JPH0261466A - Operation control device of air conditioning apparatus - Google Patents

Operation control device of air conditioning apparatus

Info

Publication number
JPH0261466A
JPH0261466A JP63211097A JP21109788A JPH0261466A JP H0261466 A JPH0261466 A JP H0261466A JP 63211097 A JP63211097 A JP 63211097A JP 21109788 A JP21109788 A JP 21109788A JP H0261466 A JPH0261466 A JP H0261466A
Authority
JP
Japan
Prior art keywords
capacity
evaporation
heat exchanger
pressure
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63211097A
Other languages
Japanese (ja)
Other versions
JPH0730960B2 (en
Inventor
Mari Sada
真理 佐田
Akio Higuchi
樋口 晶夫
Kazuo Yonemoto
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63211097A priority Critical patent/JPH0730960B2/en
Publication of JPH0261466A publication Critical patent/JPH0261466A/en
Publication of JPH0730960B2 publication Critical patent/JPH0730960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the operation of a compressor in compression capacity controllable according to the vaporization pressure during the cooling operation, when the controlled value is set for the operative capacity of the compressor, by making a correction taking pressure loss and the like into consideration. CONSTITUTION:A correction taking pressure loss and the like into consideration is made in setting the controlled value for the operative capacity of the compres sor 1 according to the capacity requirements from each of indoor units. That is to say, the required capacity for the vaporization is corrected on the basis of the capacity in use for the vaporization at the time at the heat exchanger 7 as the user so that the corrected value is used as the requirement for the control of the operation of the compressor 1 in capacity. Thus, independent of pressure loss at the intervening pipe, the control is effected to supply an actual vaporization pressure required. It does not occur, therefore, for a heat exchanger using the pressure to be insufficient in capacity due to pressure loss and the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は容量可変形圧縮機を備えた空気調和装置の運転
制御装置に係り、特に冷房運転時に蒸発圧力に応じて圧
縮機の運転容量を制御するようにしたものの改良に関す
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an operation control device for an air conditioner equipped with a variable capacity compressor, and in particular controls the operating capacity of the compressor according to the evaporation pressure during cooling operation. Concerning improvements to things that are controlled.

(従来の技術) 従来より、容量可変形圧縮機を備えた空気調和装置にお
いて、冷房運転時に、圧縮機の吸入管における吸入ガス
圧力(低圧)と圧縮機の運転容量とで利用側熱交換器の
蒸発圧力を推定し、その推定された蒸発圧力に基づいて
圧縮機の運転容量を制御することにより、利用側熱交換
器で要求する熱交換能力に必要な冷媒循環量を確保しよ
うとする運転制御装置は公知の技術である。
(Prior art) Conventionally, in an air conditioner equipped with a variable capacity compressor, during cooling operation, a user-side heat exchanger is used between the suction gas pressure (low pressure) in the suction pipe of the compressor and the operating capacity of the compressor. This operation attempts to secure the amount of refrigerant circulation necessary for the heat exchange capacity required by the heat exchanger on the user side by estimating the evaporation pressure of the air and controlling the operating capacity of the compressor based on the estimated evaporation pressure. The control device is a known technology.

(発明が解決しようとする課題) しかしながら、上記従来のものでは、検出される蒸発圧
力は利用側熱交換器から圧縮機までの配管で既に圧力損
失を受けた冷媒の物理状態量であって、真に制御目標と
すべき利用側熱交換器における蒸発圧力が正確に反映さ
れているとは必ずしもいえない。
(Problem to be Solved by the Invention) However, in the above conventional system, the detected evaporation pressure is a physical state quantity of the refrigerant that has already suffered a pressure loss in the piping from the utilization side heat exchanger to the compressor. It cannot necessarily be said that the evaporation pressure in the user-side heat exchanger, which should be the true control target, is accurately reflected.

特に、室外ユニットに対して複数の室内ユニットを並列
に接続したマルチ方空気調和装置の場合には、一般的に
配管長が長くなり、しかも室内ユニットの位置による長
さのバラツキがあることもあって、目標とする蒸発圧力
と実際の蒸発圧力との偏差が大きく、そのために、圧縮
機の運転容量不足を招きやすいという問題があった。
In particular, in the case of a multi-way air conditioner in which multiple indoor units are connected in parallel to an outdoor unit, the piping length is generally long, and the length may vary depending on the position of the indoor unit. However, there is a problem in that the deviation between the target evaporation pressure and the actual evaporation pressure is large, which tends to lead to insufficient operating capacity of the compressor.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、各室内ユニットの要求能力に応じて圧縮機の運転
容量を制御する制御目標値を定めるに際し、圧力損失等
を考慮した補正を行うことにより、容量制御の精度の向
上を図り、もって容量不足の解消を図ることにある。
The present invention has been made in view of the above, and its purpose is to make corrections that take into account pressure loss, etc. when determining a control target value for controlling the operating capacity of a compressor according to the required capacity of each indoor unit. By doing so, the purpose is to improve the accuracy of capacity control and thereby eliminate capacity shortages.

