JPH0730960B2 - Operation control device for air conditioner - Google Patents

Operation control device for air conditioner

Info

Publication number
JPH0730960B2
JPH0730960B2 JP63211097A JP21109788A JPH0730960B2 JP H0730960 B2 JPH0730960 B2 JP H0730960B2 JP 63211097 A JP63211097 A JP 63211097A JP 21109788 A JP21109788 A JP 21109788A JP H0730960 B2 JPH0730960 B2 JP H0730960B2
Authority
JP
Japan
Prior art keywords
capacity
evaporation
evaporation pressure
outdoor unit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63211097A
Other languages
Japanese (ja)
Other versions
JPH0261466A (en
Inventor
真理 佐田
晶夫 樋口
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63211097A priority Critical patent/JPH0730960B2/en
Publication of JPH0261466A publication Critical patent/JPH0261466A/en
Publication of JPH0730960B2 publication Critical patent/JPH0730960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は容量可変形圧縮機を備えた空気調和装置の運転
制御装置に係り、特に冷房運転時に蒸発圧力に応じて圧
縮機の運転容量を制御するようにしたものの改良に関す
る。
Description: TECHNICAL FIELD The present invention relates to an operation control device for an air conditioner equipped with a variable capacity compressor, and more particularly, to an operating capacity of the compressor according to the evaporation pressure during cooling operation. It is related to the improvement of the controlled one.

(従来の技術) 従来より、容量可変形圧縮機を備えた空気調和装置にお
いて、冷房運転時に、圧縮機の吸入管における吸入ガス
圧力(低圧)と圧縮機の運転容量とで利用側熱交換器の
蒸発圧力を推定し、その推定された蒸発圧力に基づいて
圧縮機の運転容量を制御することにより、利用側熱交換
器で要求する熱交換能力に必要な冷媒循環量を確保しよ
うとする運転制御装置は公知の技術である。
(Prior Art) Conventionally, in an air conditioner equipped with a variable capacity compressor, during use of a cooling operation, the suction side gas pressure (low pressure) in the suction pipe of the compressor and the operating capacity of the compressor are used side heat exchangers. Estimating the evaporating pressure of the compressor and controlling the operating capacity of the compressor based on the estimated evaporating pressure to ensure the refrigerant circulation amount necessary for the heat exchange capacity required by the heat exchanger on the use side. The control device is a known technique.

(発明が解決しようとする課題) しかしながら、上記従来のものでは、検出される蒸発圧
力は利用側熱交換器から圧縮機までの配管で既に圧力損
失を受けた冷媒の物理状態量であって、真に制御目標と
すべき利用側熱交換器における蒸発圧力が性格に反映さ
れているとは必ずしもいえない。
(Problems to be solved by the invention) However, in the above-mentioned conventional one, the evaporation pressure detected is the physical state quantity of the refrigerant that has already undergone pressure loss in the pipe from the utilization side heat exchanger to the compressor, It cannot be said that the evaporation pressure in the heat exchanger on the utilization side, which is a true control target, is reflected in the character.

特に、室外ユニットに対して複数の室内ユニットを並列
に接続したマルチ方空気調和装置の場合には、一般的に
配管長が長くなり、しかも室内ユニットの位置による長
さのバラツキがあることもあって、目標とする蒸発圧力
と実際の蒸発圧力との偏差が大きく、そのために、圧縮
機の運転容量不足を招きやすいという問題があった。
Particularly, in the case of a multi-way air conditioner in which a plurality of indoor units are connected in parallel to an outdoor unit, the piping length is generally long, and the length may vary depending on the position of the indoor unit. Then, there is a problem that the deviation between the target evaporating pressure and the actual evaporating pressure is large, so that the operating capacity of the compressor is apt to be insufficient.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、各室内ユニットの要求能力に応じて圧縮機の運転
容量を制御する制御目標値を定めるに際し、圧力損失等
を考慮した補正を行うことにより、容量制御の精度の向
上を図り、もって容量不足の解消を図ることにある。
The present invention has been made in view of such points, and an object thereof is to make a correction in consideration of pressure loss and the like when setting a control target value for controlling the operating capacity of a compressor according to the required capacity of each indoor unit. By performing the above, it is intended to improve the accuracy of capacity control and thereby to solve the capacity shortage.

