
る。
In the production method of the present invention, the pulverization may be performed by a known method, for example, mechanical coarse pulverization and fine pulverization using a jet mill or the like. The average particle size of the powder obtained by grinding is not particularly limited,
Usually, the average particle size can be about 10 to 30 μm.

【0012】本発明の製造方法により得られる磁石粉末
を用いて希土類ボンド磁石を製造するには、公知の方法
により、樹脂と混合し、加圧成形し硬化させる方法等に
より得ることができる。この際の各条件、樹脂等は選択
して適宜決定することができる。
In order to produce a rare-earth bonded magnet using the magnet powder obtained by the production method of the present invention, it can be obtained by a known method such as a method of mixing with a resin, molding under pressure, and curing. At this time, each condition, resin and the like can be selected and appropriately determined.

【0013】[0013]

【発明の効果】本発明の希土類ボンド磁石用磁石粉末の
製造方法は、特に、特定の条件下において合金溶湯を冷
却させて特定厚さに凝固させた薄帯を、溶体化熱処理、
時効熱処理し、粉砕するので、高保磁力、高残留磁化
で、しかも角型性の良い、Sm2Co17系希土類磁石粉
未を、容易に得ることができる。更に、溶体化熱処理の
加熱を、液相出現温度以下とすることにより、より優れ
た磁石特性を有する希土類ボンド磁石用磁石粉末を得る
ことができる。
The method of the present invention for producing a magnet powder for a rare-earth bonded magnet is, in particular, a method comprising: cooling a molten alloy under specific conditions to solidify it into a specific thickness;
Since it is subjected to aging heat treatment and pulverization, it is possible to easily obtain Sm 2 Co 17 based rare earth magnet powder having high coercive force, high remanence magnetization and good squareness. Further, by setting the heating of the solution heat treatment to be equal to or lower than the liquid phase appearance temperature, a magnet powder for a rare-earth bonded magnet having more excellent magnet properties can be obtained.

【0014】[0014]

【実施例】以下、本発明を実施例により更に詳細に説明
するが本発明はこれらに限定されない。実施例1 Sm、Co、Fe、Cu及びZr原料金属を所定組成に
秤量し、減圧アルゴン雰囲気下1450℃に溶解した。
得られた合金溶湯を、周速1.5m/秒で回転するCu
製ロールにタンディッシュを介して傾注し、平均厚さ
0.3mmの薄片を連続的に調製した。得られた合金薄
帯の組成は、Sm24質量%、Fe14.5質量%、C
u4.6質量%、Zr2.9質量%及びCo残量であっ
た。次いで、得られた合金薄帯を、アルゴン雰囲気中1
220℃で1時間保持した後、1180℃で5時間溶体
化処理後急冷した。次いで、アルゴン雰囲気中850℃
で2時間保持した後、徐冷して時効熱処理を加えた。続
いて、機械粉砕により100メッシュ以下に砕いて、希
土類ボンド磁石用磁石粉末を調製した。得られた磁石粉
末に、エポキシ樹脂を1.2質量%となるように添加混
合した後、圧力7トン/cm2で加圧成形し、高温槽に
て樹脂を硬化させ、外形10mm、高さ15mmの希土
類ボンド磁石サンプルを調製した。サンプルの諸特性を
表1に示す。サンプルの残留磁化(Br)、保磁力(Hc
j)及びエネルギー積((BH)max)を常法に従い測定し
た。結果を表1に示す。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Raw materials of Sm, Co, Fe, Cu and Zr were weighed to have a predetermined composition and dissolved at 1450 ° C. under a reduced pressure argon atmosphere.
The obtained molten alloy is mixed with Cu rotating at a peripheral speed of 1.5 m / sec.
Rolls were tipped on the rolls via a tundish to continuously prepare thin slices having an average thickness of 0.3 mm. The composition of the obtained alloy ribbon was Sm 24 mass%, Fe 14.5 mass%, C
u 4.6% by mass, Zr 2.9% by mass and Co remaining amount. Next, the obtained alloy ribbon was placed in an argon atmosphere for 1 hour.
After holding at 220 ° C. for 1 hour, it was quenched after solution treatment at 1180 ° C. for 5 hours. Then, at 850 ° C. in an argon atmosphere
, And then slowly cooled to add an aging heat treatment. Subsequently, it was pulverized to 100 mesh or less by mechanical pulverization to prepare a rare earth bonded magnet magnet powder. After adding and mixing an epoxy resin to the obtained magnet powder to a concentration of 1.2% by mass, the mixture is molded under pressure at a pressure of 7 ton / cm 2 , the resin is cured in a high-temperature bath, and has an outer shape of 10 mm and a height of 10 mm. A 15 mm rare earth bonded magnet sample was prepared. Table 1 shows the characteristics of the sample. The remanent magnetization (Br) and coercive force (Hc) of the sample
j) and the energy product ((BH) max) were measured according to a conventional method. Table 1 shows the results.

