JPH07269801A - Method and apparatus for controlling pressurized fluidized-bed boiler - Google Patents

Method and apparatus for controlling pressurized fluidized-bed boiler

Info

Publication number
JPH07269801A
JPH07269801A JP6190794A JP6190794A JPH07269801A JP H07269801 A JPH07269801 A JP H07269801A JP 6190794 A JP6190794 A JP 6190794A JP 6190794 A JP6190794 A JP 6190794A JP H07269801 A JPH07269801 A JP H07269801A
Authority
JP
Japan
Prior art keywords
value
fluidized bed
steam temperature
boiler
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6190794A
Other languages
Japanese (ja)
Inventor
Tetsuo Itami
哲郎 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6190794A priority Critical patent/JPH07269801A/en
Publication of JPH07269801A publication Critical patent/JPH07269801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To set a reheating steam temperature and a fluidized-bed temperature within designing plan values by calculating a predicted value of the steam temperature after a predetermined time is elapsed according to a formula for representing dynamic characteristics of the steam temperature and calculating a bed height set value with the calculated value as one of calculating factors. CONSTITUTION:A calculator calculates a predicted reheating steam temperature calculated value and a predicted bed temperature calculated value according to a formula for representing dynamic characteristics. The calculated predicted steam temperature value after a calculated predetermined time lapse is compared with a repeating steam temperature set value after a predetermined time lapse formed by a predetermined function from a load request by a subtracter, its deviation is guided to a regulator 411b to form an operation signal 412b. This is added with an operation signal decided from a bed height leading signal 310 and a deviation between the reheating steam temperature at present time and the set steam temperature value by an adder to form a bed height set value. The bed height is compared with the bed height set value by a subtracter, its deviation is guided to a regulator 307d to form an operation signal 380d, which is allowed to follow up the steam temperature set value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧流動層ボイラの流
動層高などの制御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for controlling a fluidized bed height of a pressurized fluidized bed boiler.

【0002】[0002]

【従来の技術】図2は、従来の加圧流動層ボイラの一例
を示す水/蒸気フロー図である。このボイラは、主とし
て過熱器を収容する第1の火炉101と、主として再熱
器を収納する第2の火炉102とのツインベッド構成で
ある。給水加熱器(図示せず)からポンプ(図示せず)
によって昇圧された水は、第1の火炉101内の1次水
壁201を経由して、第2の火炉102に導入され、第
2の火炉102内の2次水壁202、蒸発器203にお
いて蒸気となり、火炉外の汽水分離器204にて水、蒸
気が分離され、蒸気は再び第1の火炉101内の1次過
熱器205にて過熱された後、分岐して第2の火炉10
2に導かれる。第2の火炉102では分岐流はそれぞれ
2次過熱器206a及び2次過熱器206bで過熱さ
れ、それぞれ第1段スプレー207a及び第1段スプレ
ー207bで減温の後、3次過熱器208a及び3次過
熱器208bで過熱され、第2の火炉102の外に出て
合流し、その後分岐して第1の火炉101に戻る。
2. Description of the Related Art FIG. 2 is a water / steam flow chart showing an example of a conventional pressurized fluidized bed boiler. This boiler has a twin bed configuration of a first furnace 101 mainly containing a superheater and a second furnace 102 mainly containing a reheater. Feed water heater (not shown) to pump (not shown)
The water pressurized by is introduced into the second furnace 102 via the primary water wall 201 in the first furnace 101, and in the secondary water wall 202 and the evaporator 203 in the second furnace 102. It becomes steam, and water and steam are separated in the brackish water separator 204 outside the furnace, and the steam is again heated by the primary superheater 205 in the first furnace 101, and then branches to the second furnace 10.
Guided to 2. In the second furnace 102, the branched flows are superheated by the secondary superheater 206a and the secondary superheater 206b, respectively, and after the temperature is reduced by the first-stage spray 207a and the first-stage spray 207b, respectively, the tertiary superheaters 208a and 208a are generated. It is superheated by the next superheater 208b, goes out of the second furnace 102 and merges, and then branches to return to the first furnace 101.

【0003】分岐流は、第1の火炉101ではそれぞれ
第2段スプレー209a及び第2段スプレー209bで
減温された後、4次過熱器210a及び4次過熱器21
0bで過熱され、火炉を出て合流し、主蒸気配管211
を経て高圧タービン212に到る。高圧タービン212
で仕事をした蒸気は、非常用の再熱スプレー213及び
低温再熱配管214を経た後に分岐し、第2の火炉10
2に導かれる。第2の火炉102では、分岐流はそれぞ
れ再熱器215a及び再熱器215bで過熱され、火炉
外に出て合流し、高温再熱配管216を経て中低圧ター
ビン217から復水器(図示せず)に戻る。
In the first furnace 101, the branched flow is cooled by the second-stage spray 209a and the second-stage spray 209b, respectively, and then the quaternary superheater 210a and the quaternary superheater 21.
0b is overheated, exits the furnace and joins, main steam pipe 211
And reaches the high-pressure turbine 212. High pressure turbine 212
The steam that has worked in the second branch 10 after passing through the emergency reheat spray 213 and the low temperature reheat piping 214,
Guided to 2. In the second furnace 102, the branched flows are superheated by the reheater 215a and the reheater 215b, respectively, go out of the furnace and merge, and pass through the high temperature reheat pipe 216 to the condenser (from the middle and low pressure turbine 217) (not shown). Return to ().