(課題を解決するための手段) 上記目的を達成するため本発明の第1の解決手段は、第
1図に示すように、室外ユニットに配置される容量可変
形圧縮機位置、室外ユニットに配置される熱源側熱交換
器(3)、減圧機構(6)および室内ユニットに配置さ
れる利用側熱交換器(7)を接続してなる冷媒回路(1
2)と、室外ユニットにおいて検出される蒸発圧力が要
求信号値となるよう上記圧縮機位置の運転容量を制御す
る容量制御手段(10)と備えた空気調和装置を前提とす
る。
(Means for Solving the Problems) In order to achieve the above-mentioned object, a first solution means of the present invention is, as shown in FIG. 1, arranged in a variable displacement compressor position arranged in an outdoor unit, and arranged in an outdoor unit. A heat source side heat exchanger (3), a pressure reducing mechanism (6) and a utilization side heat exchanger (7) arranged in an indoor unit are connected to a refrigerant circuit (1
2) and an air conditioner provided with a capacity control means (10) for controlling the operating capacity at the compressor position so that the evaporation pressure detected in the outdoor unit becomes a required signal value.

そして、空気調和装置の運転制御装置として、上記室内
ユニットに配置され、冷房運転時における要求蒸発能力
を検出する要求能力検出手段(Th1)と、上記利用側熱
交換器(7)に配置され、冷媒の蒸発圧力を検出する蒸
発圧力検出手段(Th2)と、該蒸発圧力検出手段(Th2)
の出力を受け、現在の蒸発圧力値と上記要求能力検出手
段(Th1)で検出された要求蒸発能力との差に応じて上
記室外ユニットにおける蒸発圧力についての要求信号値
の補正量を算出するとともに、前回の制御で出力された
室外ユニットにおける蒸発圧力の要求信号値から上記補
正量を減じたものを、上記容量制御手段(10)の制御の
ための要求信号値とする補正手段(51)と、該補正手段
(51)により補正された室外における蒸発圧力について
の要求信号値に基づき圧縮機位置の運転容量を制御する
容量制御手段(10)とを設ける構成としたものである。
Then, as an operation control device of the air conditioner, it is arranged in the indoor unit and is arranged in the required capacity detecting means (Th1) for detecting the required evaporation capacity during the cooling operation, and the utilization side heat exchanger (7), Evaporation pressure detection means (Th2) for detecting the evaporation pressure of the refrigerant, and the evaporation pressure detection means (Th2)
And outputs the correction amount of the required signal value for the evaporation pressure in the outdoor unit according to the difference between the current evaporation pressure value and the required evaporation capacity detected by the required capacity detection means (Th1). A correction unit (51) that uses a value obtained by subtracting the correction amount from the request signal value of the evaporation pressure in the outdoor unit output in the previous control as a request signal value for controlling the capacity control unit (10), A capacity control means (10) for controlling the operating capacity at the compressor position based on the request signal value for the outdoor evaporation pressure corrected by the correction means (51) is provided.

本発明の第2の解決手段は、上記第1の解決手段におい
て、上記室内ユニットを、室外ユニットに対して複数個
並列に配置し、上記要求能力検出手段(Th1)及び上記
蒸発圧力検出手段(Th2)は、それぞれ各室内ユニット
毎に配置する。そして、上記補正手段(51)を、各室内
ユニットにおける蒸発圧力−要求蒸発能力間の差に基づ
き室外ユニットの蒸発圧力についての要求信号値を算出
するように構成したものである。
A second solving means of the present invention is the above first solving means, wherein a plurality of the indoor units are arranged in parallel with the outdoor unit, and the required capacity detecting means (Th1) and the evaporating pressure detecting means ( Th2) is placed in each indoor unit. The correction means (51) is configured to calculate the required signal value for the evaporation pressure of the outdoor unit based on the difference between the evaporation pressure and the required evaporation capacity of each indoor unit.