【0015】比較例1 合金薄帯の代わりに、実施例1と同様な合金溶湯を、水
冷Cu鋳型に鋳込み厚さ50mmの鋳片を用いた以外
は、実施例1と同様に希土類ボンド磁石サンプルを調製
し、各特性を測定した。結果を表1に示す。なお、得ら
れた鋳片の組成は、実施例1と同様であった。
Comparative Example 1 A rare earth bonded magnet sample was prepared in the same manner as in Example 1 except that a molten alloy similar to that of Example 1 was cast into a water-cooled Cu mold and a slab having a thickness of 50 mm was used instead of the alloy ribbon. Was prepared, and each property was measured. Table 1 shows the results. The composition of the obtained slab was the same as in Example 1.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 合金薄帯をアルゴン雰囲気中1220℃で1時間保持す
る工程を、アルゴン雰囲気中1190℃で1時間保持す
る工程に代えた以外は、実施例1と同様に希土類ボンド
磁石サンプルを調製し、各特性を測定した。結果を表2
に示す。なお、用いた合金薄体の液相出現温度は120
0〜1210℃であった。
Example 2 A rare earth bonded magnet sample was prepared in the same manner as in Example 1 except that the step of holding the alloy ribbon at 1220 ° C. for 1 hour in an argon atmosphere was replaced with the step of holding at 1190 ° C. for 1 hour in an argon atmosphere. Was prepared, and each property was measured. Table 2 shows the results
Shown in The liquid phase appearance temperature of the used alloy thin body was 120
0-1210C.

【0018】[0018]

【表2】 [Table 2]

【0019】表2の結果より、実施例2における溶体化
温度1190℃は、この合金組成の液相出現温度(12
00〜1210℃)以下であり、残留磁化を高い値に維
持しながら高保磁力を達成することができた。また、最
大エネルギー積も向上していることから、減磁曲線の角
型性も改善されていると推定される。
From the results shown in Table 2, the solution temperature of 1190 ° C. in Example 2 is the same as the liquid phase appearance temperature (12
00-1210 ° C.) or less, and a high coercive force could be achieved while maintaining the remanence magnetization at a high value. Further, since the maximum energy product is also improved, it is estimated that the squareness of the demagnetization curve is also improved.

【0020】実施例3 Sm、Co、Fe、Cu及びZr原料金属を所定組成に
秤量し、減圧アルゴン雰囲気下1450℃に溶解した。
得られた合金溶湯を、表3に示す周速のCu製ロールに
タンディッシュを介して傾注し、平均厚さ0.3mmの
各種薄片(薄帯)を連続的に調製した。得られた各薄帯の
合金組成は、分析誤差の範囲内で実施例1と同様であっ
た。得られた各薄帯を、実施例2で調製した薄帯の代わ
りに用いた以外は、実施例2と同様に各種希土類ボンド
磁石サンプルを調製した。得られた各種希土類ボンド磁
石サンプルの残留磁化(Br)及び保磁力(Hcj)を常法
により測定した。結果を表3に示す。
Example 3 Sm, Co, Fe, Cu and Zr source metals were weighed to a predetermined composition and dissolved at 1450 ° C. under a reduced pressure argon atmosphere.
The obtained molten alloy was tilted through a tundish onto a Cu roll having a peripheral speed shown in Table 3 to continuously prepare various flakes (ribbons) having an average thickness of 0.3 mm. The alloy composition of each of the obtained ribbons was the same as in Example 1 within the range of the analysis error. Various rare earth bonded magnet samples were prepared in the same manner as in Example 2, except that each of the obtained ribbons was used instead of the ribbon prepared in Example 2. The residual magnetization (Br) and coercive force (Hcj) of the obtained rare-earth bonded magnet samples were measured by a conventional method. Table 3 shows the results.

【0021】比較例2 薄帯を調製する際のCu製ロールの周速を、表3に示す
とおり代えた以外は、実施例3と同様に各種希土類ボン
ド磁石サンプルを調製し、各特性を測定した。結果を表
3に示す。
Comparative Example 2 Various rare earth bonded magnet samples were prepared in the same manner as in Example 3 except that the peripheral speed of the Cu roll in preparing the ribbon was changed as shown in Table 3, and the characteristics were measured. did. Table 3 shows the results.

【0022】[0022]

【表3】 [Table 3]

【0023】表3の結果より、残留磁化Brはストリッ
プキャストのロール周速が高速の範囲で低下することが
判る。これは主に薄帯の組織微細化に伴いプレス工程で
の結晶配向度の低下に起因すると予想される。一方、保
磁力(Hcj)はロール周速が低速域で低下することが判
る。以上のことからロール周速に最適領域があることが
判る。
From the results shown in Table 3, it can be seen that the remanent magnetization Br decreases in the range of the peripheral speed of the strip cast roll. It is expected that this is mainly due to a decrease in the degree of crystal orientation in the pressing step as the structure of the ribbon becomes finer. On the other hand, it can be seen that the coercive force (Hcj) decreases at a low peripheral speed of the roll. From the above, it can be seen that there is an optimum region for the roll peripheral speed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中松 貞晃 兵庫県神戸市東灘区深江北町4−14−34 株式会社三徳内 Fターム(参考) 5E040 AA03 AA20 BB05 CA01 HB07 HB17 HB19 NN17  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Sadaaki Nakamatsu 4-14-34 Fukaekita-cho, Higashinada-ku, Kobe-shi, Hyogo Santokunai F-term (reference) 5E040 AA03 AA20 BB05 CA01 HB07 HB17 HB19 NN17