(課題を解決するための手段) 上記目的を達成するため本発明の第1の解決手段は、第
1図に示すように、容量可変形圧縮機(1)、熱源側熱
交換器(3)、減圧機構(6)および利用側熱交換器(
7)を接続してなる冷媒回路(12)を備えた空気調和
装置を対象とする。
(Means for Solving the Problems) In order to achieve the above object, the first solution of the present invention is as shown in FIG. , pressure reduction mechanism (6) and user side heat exchanger (
The present invention is directed to an air conditioner equipped with a refrigerant circuit (12) connected to 7).

そして、冷房運転時、室内の要求蒸発能力を検出する要
求能力検出手段(T h1)と、上記利用側熱交換器(
7)に配置され、冷媒の蒸発圧力を検出する蒸発圧力検
出手段(T h2)と、該蒸発圧力検出手段(T h2
)の出力を受け、現在の蒸発圧力値に基づき上記要求能
力検出手段(T h1)で検出された要求蒸発能力を補
正する補正手段(51)と、該補正手段(51)で補正
された要求蒸発能力についての要求信号値に基づき圧縮
機(1)の運転容量を制御する容量制御手段(10)と
を設ける構成としたものである。
Then, during cooling operation, a required capacity detection means (T h1) for detecting the required indoor evaporation capacity, and the above-mentioned utilization side heat exchanger (
7), which detects the evaporation pressure of the refrigerant;
) for correcting the required evaporation capacity detected by the required capacity detection means (Th1) based on the current evaporation pressure value; The compressor is configured to include capacity control means (10) for controlling the operating capacity of the compressor (1) based on the required signal value regarding evaporation capacity.

また、第2の解決手段は、第2図に示すように、容量可
変形圧縮機(1)、サイクル切換機構(2)、熱源側熱
交換器(3)および該熱源側熱交換器(3)用の第1減
圧機構(4)を有する室外ユニット(X)に対して、利
用側熱交換器(7)および該利用側熱交換器(7)用の
第2減圧機構(6)を有する複数組の室内ユニット(A
)〜(D)を並列に接続してなる空気調和装置を前提と
する。
In addition, the second solution means, as shown in FIG. 2, includes a variable capacity compressor (1), a cycle switching mechanism (2), a heat source side heat exchanger (3), and a ), the outdoor unit (X) has a first pressure reduction mechanism (4) for use, and a second pressure reduction mechanism (6) for the use side heat exchanger (7) and the use side heat exchanger (7). Multiple sets of indoor units (A
) to (D) are connected in parallel.

そして、各室内ユニット(A)〜(D)毎に、冷房運転
時、室内の要求蒸発能力を検出する要求能力検出手段(
T h1)と、上記利用側熱交換器(7)に配置され、
冷媒の蒸発圧力を検出する蒸発圧力検出手段(T h2
)とを備えるとともに、該蒸発圧力検出手段(T h2
)〜(T h2)の出力を受け、現在の蒸発圧力値に基
づき上記要求能力検出手段(T h1)〜(T h1)
で検出された要求蒸発能力を補正する補正手段(51)
と、該補正手段(51)で補正された要求蒸発能力につ
いての要求信号値に基づき圧縮機(1)の運転容量を制
御する容量制御手段(10)とを設ける構成としたもの
である。
For each indoor unit (A) to (D), required capacity detection means (
T h1) and the user-side heat exchanger (7),
Evaporation pressure detection means (T h2
), and the evaporation pressure detection means (T h2
) to (T h2), and based on the current evaporation pressure value, the required capacity detection means (T h1) to (T h1)
correction means (51) for correcting the required evaporation capacity detected by
and a capacity control means (10) for controlling the operating capacity of the compressor (1) based on the request signal value for the required evaporation capacity corrected by the correction means (51).

さらに、第3の解決手段は、第1図又は第2図に示すよ
うに、上記第1又は第2の解決手段において、上記補正
手段(51)を、要求蒸発能力を現在の蒸発圧力と前回
に出力した要求信号値とで補正するように構成したもの
である。
Furthermore, as shown in FIG. 1 or 2, a third solution means, in the first or second solution means, adjusts the required evaporation capacity to the current evaporation pressure and the previous time. The configuration is such that the correction is made using the request signal value outputted to the input signal.