(作用) 以上の構成により、請求項(1)の発明では、冷房運転
時、要求能力検出手段(Th1)により各室内の要求蒸発
能力が検出されると、補正手段(51)により、現在の蒸
発圧力と要求蒸発能力との差に応じて容量制御の制御目
標となる蒸発圧力についての要求信号値の補正量が算出
されるるそして、前回の制御における要求信号値から補
正量を減じたものを今回の制御における要求信号値とす
るように更新される。したがって、蒸発圧力についての
要求信号値が、連絡配管の長さ等に起因する要求信号値
とその要求信号に基づく容量制御の結果とのずれがなく
なる方向に補正され、より正確な値に漸次近付く。そし
て、この補正された要求信号値に応じて容量制御が行わ
れるので、わざわざ連絡配管における圧力損失を算出し
て圧力損失に応じた要求信号値の補正を行わなくても、
圧力損失による検出値の低下に起因する能力不足が解消
されることになる。
(Operation) With the above configuration, according to the invention of claim (1), when the required evaporation capacity in each room is detected by the required capacity detection means (Th1) during the cooling operation, the current value is corrected by the correction means (51). According to the difference between the evaporation pressure and the required evaporation capacity, the correction amount of the required signal value for the evaporation pressure, which is the control target of the capacity control, is calculated. It is updated to be the required signal value in this control. Therefore, the required signal value for the evaporating pressure is corrected so as to eliminate the deviation between the required signal value due to the length of the connecting pipe and the result of the capacity control based on the required signal, and gradually approaches a more accurate value. . Then, since the capacity control is performed according to the corrected request signal value, it is not necessary to calculate the pressure loss in the connecting pipe and correct the request signal value according to the pressure loss.
The lack of capacity due to the decrease in the detected value due to pressure loss will be resolved.

また、請求項(2)の発明では、特に、室内側から室外
側への配管長さが長くなるマルチ形空気調和装置におい
ても、各室内ユニット(A)〜(D)の配管長さの違い
等に起因する能力不足が解消される。
Further, in the invention of claim (2), particularly in a multi-type air conditioner in which the pipe length from the indoor side to the outdoor side is long, the difference in the pipe length of each indoor unit (A) to (D) Insufficient capacity due to such reasons will be resolved.

(実施例) 以下、本発明の実施例について、第3図以下の図面に基
づき説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第3図は請求項(1),(2)の発明に係る実施例の全
体構成を示し、一台の室外ユニット(X)に対し、4台
の室内ユニット(A)〜(D)が並列に配管されてい
る。上記室外ユニット(X)には、インバータ(8)に
より運転周波数可変に駆動される容量可変形の圧縮機
(1)と、冷房運転時には凝縮器、暖房運転時には蒸発
器として機能する熱源側熱交換器としての室外熱交換器
(3)と、冷房運転時には図中実線のごとく、暖房運転
時には図中破線のごとく切換わるサイクル切換機構とし
ての四路切換弁(2)と、冷房運転時には冷媒流量を調
節し、暖房運転時には冷媒を減圧する第1電動膨張弁
(4)とが配置されている。
FIG. 3 shows an overall configuration of an embodiment according to the inventions of claims (1) and (2), in which four indoor units (A) to (D) are parallel to one outdoor unit (X). Is piped to. The outdoor unit (X) includes a variable capacity compressor (1) that is driven by an inverter (8) so that the operating frequency is variable, and a heat source side heat exchanger that functions as a condenser during cooling operation and an evaporator during heating operation. An outdoor heat exchanger (3) as a heat exchanger, a four-way switching valve (2) as a cycle switching mechanism that switches as shown by a solid line in the figure during a cooling operation and as a broken line in the figure during a heating operation, and a refrigerant flow rate during a cooling operation. And a first electric expansion valve (4) for adjusting the pressure and reducing the pressure of the refrigerant during the heating operation.

また、上記各室内ユニット(A)〜(D)はいずれも同
一構成であって、冷媒の流れに応じて蒸発器又は凝縮器
として機能する利用側熱交換器としての室内熱交換器
(7)と、該室内熱交換器(7)への冷媒を減圧する減
圧機構としての第2電動膨張弁(6)とが配置されてい
る。
In addition, the indoor units (A) to (D) have the same configuration, and the indoor heat exchanger (7) is a use-side heat exchanger that functions as an evaporator or a condenser according to the flow of the refrigerant. And a second electric expansion valve (6) as a pressure reducing mechanism for reducing the pressure of the refrigerant to the indoor heat exchanger (7).