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Sm、Co、Fe、Cu及びZrを含
む、Sm2Co17系希土類磁石粉末含有希土類ボンド磁
石用合金溶湯を、周速0.1〜20m/秒で回転する冷
却ロールに傾注し、連続的に厚さ1mm以下に凝固させ
て合金薄帯を得、次いで、溶体化熱処理、時効熱処理及
び粉砕することを特徴とする希土類ボンド磁石用磁石粉
末の製造方法。
1. An alloy melt for a rare earth bonded magnet containing Sm 2 Co 17 based rare earth magnet powder containing Sm, Co, Fe, Cu and Zr is injected into a cooling roll rotating at a peripheral speed of 0.1 to 20 m / sec. And continuously solidifying it to a thickness of 1 mm or less to obtain an alloy ribbon, followed by solution heat treatment, aging heat treatment and pulverization.
【請求項2】 溶体化熱処理を、合金液相出現温度以下
で行うことを特徴とする請求項1に記載の製造方法。
2. The method according to claim 1, wherein the solution heat treatment is performed at a temperature not higher than the temperature at which an alloy liquid phase appears.
JP2000272767A 2000-09-08 2000-09-08 Method for producing magnet powder for rare earth bonded magnet Expired - Lifetime JP4574820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272767A JP4574820B2 (en) 2000-09-08 2000-09-08 Method for producing magnet powder for rare earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272767A JP4574820B2 (en) 2000-09-08 2000-09-08 Method for producing magnet powder for rare earth bonded magnet

Publications (2)

Publication Number Publication Date
JP2002083706A true JP2002083706A (en) 2002-03-22
JP4574820B2 JP4574820B2 (en) 2010-11-04

Family

ID=18758827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272767A Expired - Lifetime JP4574820B2 (en) 2000-09-08 2000-09-08 Method for producing magnet powder for rare earth bonded magnet

Country Status (1)

Country Link
JP (1) JP4574820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220530A (en) * 2011-06-01 2011-10-19 北京工业大学 Preparation method of Sm5Co2 nanocrystalline alloy block material rich in Sm single phase
CN102403117A (en) * 2011-10-09 2012-04-04 河北工业大学 Preparation method of Sm-Co-based amorphous nanocrystalline thin-strip magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188104A (en) * 1982-04-27 1983-11-02 Sumitomo Special Metals Co Ltd Preparation of rare-earth element cobalt family permanent magnet
JPH01207915A (en) * 1988-02-16 1989-08-21 Seiko Epson Corp Manufacture of permanent magnet
JPH08260083A (en) * 1995-03-17 1996-10-08 Santoku Kinzoku Kogyo Kk Sm-co permanent magnet material, permanent magnet and production thereof
WO1998036428A1 (en) * 1997-02-14 1998-08-20 Sumitomo Special Metals Co., Ltd. Thin plate magnet having microcrystalline structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188104A (en) * 1982-04-27 1983-11-02 Sumitomo Special Metals Co Ltd Preparation of rare-earth element cobalt family permanent magnet
JPH01207915A (en) * 1988-02-16 1989-08-21 Seiko Epson Corp Manufacture of permanent magnet
JPH08260083A (en) * 1995-03-17 1996-10-08 Santoku Kinzoku Kogyo Kk Sm-co permanent magnet material, permanent magnet and production thereof
WO1998036428A1 (en) * 1997-02-14 1998-08-20 Sumitomo Special Metals Co., Ltd. Thin plate magnet having microcrystalline structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220530A (en) * 2011-06-01 2011-10-19 北京工业大学 Preparation method of Sm5Co2 nanocrystalline alloy block material rich in Sm single phase
CN102403117A (en) * 2011-10-09 2012-04-04 河北工业大学 Preparation method of Sm-Co-based amorphous nanocrystalline thin-strip magnet

Also Published As

Publication number Publication date
JP4574820B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US5963774A (en) Method for producing cast alloy and magnet
US5538565A (en) Rare earth cast alloy permanent magnets and methods of preparation
EP2128290A1 (en) R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
JPH1036949A (en) Alloy for rare earth magnet and its production
JPS6393841A (en) Rare-earth permanent magnet alloy
JPH08316014A (en) Magnet and its manufacture
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
JP3841722B2 (en) Method for producing sintered body for rare earth magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP2000219942A (en) Alloy thin strip for rare earth magnet, alloy fine powder and their production
JPH07272914A (en) Sintered magnet, and its manufacture
JPWO2004094090A1 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JP4680357B2 (en) Rare earth permanent magnet manufacturing method
JP4650218B2 (en) Method for producing rare earth magnet powder
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JP2660917B2 (en) Rare earth magnet manufacturing method
JP2024020710A (en) Permanent magnet and device
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH09115711A (en) Anisotropic bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4574820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term