(作用) 以上の構成により、請求項(1)の発明では、冷房運転
時、要求能力検出手段(T h1)により各室内の要求
蒸発能力が検出されると、補正手段(51)により、そ
の要求蒸発能力値が蒸発圧力検出手段(T h2)で検
出される現在の蒸発能力値に基づき補正される。そして
、容量制御手段(10)により、この補正された値であ
る要求信号値に基づき、圧縮機(1)の運転容量が制御
される。
(Function) With the above configuration, in the invention of claim (1), when the required capacity detection means (Th1) detects the required evaporation capacity in each room during cooling operation, the correction means (51) adjusts the required evaporation capacity. The required evaporation capacity value is corrected based on the current evaporation capacity value detected by the evaporation pressure detection means (Th2). Then, the capacity control means (10) controls the operating capacity of the compressor (1) based on the corrected request signal value.

その場合、要求能力検出手段(T h1)で検出される
要求蒸発能力が利用側熱交換器(7)における現在の蒸
発圧力で補正されるるので、圧縮機(1)の吸入管にお
ける圧力損失とは無関係に実際の蒸発圧力に応じて容量
制御が行われることになり、よって、圧力損失による検
出値の低下に起因する能力不足が解消されることになる
In that case, the required evaporation capacity detected by the required capacity detection means (T h1) is corrected by the current evaporation pressure in the utilization side heat exchanger (7), so that the pressure loss in the suction pipe of the compressor (1) and Capacity control is performed in accordance with the actual evaporation pressure, regardless of the actual evaporation pressure, and thus the lack of capacity caused by a decrease in the detected value due to pressure loss is resolved.

また、請求項(aの発明では、特に、室内側から室外側
への配管長さが長くなるマルチ形空気調和装置において
も、各室内ユニット(A)〜(D)の配管長さの違い等
に起因する能力不足が解消される。
In addition, in the invention of claim (a), in particular, even in a multi-type air conditioner in which the length of piping from the indoor side to the outdoor side is long, the difference in the piping length of each indoor unit (A) to (D), etc. The lack of ability caused by this will be resolved.

さらに、請求項(3)の発明では、要求蒸発圧力値が現
在の蒸発圧力値と前回出力した要求信号値とで補正され
て、要求信号値として算出されるので、前回の要求信号
値との比較により、配管の長さ等に起因する要求信号と
その要求信号に基づく容量制御の結果とのずれがなくな
る方向に補正され、より正確な要求信号に基づく圧縮機
(1)の容量制御が行われることになる。
Furthermore, in the invention of claim (3), the required evaporating pressure value is corrected by the current evaporating pressure value and the previously outputted required signal value and calculated as the required signal value. Through the comparison, the discrepancy between the demand signal caused by the length of the piping, etc. and the result of capacity control based on the demand signal is corrected, and the capacity of the compressor (1) is controlled based on a more accurate demand signal. You will be killed.

(実施例) 以下、本発明の実施例について、第3図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 3 onwards.

第3図は請求項(1)〜(3)の発明に係る実施例の全
体構成を示し、−台の室外ユニット(X)に対し、4台
の室内ユニット(A)〜(D)が並列に配置されている
。上記室外ユニット(X)には、インバータ(8)によ
り運転周波数可変に駆動される容量可変形の圧縮機(1
)と、冷房運転時には凝縮器、暖房運転時には蒸発器と
して機能する熱源側熱交換器としての室外熱交換器(3
)と、冷房運転時には図中実線のごとく、暖房運転時に
は図中破線のごとく切換わるサイクル切換機構としての
四路切換弁(2)と、冷房運転時には冷媒流量を調節し
、暖房運転時には冷媒を減圧する第1電動膨張弁(4)
とが配置されている。
FIG. 3 shows the overall configuration of an embodiment according to the invention of claims (1) to (3), in which four indoor units (A) to (D) are arranged in parallel to - outdoor units (X). It is located in The outdoor unit (X) is equipped with a variable capacity compressor (1
) and an outdoor heat exchanger (3
), a four-way switching valve (2) as a cycle switching mechanism that switches as shown by the solid line in the figure during cooling operation, and as a broken line in the figure during heating operation, and a four-way switching valve (2) that adjusts the refrigerant flow rate during cooling operation and switches the refrigerant flow during heating operation. First electric expansion valve to reduce pressure (4)
and are arranged.

また、上記各室内ユニット(A)〜(D)はいずれも同
一構成であって、冷媒の流れに応じて蒸発器又は凝縮器
として機能する利用側熱交換器としての室内熱交換器(
7)と、該室内熱交換器(7)への冷媒を減圧する減圧
機構としての第2電動膨張弁(6)とが配置されている
In addition, each of the above-mentioned indoor units (A) to (D) has the same configuration, and an indoor heat exchanger (
7) and a second electric expansion valve (6) as a pressure reducing mechanism that reduces the pressure of the refrigerant to the indoor heat exchanger (7).