そして、上記各ユニット(X),(A)〜(D)内の各
機器(1)〜(7)は、それぞれ冷媒配管(11)により
順次冷媒の流通可能に接続されていて、室外熱交換器
(3)で室外空気との熱交換により付与されて熱を室内
熱交換器(7)〜(7)で室内に放出する冷媒回路(1
2)が構成されている。
The devices (1) to (7) in the units (X) and (A) to (D) are sequentially connected by a refrigerant pipe (11) so that the refrigerant can flow, and the outdoor heat exchange is performed. A refrigerant circuit (1) in which heat is provided by heat exchange with outdoor air in a device (3) and heat is released indoors in the indoor heat exchangers (7) to (7).
2) is configured.

次に、(9)〜(9)は各室内ユニット(A)〜(D)
個別の運転を制御する室内制御装置、(10)は室外ユニ
ット(X)の運転を制御するための室外制御装置であっ
て、上記各室内制御装置(9)〜(9)と室外制御装置
(10)とは、連絡配線により、信号の授受可能に接続さ
れている。
Next, (9) to (9) are the indoor units (A) to (D).
An indoor control device for controlling the individual operation, (10) is an outdoor control device for controlling the operation of the outdoor unit (X), and each of the indoor control devices (9) to (9) and the outdoor control device ( And 10) are connected to each other by communication wiring so that signals can be exchanged.

一方、装置にはセンサ類が設置されていて、各室内ユニ
ット(A)〜(D)において、(Th1)は室内熱交換器
(7)の空気吸込口に取付けられ、後述のごとく要求蒸
発圧力値に対応する吸込空気温度Taを検出する要求能力
検出手段としての室温センサ、(Th2)は室内熱交換器
(7)の液管側に取付けられ、冷房運転時における冷媒
の蒸発圧力相当飽和温度(以下蒸発圧力とする)Teを検
出するための液管センサであって、該各センサ(Th
1),(Th2)は上記室内制御装置(9)とは信号の入力
可能に接続されている。また、室外ユニット(X)にお
いて、(Pe)は圧縮機(1)の吸入管に配置され、低圧
を検出するための圧力センサであって、該圧力センサ
(Pe)は上記室外制御装置(10)と信号の入力可能に接
続されており、室外制御装置(10)により、上記各室内
制御装置(9)〜(9)から入力される各室内の要求蒸
発圧力値に基づき、圧力センサ(Pe)で検出される低圧
値に応じて、圧縮機(1)の運転容量を制御するように
なされている。よって、室外制御装置(10)は容量制御
手段としての機能を有するものである。
On the other hand, sensors are installed in the device, and in each indoor unit (A) to (D), (Th1) is attached to the air intake port of the indoor heat exchanger (7), and the required evaporation pressure is as described later. A room temperature sensor as a required capacity detecting means for detecting the intake air temperature Ta corresponding to the value, (Th2) is attached to the liquid pipe side of the indoor heat exchanger (7), and is a saturated temperature equivalent to the evaporation pressure of the refrigerant during the cooling operation. A liquid pipe sensor for detecting Te (hereinafter, referred to as an evaporation pressure), each of the sensors (Th
1) and (Th2) are connected to the indoor control device (9) so that signals can be input. Further, in the outdoor unit (X), (Pe) is a pressure sensor arranged in the suction pipe of the compressor (1) for detecting low pressure, and the pressure sensor (Pe) is the outdoor control device (10). ) And a signal can be input, and the outdoor control device (10) uses the pressure sensor (Pe) based on the required evaporation pressure value of each room input from each of the indoor control devices (9) to (9). ), The operating capacity of the compressor (1) is controlled according to the low pressure value detected in (1). Therefore, the outdoor control device (10) has a function as a capacity control means.

装置の冷房運転時、四路切換弁(2)が図中実線のごと
く切換わり、第1電動膨張弁(4)を開いた状態で、各
第2電動膨張弁(6)〜(6)の開度を適度に調節しな
がら運転が行われ、吐出冷媒が室外熱交換器(3)で凝
縮された後、各室内ユニット(A)〜(D)の室内熱交
換器(7)〜(7)で蒸発するように循環する。なお、
各室内ユニット(A)〜(D)が同時に暖房運転を行う
ときには、上記と逆の冷媒の流れによる運転が行われ
る。また、説明は省略するが、上記各室内ユニット
(A)〜(D)のうちいずれかが停止中であっても、上
記と類似の運転状態となる。
During the cooling operation of the device, the four-way switching valve (2) is switched as shown by the solid line in the figure, and the second electric expansion valves (6) to (6) of the second electric expansion valves (6) to (6) are opened with the first electric expansion valve (4) opened. The operation is performed while appropriately adjusting the opening degree, and the discharged refrigerant is condensed in the outdoor heat exchanger (3), and then the indoor heat exchangers (7) to (7) of the indoor units (A) to (D). ) To be evaporated. In addition,
When the indoor units (A) to (D) simultaneously perform the heating operation, the operation is performed by the reverse flow of the refrigerant. Although not described, even if any of the indoor units (A) to (D) is stopped, the operating state is similar to the above.

そして、上記装置の運転時、各室内ユニット(A)で
は、室内制御装置(9)により、上記各センサ(Th
1),(Th2)により検知される吸込空気温度Ta,蒸発圧
力Teに基づき第2電動膨張弁(6)の開度が適度に調節
される一方、室外制御装置(10)に出力する要求信号値
Teoが以下の手順で演算される。
Then, during operation of the above-mentioned device, in each indoor unit (A), the indoor control device (9) causes the above-mentioned respective sensors (Th
1), the opening degree of the second electric expansion valve (6) is adjusted appropriately based on the intake air temperature Ta and the evaporation pressure Te detected by (Th2), and the request signal output to the outdoor control device (10) value
Teo is calculated by the following procedure.

第4図のフローチャートは上記室内制御装置(9)の制
御内容を示し、ステップS1で上記室温センサ(Th1)で
検出される吸込空気温度Taと室内の設定温度Tsとを入力
し、ステップS2で、両者の差温ΔTsを式ΔRs=Ta−Tsに
より算出した後、ステップS3で、この差温ΔTsに基づき
室内熱交換器(7)の要求蒸発能力Terを決定する。次
に、ステップS4で上記液管センサ(Th2)で検出される
現在の蒸発温度Teを入力し、ステップS5で、両者の偏差
ETを式ET=Te−Terで算出した後、ステップS6で、上記
で求めた偏差ETを積分定数sで除して温度補正量ΔTeを
算出する。
The flow chart of FIG. 4 shows the control contents of the indoor control device (9). In step S 1 , the intake air temperature Ta detected by the room temperature sensor (Th1) and the indoor set temperature Ts are input, and step S In step 2 , the temperature difference ΔTs between the two is calculated by the equation ΔRs = Ta−Ts, and in step S 3 , the required evaporation capacity Ter of the indoor heat exchanger (7) is determined based on this temperature difference ΔTs. Next, in step S 4 , the current evaporation temperature Te detected by the liquid pipe sensor (Th2) is input, and in step S 5 , the deviation between the two is input.
After the ET calculated by the equation ET = Te-Ter, in step S 6, it calculates a temperature correction amount ΔTe by dividing the deviation ET obtained above in integration constant s.

そして、ステップS7〜S11で、上記で求めた温度補正量
ΔTeを温度補正量の最小値ST(ただし、STは正の値を有
する定数)と比較して、温度補正量ΔTとして、ΔTe<
−STであればΔTe=−STに、ΔTe>STであればΔTe=0.
2に、−ST≦ΔTe≦STであればそのままの値ΔTeに決定
する。
Then, at step S 7 to S 11, the minimum value of the temperature correction amount a temperature correction amount .DELTA.Te obtained above ST (although, ST is a constant having a positive value) as compared with, as the temperature correction amount [Delta] T, .DELTA.Te <
If -ST, ΔTe = -ST; if ΔTe> ST, ΔTe = 0.
If −ST ≦ ΔTe ≦ ST in 2, the value ΔTe is determined as it is.

また、ステップS12で、前回出力した要求信号値Teolを
入力し、ステップS13で、要求信号値Teoを式Teo=Teol
−ΔTeにより算出した後、ステップS14〜S17で、この要
求信号値Teoをその最小値Teominおよび最大値Teomaxと
比較して、最終的に室外制御装置(10)に出力する要求
信号値Teoとして、Teo>Teomaxであれば最大値Teomax
に、Teo<Teominであれば最小値Teominに、Teomin≦Teo
≦Teomaxであればそのままの値Teoに設定して、ステッ
プS18で要求信号値Teoを決定し、ステップS19でその値T
eoを室外制御装置(10)に出力する。
Also, in step S 12 , the previously output request signal value Teol is input, and in step S 13 , the request signal value Teo is calculated by the formula Teo = Teol.
After calculating the -DerutaTe, in step S 14 to S 17, the request signal value Teo compared to its minimum value Teomin and maximum Teomax, request signal value and finally outputs the outdoor control unit (10) Teo If Teo> Teomax, the maximum value Teomax
If Teo <Teomin, the minimum value is Teomin, and Teomin ≤ Teo
If ≤Teomax, the value Teo is set as it is, the request signal value Teo is determined in step S 18 , and the value Teo is determined in step S 19.
Output eo to the outdoor control device (10).