そして、上記各ユニット(X)、(A)〜(D)内の各
機器(1)〜(7)は、それぞれ冷媒配管(11)によ
り順次冷媒の流通可能に接続されていて、室外熱交換器
(3)で室外空気との熱交換により付与されて熱を室内
熱交換器(7)〜(7)で室内に放出する冷媒回路(1
2)が構成されている。
The devices (1) to (7) in each of the units (X), (A) to (D) are sequentially connected to each other through refrigerant piping (11) so that the refrigerant can flow through the outdoor heat exchanger. A refrigerant circuit (1) in which heat is given by heat exchange with outdoor air in a heat exchanger (3) and released indoors in indoor heat exchangers (7) to (7).
2) is configured.

次に、(9)〜(9)は各室内ユニット(A)〜(D)
個別の運転を制御する室内制御装置、(10)は室外ユ
ニット(X)の運転を制御するための室外制御装置であ
って、上記各室内制御装置(9)〜(9)と室外制御装
置(10)とは、連絡配線により、信号の授受可能に接
続されている。
Next, (9) to (9) are each indoor unit (A) to (D)
The indoor control device (10) for controlling individual operations is an outdoor control device for controlling the operation of the outdoor unit (X), and the indoor control device (10) is an outdoor control device for controlling the operation of the outdoor unit (X). 10) are connected to each other through communication wiring so that signals can be sent and received.

一方、装置にはセンサ類が設置されていて、各室内ユニ
ット(A)〜(D)において、(Th1)は室内熱交換
器(7)の空気吸込口に取付けられ、後述のごとく要求
蒸発圧力値に対応する吸込空気温度Taを検出する要求
能力検出手段としての室温センサ、(T h2)は室内
熱交換器(7)の液管側に取付けられ、冷房運転時にお
ける冷媒の蒸発圧力相当飽和温度(以下蒸発圧力とする
)Teを検出するための液管センサであって、該各セン
サ(Th1) 、  (Th2)は上記室内制御装置(
9)とは信号の入力可能に接続されている。また、室外
ユニット(X)において、(Pe)は圧縮機(1)の吸
入管に配置され、低圧を検出するための圧力センサであ
って、該圧力センサ(P e)は上記室外制御装置(1
0)と信号の入力可能に接続されており、室外制御装置
(10)により、上記各室内制御装置(9)〜(9)か
ら入力される各室内の要求蒸発圧力値に基づき、圧力セ
ンサ(Pe)で検出される低圧値に応じて、圧縮機(1
)の運転容量を制御するようになされている。よって、
室外制御装置(10)は容量制御手段としての機能を有
するものである。
On the other hand, sensors are installed in the device, and in each indoor unit (A) to (D), (Th1) is attached to the air suction port of the indoor heat exchanger (7), and the required evaporation pressure is A room temperature sensor (T h2) as a required capacity detection means for detecting the suction air temperature Ta corresponding to the value is attached to the liquid pipe side of the indoor heat exchanger (7). A liquid pipe sensor for detecting temperature (hereinafter referred to as evaporation pressure) Te, and each sensor (Th1) and (Th2) is connected to the indoor control device (
9) is connected to allow signal input. Further, in the outdoor unit (X), (Pe) is a pressure sensor arranged in the suction pipe of the compressor (1) to detect low pressure, and the pressure sensor (P e) is 1
0) so that signals can be input, and the outdoor control device (10) detects the pressure sensor ( Depending on the low pressure value detected in the compressor (1
) is designed to control the operating capacity of the Therefore,
The outdoor control device (10) has a function as a capacity control means.

装置の冷房運転時、四路切換弁(2)が図中実線のごと
く切換わり、第1電動膨張弁(4)を開いた状態で、各
第2電動膨張弁(6)〜(6)の開度を適度に調節しな
がら運転が行われ、吐出冷媒が室外熱交換器(3)で凝
縮された後、各室内ユニット(A)〜(D)の室内熱交
換器(7)〜(7)で蒸発するように循環する。なお、
各室内ユニツ) (A)〜(D)が同時に暖房運転を行
うときには、上記と逆の冷媒の流れによる運転が行われ
る。また、説明は省略するが、上記各室内ユニット(A
)〜(D)のうちいずれかが停止中であっても、上記と
類似の運転状態となる。
During cooling operation of the device, the four-way switching valve (2) switches as shown by the solid line in the figure, and with the first electric expansion valve (4) open, each of the second electric expansion valves (6) to (6) The operation is performed while adjusting the opening degree appropriately, and after the discharged refrigerant is condensed in the outdoor heat exchanger (3), the indoor heat exchangers (7) to (7) of each indoor unit (A) to (D) are condensed. ) to evaporate. In addition,
When each indoor unit (A) to (D) performs heating operation at the same time, operation is performed using the flow of refrigerant opposite to that described above. In addition, although the explanation is omitted, each of the above indoor units (A
Even if any one of ) to (D) is stopped, the operating state is similar to that described above.

そして、上記装置の運転時、各室内ユニット(A)では
、室内制御装置(9)により、上記各センサ(Th1)
 、  (Th2)により検知される吸込空気温度Ta
、蒸発圧力Teに基づき第2電動膨張弁(6)の開度が
適度に調節される一方、室外制御装置(10)に出力す
る要求信号値Teaが以下の手順で演算される。
When the above device is in operation, each indoor unit (A) controls each of the above sensors (Th1) by the indoor control device (9).
, the intake air temperature Ta detected by (Th2)
The opening degree of the second electric expansion valve (6) is appropriately adjusted based on the evaporation pressure Te, while the request signal value Tea to be output to the outdoor control device (10) is calculated in the following procedure.

第4図のフローチャートは上記室内制御装置(9)の制
御内容を示し、ステップS1で上記室温センサ(T h
1)で検出される吸込空気温度Taと室内の設定温度T
sとを入力し、ステップS2で、両者の差温ΔTsを式
 ΔTs−Ta −Tsにより算出した後、ステップS
3で、この差温ΔTsに基づき室内熱交換器(7)の要
求蒸発能力Terを決定する。次に、ステップS4で上
記液管センサ(T h2)で検出される現在の蒸発温度
Teを入力し、ステップS5で、両者の偏差ETを式E
TmTe−Terで算出した後、ステップS6で、上記
で求めた偏差ETを積分定数Sで除して温度補正量ΔT
eを算出する。
The flowchart in FIG. 4 shows the control contents of the indoor control device (9), and in step S1, the room temperature sensor
Intake air temperature Ta detected in 1) and indoor set temperature T
s, and in step S2, the temperature difference ΔTs between the two is calculated using the formula ΔTs-Ta-Ts, and then in step S
3, the required evaporation capacity Ter of the indoor heat exchanger (7) is determined based on this temperature difference ΔTs. Next, in step S4, the current evaporation temperature Te detected by the liquid pipe sensor (T h2) is input, and in step S5, the deviation ET between the two is calculated using the formula E.
After calculating TmTe-Ter, in step S6, the deviation ET obtained above is divided by the integral constant S to obtain the temperature correction amount ΔT.
Calculate e.

そして、ステップS7〜SOで、上記で求めた温度補正
量ΔTeを温度補正量の最小値ST(ただし、STは正
の値を有する定数)と比較して、温度補正量ΔTとして
、ΔTe<−9TであればΔTe−−5Tに、ΔTe>
STであればΔTe−0,2に、−ST≦ΔTe≦ST
であればそのままの値ΔTeに決定する。
Then, in steps S7 to SO, the temperature correction amount ΔTe obtained above is compared with the minimum value ST of the temperature correction amount (ST is a constant having a positive value), and the temperature correction amount ΔT is set as ΔTe<- If 9T, ΔTe--5T, ΔTe>
If ST, ΔTe-0,2, -ST≦ΔTe≦ST
If so, the value ΔTe is determined as is.

また、ステップSI2で、前回出力した要求信号値Te
olを入力し、ステップSI3で、要求信号値Teaを
式 T ea−T eol−ΔTeにより算出した後、
ステップS+4〜S+7で、この要求信号値Teaをそ
の最小値Teominおよび最大値T eomaxと比
較して、最終的に室外制御装置(10)に出力する要求
信号値Teaとして、T eo > T eomaxで
あれば最大値T eoIIaXに、T eo< T e
omlnであれば最小値Teominに、Teomin
≦Teo≦T eOmaxであればそのままの値Tea
に設定して、ステップSagで要求信号値Teaを決定
し、ステップSI9でその値Teaを室外制御装置(1
0)に出力する。
Also, in step SI2, the previously output request signal value Te
ol is input, and in step SI3, the request signal value Tea is calculated by the formula T ea - Teol - ΔTe, and then
In steps S+4 to S+7, this request signal value Tea is compared with its minimum value Teomin and maximum value Teomax, and the request signal value Tea to be finally output to the outdoor control device (10) is determined as Teo > Teomax. If so, the maximum value T eoIIaX, T eo < T e
omln, the minimum value Teomin, Teomin
If ≦Teo≦T eOmax, the value Tea remains as it is
, the request signal value Tea is determined in step Sag, and the value Tea is set to the outdoor control device (1) in step SI9.
0).

上記フローにおいて、ステップ85〜818により、液
管センサ(蒸発圧力検出手段)  (Th2)の出力を
受け、現在の蒸発圧力値に基づき室温センサ(要求能力
検出手段)  (Th1)で検出された要求蒸発能力を
補正する補正手段(51)が構成されている。
In the above flow, in steps 85 to 818, the output of the liquid pipe sensor (evaporation pressure detection means) (Th2) is received, and the demand detected by the room temperature sensor (required capacity detection means) (Th1) based on the current evaporation pressure value is A correction means (51) for correcting the evaporation capacity is configured.