上記フローにおいて、ステップS5〜S18により、液管セ
ンサ(蒸発圧力検出手段(Th2)の出力を受け、現在の
蒸発圧力値に基づき室温センサ(要求能力検出手段)
(Th1)で検出された要求蒸発能力を補正する補正手段
(51)が構成されている。
In the above flow, at step S 5 to S 18, receiving the output of the liquid pipe sensor (evaporation pressure detecting means (Th2), room temperature sensor based on the current evaporation pressure value (required capacity detecting means)
A correction means (51) for correcting the required evaporation capacity detected in (Th1) is configured.

なお、室外制御装置(10)では、各室内制御装置(9)
〜(9)から出力される要求信号値Teoのうち、最大の
圧力損失を生ずる室内ユニットの要求信号値Teoに基づ
き圧縮機(1)の運転容量を制御するようになされてい
る。
In the outdoor control device (10), each indoor control device (9)
From among the request signal values Teo output from (9) to (9), the operating capacity of the compressor (1) is controlled based on the request signal value Teo of the indoor unit that produces the maximum pressure loss.

したがって、請求項(1)の発明では、室温センサ(要
求能力検出手段)(Th1)により各室内の要求蒸発能力T
erが検出されると、補正手段(51)により、その要求蒸
発能力値Terが液管センサ(蒸発圧力検出手段)(Th2)
で検出される現在の蒸発圧力Teに基づき補正される。そ
して、室外制御装置(容量制御手段)(10)により、こ
の補正された値である要求信号値Teoに基づき、圧縮機
(1)の運転容量が制御される。
Therefore, in the invention of claim (1), the room temperature sensor (required capacity detecting means) (Th1) is used to request the required evaporation capacity T in each room.
When er is detected, the required evaporation capacity value Ter is calculated by the correction means (51) as a liquid pipe sensor (evaporation pressure detection means) (Th2).
It is corrected based on the current evaporation pressure Te detected at. Then, the outdoor control device (capacity control means) (10) controls the operating capacity of the compressor (1) based on the corrected request signal value Teo.

その場合、室温センサ(Th1)で検出される要求蒸発能
力Terを現在の蒸発圧力Te−要求蒸発能力Terの差に応じ
た補正量ΔTeで補正するとともに、前回の制御で出力さ
れた要求信号値Teo1から補正量ΔTeを減じたものを、容
量制御手段(10)の制御のための要求信号値としている
ので、圧縮機(1)の吸入管における圧力損失とは無関
係に実際の蒸発圧力に応じて容量制御が行われる。よっ
て、圧力損失による検出値の低下に起因する能力不足を
解消することができるのである。
In that case, the required evaporation capacity Ter detected by the room temperature sensor (Th1) is corrected by the correction amount ΔTe according to the difference between the current evaporation pressure Te and the required evaporation capacity Ter, and the required signal value output by the previous control is also corrected. Since the value obtained by subtracting the correction amount ΔTe from Teo1 is used as the required signal value for controlling the capacity control means (10), it depends on the actual evaporation pressure regardless of the pressure loss in the suction pipe of the compressor (1). Capacity control is performed. Therefore, it is possible to eliminate the lack of capacity due to the decrease in the detected value due to the pressure loss.

また、上記実施例のように、複数の室内ユニット(A)
〜(D)を備えたマルチ形空気調和装置を対象とする請
求項(2)の発明では、特に、室内側から室外側への配
管長さが長くなるマルチ形空気調和装置においても、各
室内ユニット(A)〜(D)の配管長さの違い等に起因
する能力不足を解消することができる。
Further, as in the above embodiment, a plurality of indoor units (A)
In the invention of claim (2), which is directed to the multi-type air conditioner including (D), particularly in the multi-type air conditioner in which the pipe length from the indoor side to the outdoor side becomes long, It is possible to eliminate the lack of capacity due to the difference in the pipe lengths of the units (A) to (D).