なお、室外制御装置(10)では、各室内制御装置(9
)〜(9)から出力される要求信号値Teaのうち、最
大の圧力損失を生ずる室内ユニットの要求信号値Tea
に基づき圧縮機(1)の運転容量を制御するようになさ
れている。
In addition, in the outdoor control device (10), each indoor control device (9
) to (9), the request signal value Tea of the indoor unit that causes the maximum pressure loss is
The operating capacity of the compressor (1) is controlled based on this.

したがって、請求項(1)の発明では、室温センサ(要
求能力検出手段)  (Th1)により各室内の要求蒸
発能力T’erが検出されると、補正手段(51)によ
り、その要求蒸発能力値Terが液管センサ(蒸発圧力
検出手段)(Th2)で検出される現在の蒸発能力値T
eに基づき補正される。そして、室外制御装置(容量制
御手段)(10)により、この補正された値である要求
信号値Teaに基づき、圧縮機(1)の運転容量が制御
される。
Therefore, in the invention of claim (1), when the room temperature sensor (required capacity detection means) (Th1) detects the required evaporation capacity T'er in each room, the correction means (51) detects the required evaporation capacity value. Ter is the current evaporation capacity value T detected by the liquid pipe sensor (evaporation pressure detection means) (Th2)
Corrected based on e. Then, the outdoor control device (capacity control means) (10) controls the operating capacity of the compressor (1) based on the request signal value Tea, which is the corrected value.

その場合、室温センサ(T h1)で検出される要求蒸
発能力Terを現在の蒸発圧力Teで補正するようにし
ているので、圧縮機(1)の吸入管における圧力損失と
は無関係に実際の蒸発圧力に応じて容量制御が行われる
ことになり、よって、圧力損失による検出値の低下に起
因する能力不足を解消することができるのである。
In that case, the required evaporation capacity Ter detected by the room temperature sensor (T h1) is corrected by the current evaporation pressure Te, so the actual evaporation Capacity control is performed in accordance with the pressure, and it is therefore possible to eliminate the lack of capacity caused by a decrease in detected values due to pressure loss.

また、上記実施例のように、複数の室内ユニット(A)
〜(D)を備えたマルチ形空気調和装置を特徴とする請
求項(2)の発明では、特に、室内側から室外側への配
管長さが長くなるマルチ形空気調和装置においても、各
室内ユニット(A)〜(D)の配管長さの違い等に起因
する能力不足を解消することができる。
Further, as in the above embodiment, a plurality of indoor units (A)
In the invention of claim (2), which is characterized by a multi-type air conditioner having the above (D), even in a multi-type air conditioner in which the length of piping from the indoor side to the outdoor side is long, each indoor Insufficient capacity caused by differences in piping length between the units (A) to (D) can be resolved.

なお、その場合、上記実施例では、各室内制御装置(9
)〜(9)内で補正手段(51)による要求蒸発能力値
Terの補正をしたが、室外制御装置(10)内で補正
処理をするようにしてもよく、上記と同様の効果を発揮
することができる。
In that case, in the above embodiment, each indoor control device (9
) to (9), the required evaporation capacity value Ter is corrected by the correction means (51), but the correction processing may be performed within the outdoor control device (10), and the same effect as above is achieved. be able to.

さらに、請求項(3)の発明では、要求蒸発圧力値Te
rを現在の蒸発圧力値Teと前回出力した要求信号値T
eolとで補正して、要求信号値Teaを算出するよう
にしているので、前回の要求信号値Teolとの比較に
より、配管の長さ等に起因する要求信号とその要求信号
に基づく容量制御の結果とのずれがなくなる方向に補正
され、より正確な要求信号に基づく圧縮機(1)の容量
制御が可能となるのである。
Furthermore, in the invention of claim (3), the required evaporation pressure value Te
r is the current evaporation pressure value Te and the previously output request signal value T
Since the request signal value Tea is calculated by correcting the request signal value Teol, by comparing it with the previous request signal value Teol, the request signal caused by the length of the piping etc. and the capacity control based on the request signal are calculated. The deviation from the result is corrected to eliminate the difference, and the capacity of the compressor (1) can be controlled based on a more accurate request signal.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、要
求蒸発能力を利用側熱交換器における現在の蒸発能力で
補正して、その補正された値を要求能力として圧縮機の
運転容量を制御するようにしたので、配管途中の圧力損
失に無関係に実際の蒸発圧力に基づく制御が行われ、圧
力損失等に起因する利用側熱交換器の能力不足を解消す
ることができる。
(Effect of the invention) As explained above, according to the invention of claim (1), the required evaporation capacity is corrected by the current evaporation capacity in the user side heat exchanger, and the corrected value is set as the required capacity. Since the operating capacity of the compressor is controlled, control is performed based on the actual evaporation pressure regardless of pressure loss in the piping, eliminating the lack of capacity of the heat exchanger on the user side caused by pressure loss, etc. Can be done.

また、請求項(2)の発明では、複数の室内ユニットを
備えた空気調和装置において、各室内ユニットから室外
側に出力すべき要求信号値について、上記請求項(1)
の発明と同様の補正処理を行うようにしたので、各室内
ユニットの配管長さの違い等に起因する利用側熱交換器
の能力不足を解消することができる。
Further, in the invention of claim (2), in the air conditioner including a plurality of indoor units, the request signal value to be outputted from each indoor unit to the outdoor side is determined according to the above claim (1).
Since the same correction processing as in the invention is performed, it is possible to solve the problem of insufficient capacity of the user-side heat exchanger caused by differences in piping length between the indoor units.

さらに、請求項(3)の発明では、上記請求項(1)お
よび(1)の発明において、要求蒸発能力をさらに前回
の要求信号値で補正するようにしたので、より正確な容
量制御を行うことができる。
Furthermore, in the invention of claim (3), in the inventions of claims (1) and (1), the required evaporation capacity is further corrected using the previous required signal value, so that more accurate capacity control is achieved. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ請求項(1)および(′
2Iの発明の構成を示すブロック図である。第3図以下
は本発明の実施例を示し、第3図はその全体構成を示す
冷媒系統図、第4図は制御の内容を示すフローチャート
図である。 (1)・・・圧縮機、(2)・・・第1四路切換弁(サ
イクル切換機構)、(3)・・・室外熱交換器(熱源側
熱交換器)、(6)・・・第2電動膨張弁(減圧機構)
、(7)・・・室内熱交換器(利用側熱交換器)、(1
0)・・・室外制御装置(容量制御手段)、(51)・
・・補正手段、(T h1)・・・室温センサ(要求能
力検出手段)、(T h2)・・・液管センサ(蒸発能
力検出手段)。
1 and 2 are claims (1) and ('), respectively.
FIG. 2 is a block diagram showing the configuration of the invention of No. 2I. FIG. 3 and subsequent figures show an embodiment of the present invention, FIG. 3 is a refrigerant system diagram showing its overall configuration, and FIG. 4 is a flowchart showing the details of control. (1) Compressor, (2) First four-way switching valve (cycle switching mechanism), (3) Outdoor heat exchanger (heat source side heat exchanger), (6)...・Second electric expansion valve (pressure reducing mechanism)
, (7)... Indoor heat exchanger (user side heat exchanger), (1
0)...Outdoor control device (capacity control means), (51)
... Correction means, (T h1) ... Room temperature sensor (required capacity detection means), (T h2) ... Liquid pipe sensor (evaporation capacity detection means).

Claims (3)