なお、その場合、上記実施例では、各室内制御装置
(9)〜(9)内で補正手段(51)による要求蒸発能力
値Terの補正をしたが、室外制御装置(10)内で補正処
理をするようにしてもよく、上記と同様の効果を発揮す
ることができる。
In that case, in the above-described embodiment, the required evaporation capacity value Ter is corrected by the correction means (51) in each of the indoor control devices (9) to (9), but the correction processing is performed in the outdoor control device (10). Alternatively, the same effect as described above can be obtained.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、配
管途中の圧力損失に無関係に実際の蒸発圧力に基づく制
御が行われ、圧力損失等に起因する利用側熱交換器の能
力不足を解消することができる。
(Effect of the invention) As described above, according to the invention of claim (1), the control based on the actual evaporation pressure is performed irrespective of the pressure loss in the middle of the pipe, and the heat on the utilization side caused by the pressure loss or the like. The lack of capacity of the exchanger can be resolved.

また、請求項(2)の発明では、各室内ユニットの配管
長さの違い等に起因する利用側熱交換器の能力不足を解
消することができる。
Further, according to the invention of claim (2), it is possible to solve the insufficient capacity of the utilization side heat exchanger due to the difference in the pipe length of each indoor unit.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はそれぞれ請求項(1)および
(2)の発明の構成を示すブロック図である。第3図以
下は本発明の実施例を示し、第3図はその全体構成を示
す冷媒系統図、第4図は制御の内容を示すフローチャー
ト図である。 (1)……圧縮機、(2)……第1四路切換弁(サイク
ル切換機構)、(3)……室外熱交換器(熱源側熱交換
器)、(6)……第2電動膨張弁(減圧機構)、(7)
……室内熱交換器(利用側熱交換器)、(10)……室外
制御装置(容量制御手段)、(51)……補正手段、(Th
1)……室温センサ(要求能力検出手段)、(Th2)……
液管センサ(蒸発能力検出手段)。
1 and 2 are block diagrams showing the configurations of the inventions of claims (1) and (2), respectively. FIG. 3 and subsequent figures show an embodiment of the present invention, FIG. 3 is a refrigerant system diagram showing the overall configuration thereof, and FIG. 4 is a flow chart diagram showing the contents of control. (1) ... Compressor, (2) ... First four-way switching valve (cycle switching mechanism), (3) ... Outdoor heat exchanger (heat source side heat exchanger), (6) ... Second electric motor Expansion valve (pressure reducing mechanism), (7)
…… Indoor heat exchanger (use side heat exchanger), (10) …… Outdoor control device (capacity control means), (51) …… Correction means, (Th
1) ... Room temperature sensor (required capacity detection means), (Th2) ...
Liquid pipe sensor (evaporation capacity detection means).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】室外ユニットに配置される容量可変形圧縮
機(1),室外ユニットに配置される熱源側熱交換器
(3),減圧機構(6)および室内ユニットに配置され
る利用側熱交換器(7)を接続してなる冷媒回路(12)
と、室外ユニットにおいて検出される蒸発圧力が要求信
号値となるよう上記圧縮機(1)の運転容量を制御する
容量制御手段(10)とを備えた空気調和装置において、 上記室内ユニットに配置され、冷房運転時における要求
蒸発能力を検出する要求能力検出手段(Th1)と、 上記利用側熱交換器(7)に配置され、冷媒の蒸発圧力
を検出する蒸発圧力検出手段(Th2)と、 該蒸発圧力検出手段(Th2)の出力を受け、現在の蒸発
圧力値と上記要求能力検出手段(Th1)で検出された要
求蒸発能力との差に応じて上記室外ユニットにおける蒸
発圧力についての要求信号値の補正量を算出するととも
に、前回の制御で出力された室外ユニットにおける蒸発
圧力の要求信号値から上記補正量を減じたものを、上記
容量制御手段(10)の制御のための要求信号値とする補
正手段(51)と を備えたことを特徴とする空気調和装置の運転制御装
置。
1. A variable capacity compressor (1) arranged in an outdoor unit, a heat source side heat exchanger (3) arranged in an outdoor unit, a pressure reducing mechanism (6) and a use side heat arranged in an indoor unit. Refrigerant circuit (12) that connects the exchanger (7)
And an capacity control means (10) for controlling the operating capacity of the compressor (1) so that the evaporation pressure detected in the outdoor unit becomes a required signal value. A required capacity detecting means (Th1) for detecting a required evaporation capacity during cooling operation; and an evaporation pressure detecting means (Th2) arranged in the utilization side heat exchanger (7) for detecting an evaporation pressure of the refrigerant, The required signal value for the evaporation pressure in the outdoor unit is received according to the difference between the current evaporation pressure value and the required evaporation capacity detected by the required capacity detection means (Th1) after receiving the output of the evaporation pressure detection means (Th2). Is calculated and a value obtained by subtracting the correction amount from the request signal value of the evaporation pressure in the outdoor unit output in the previous control is used as a request signal for controlling the capacity control means (10). An operation control device for an air conditioner, comprising: a correction means (51) for setting a value.
【請求項2】請求項(1)記載の空気調和装置の運転制
御装置において、 上記室内ユニットは、室外ユニットに対して複数個並列
に配置されており、 上記要求能力検出手段(Th1)及び上記蒸発圧力検出手
段(Th2)は、それぞれ各室内ユニット毎に配置されて
おり、 上記補正手段(51)は、各室内ユニットにおける蒸発圧
力−要求蒸発能力間の差に基づき室外ユニットの蒸発圧
力についての要求信号値を算出することを特徴とする空
気調和装置の運転制御装置。
2. The operation control device for an air conditioner according to claim 1, wherein a plurality of the indoor units are arranged in parallel with the outdoor unit, and the required capacity detecting means (Th1) and the Evaporation pressure detection means (Th2) is arranged for each indoor unit, and the correction means (51) determines the evaporation pressure of the outdoor unit based on the difference between the evaporation pressure and the required evaporation capacity in each indoor unit. An operation control device for an air conditioner, which calculates a request signal value.
JP63211097A 1988-08-25 1988-08-25 Operation control device for air conditioner Expired - Lifetime JPH0730960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211097A JPH0730960B2 (en) 1988-08-25 1988-08-25 Operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211097A JPH0730960B2 (en) 1988-08-25 1988-08-25 Operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH0261466A JPH0261466A (en) 1990-03-01
JPH0730960B2 true JPH0730960B2 (en) 1995-04-10