【特許請求の範囲】[Claims] (1) 容量可変形圧縮機(1)、熱源側熱交換器(3
)、減圧機構(6)および利用側熱交換器(7)を接続
してなる冷媒回路(12)を備えた空気調和装置におい
て、冷房運転時、室内の要求蒸発能力を検出する要求能
力検出手段(Th1)と、上記利用側熱交換器(7)に
配置され、冷媒の蒸発圧力を検出する蒸発圧力検出手段
(Th2)と、該蒸発圧力検出手段(Th2)の出力を
受け、現在の蒸発圧力値に基づき上記要求能力検出手段
(Th1)で検出された要求蒸発能力を補正する補正手
段(51)と、該補正手段(51)で補正された要求蒸
発能力についての要求信号値に基づき圧縮機(1)の運
転容量を制御する容量制御手段(10)とを備えたこと
を特徴とする空気調和装置の運転制御装置。
(1) Variable capacity compressor (1), heat source side heat exchanger (3)
), a required capacity detection means for detecting a required indoor evaporation capacity during cooling operation in an air conditioner equipped with a refrigerant circuit (12) connected to a pressure reduction mechanism (6) and a user-side heat exchanger (7). (Th1), an evaporation pressure detection means (Th2) arranged in the user-side heat exchanger (7) to detect the evaporation pressure of the refrigerant, and an evaporation pressure detection means (Th2) that receives the output of the evaporation pressure detection means (Th2), A correction means (51) for correcting the required evaporation capacity detected by the required capacity detection means (Th1) based on the pressure value, and a compression unit based on the request signal value for the required evaporation capacity corrected by the correction means (51). 1. An operation control device for an air conditioner, comprising: capacity control means (10) for controlling the operating capacity of the air conditioner (1).
(2) 容量可変形圧縮機(1)、サイクル切換機構(
2)、熱源側熱交換器(3)および該熱源側熱交換器(
3)用の第1減圧機構(4)を有する室外ユニット(X
)に対して、利用側熱交換器(7)および該利用側熱交
換器(7)用の第2減圧機構(6)を有する複数組の室
内ユニット(A)〜(D)を並列に接続してなる空気調
和装置において、各室内ユニット(A)〜(D)毎に、
冷房運転時、室内の要求蒸発能力を検出する要求能力検
出手段(Th1)と、上記利用側熱交換器(7)に配置
され、冷媒の蒸発圧力を検出する蒸発圧力検出手段(T
h2)とを備えるとともに、該蒸発圧力検出手段(Th
2)〜(Th2)の出力を受け、現在の蒸発圧力値に基
づき上記要求能力検出手段(Th1)〜(Th1)で検
出された要求蒸発能力を補正する補正手段(51)と、
該補正手段(51)で補正された要求蒸発能力について
の要求信号値に基づき圧縮機(1)の運転容量を制御す
る容量制御手段(10)とを備えたことを特徴とする空
気調和装置の運転制御装置。
(2) Variable capacity compressor (1), cycle switching mechanism (
2), the heat source side heat exchanger (3) and the heat source side heat exchanger (
3) an outdoor unit (X) having a first pressure reducing mechanism (4) for
), a plurality of indoor units (A) to (D) having a user-side heat exchanger (7) and a second pressure reduction mechanism (6) for the user-side heat exchanger (7) are connected in parallel. In the air conditioner made of
During cooling operation, required capacity detection means (Th1) detects the required indoor evaporation capacity, and evaporation pressure detection means (T
h2), and the evaporation pressure detection means (Th
2) a correction means (51) that receives the outputs of (Th2) and corrects the required evaporation capacity detected by the required capacity detection means (Th1) (Th1) based on the current evaporation pressure value;
An air conditioner comprising: capacity control means (10) for controlling the operating capacity of the compressor (1) based on the request signal value for the required evaporation capacity corrected by the correction means (51). Operation control device.
(3) 上記補正手段(51)は、要求蒸発能力を現在
の蒸発圧力と前回に出力した要求信号値とで補正するよ
うに構成されていることを特徴とする請求項(1)又は
(2)記載の空気調和装置の運転制御装置。
(3) Claim (1) or (2) characterized in that the correction means (51) is configured to correct the required evaporation capacity using the current evaporation pressure and the previously output request signal value. ) The operation control device for the air conditioner described in ).
JP63211097A 1988-08-25 1988-08-25 Operation control device for air conditioner Expired - Lifetime JPH0730960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211097A JPH0730960B2 (en) 1988-08-25 1988-08-25 Operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211097A JPH0730960B2 (en) 1988-08-25 1988-08-25 Operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH0261466A true JPH0261466A (en) 1990-03-01
JPH0730960B2 JPH0730960B2 (en) 1995-04-10

Family

ID=16600362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211097A Expired - Lifetime JPH0730960B2 (en) 1988-08-25 1988-08-25 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH0730960B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261644A (en) * 2009-05-01 2010-11-18 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2013210124A (en) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105144A (en) * 1975-03-11 1976-09-17 Matsushita Electric Ind Co Ltd
JPS624250A (en) * 1985-06-26 1987-01-10 スミスクライン・ベツクマン・コ−ポレイシヨン Benz-trisubstituted-2-aminotetraline

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105144A (en) * 1975-03-11 1976-09-17 Matsushita Electric Ind Co Ltd
JPS624250A (en) * 1985-06-26 1987-01-10 スミスクライン・ベツクマン・コ−ポレイシヨン Benz-trisubstituted-2-aminotetraline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261644A (en) * 2009-05-01 2010-11-18 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2013210124A (en) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JPH0730960B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
CN107407494B (en) Air conditioner
JPH0257875A (en) Operation controller for air conditioner
JP2003287260A (en) Air-conditioner, and air-conditioner control method
JPH0261466A (en) Operation control device of air conditioning apparatus
JPH03267656A (en) Freezer
JP3028008B2 (en) Air conditioner
JP3275669B2 (en) Multi-room air conditioning system
JP2504997Y2 (en) Air conditioner
KR101995584B1 (en) Air-conditioning system and controlling method thereof
JPH02195155A (en) Air conditioner
JP2893844B2 (en) Air conditioner
JPH0799287B2 (en) Air conditioner
WO2020157851A1 (en) Air conditioning device
JPH0257874A (en) Operation controller for heat recovery type air conditioner
JP2536313B2 (en) Operation control device for air conditioner
JPH0156351B2 (en)
JPH08219531A (en) Multiple type air conditioner
JPH08159589A (en) Multi-room type air conditioner and operating method therefor
JPH05272822A (en) Freezer
JPH04297762A (en) Control method of air conditioner
JPH04214153A (en) Refrigerating cycle device
JPH0443173B2 (en)
JP2755037B2 (en) Refrigeration equipment
JP2625556B2 (en) Operation control device for air conditioner
JP3199746B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 14