Family

ID=16600362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211097A Expired - Lifetime JPH0730960B2 (en) 1988-08-25 1988-08-25 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH0730960B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5424705B2 (en) * 2009-05-01 2014-02-26 三菱電機株式会社 Refrigeration air conditioner
JP5818734B2 (en) * 2012-03-30 2015-11-18 三菱電機株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105144A (en) * 1975-03-11 1976-09-17 Matsushita Electric Ind Co Ltd
JPS624250A (en) * 1985-06-26 1987-01-10 スミスクライン・ベツクマン・コ−ポレイシヨン Benz-trisubstituted-2-aminotetraline

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105144A (en) * 1975-03-11 1976-09-17 Matsushita Electric Ind Co Ltd
JPS624250A (en) * 1985-06-26 1987-01-10 スミスクライン・ベツクマン・コ−ポレイシヨン Benz-trisubstituted-2-aminotetraline

Also Published As

Publication number Publication date
JPH0261466A (en) 1990-03-01

Similar Documents

Publication Publication Date Title
JPH0762569B2 (en) Operation control device for air conditioner
JP3849467B2 (en) Air conditioner
JP3185791B2 (en) Control device for air conditioner
JPH0730960B2 (en) Operation control device for air conditioner
JP2689599B2 (en) Operation control device for air conditioner
JP3275669B2 (en) Multi-room air conditioning system
JPH1038398A (en) Controller of electric expansion valve
JPH03267656A (en) Freezer
JPH0668410B2 (en) Air conditioner
JP2893844B2 (en) Air conditioner
JP2730398B2 (en) Multi-room air conditioning system
JP3030109B2 (en) Control method of air conditioner
JP2550649B2 (en) Refrigeration equipment
JP2504997Y2 (en) Air conditioner
JPH0799287B2 (en) Air conditioner
JPH05272822A (en) Freezer
JP2536313B2 (en) Operation control device for air conditioner
JP2002206788A (en) Multi-chamber type air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP2755040B2 (en) Heat pump system
JP2755037B2 (en) Refrigeration equipment
JPH02195155A (en) Air conditioner
JP2616009B2 (en) Air conditioner
JP2625556B2 (en) Operation control device for air conditioner
JPH02133744A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 14