【0004】次に、例えば、このような加圧流動層ボイ
ラにおける第2の火炉102における、流動層温及び再
熱蒸気温度の従来の制御技術に関し説明する。図3は、
従来の加圧流動層ボイラの流動層温及び再熱蒸気温度の
制御技術を示すフロー図である。
Next, for example, a conventional control technique of the fluidized bed temperature and the reheated steam temperature in the second furnace 102 in such a pressurized fluidized bed boiler will be described. Figure 3
It is a flowchart which shows the control technology of the fluidized bed temperature and reheat steam temperature of the conventional pressurized fluidized bed boiler.

【0005】再熱蒸気温度は、以下のように流動層高に
より制御再熱蒸気温度301と、負荷要求302から関
数303aで構成される再熱蒸気温度設定値304とを
減算器305aで比較し、その偏差306aを調節器3
07aに導き、フィードバック信号308aを作る。ボ
イラマスタ309からは、関数発生器303bで構成さ
れる層高先行信号310が作られ、加算器311aでフ
ィードバック信号308aと加算し層高設定値312を
作る。層高313と層高設定値312とを減算器305
bで比較し、その偏差306bを調節器307bに導き
フィードバック信号308bを作り、所定の層高制御設
備314にて、層高313を再熱蒸気温度301が再熱
蒸気温度設定値304に追従するように調節する。
The reheat steam temperature is controlled by the fluidized bed height as follows, and the reheat steam temperature set value 304 composed of the function 303a from the load request 302 is compared by the subtractor 305a. , The deviation 306a of the adjuster 3
07a to produce a feedback signal 308a. From the boiler master 309, a bed height preceding signal 310 composed of a function generator 303b is created, and an adder 311a adds it to a feedback signal 308a to create a bed height set value 312. The floor height 313 and the floor height setting value 312 are subtracted by a subtractor 305.
b, the deviation 306b is guided to the controller 307b, a feedback signal 308b is generated, and the reheated steam temperature 301 follows the reheated steam temperature set value 304 in the bed height 313 by the predetermined bed height control equipment 314. To adjust.

【0006】層温315と、負荷要求302から関数3
03cで構成される層温設定値316とを減算器305
cで比較し、その偏差306cを調節器307cに導
き、操作信号308cを作る。ボイラマスタ309から
は関数発生器303dで構成される燃料流量先行信号3
17が作られる。操作信号308cと燃料流量先行信号
317を加算器311bで加算し、第2の火炉102に
導く燃料流量設定値318を作るが、層高変動時に層温
315を安定化させるために、層高313と層高設定値
312との偏差306bから、調節器307dにより操
作信号308dを作りこれを加算器311bにて加算す
る。
From the bed temperature 315 and the load request 302, the function 3 is obtained.
03c and the set value 316 of the bed temperature are subtracted from the subtracter 305.
Then, the deviation 306c is introduced to the controller 307c, and the operation signal 308c is generated. From the boiler master 309, the fuel flow rate advance signal 3 composed of the function generator 303d
17 is made. The operation signal 308c and the fuel flow rate preceding signal 317 are added by the adder 311b to create the fuel flow rate set value 318 to be guided to the second furnace 102. However, in order to stabilize the bed temperature 315 when the bed height changes, the bed height 313 is set. The operation signal 308d is generated by the controller 307d from the deviation 306b between the bed height setting value 312 and the layer height setting value 312, and this is added by the adder 311b.

【0007】[0007]

【発明が解決しようとする課題】しかし、加圧流動層ボ
イラにおいては、火炉内の層温均一化を目的として燃料
は石炭・水ペーストの形で供給されている。そのため、
火炉での燃焼遅れが通常のボイラに比べて大きい。すな
わち、石炭・水ペーストが火炉に供給されると塊状とな
ったペーストは流動化空気によって火炉流動層内にて拡
散し、この拡散プロセスにおいてペースト中の水分が蒸
発し、微粉炭となって着火に至る。上述の従来の再熱蒸
気温度及び層温の制御技術では、この燃焼遅れを考慮し
ていないので、負荷の変化時に再熱蒸気温度または層温
がハンチングし、当初の設計計画値を逸脱する場合があ
る。また、再熱スプレーが作動する場合には、プラント
効率を低下させることになる。
However, in the pressurized fluidized bed boiler, the fuel is supplied in the form of coal / water paste for the purpose of making the bed temperature in the furnace uniform. for that reason,
The combustion delay in the furnace is larger than that in a normal boiler. That is, when the coal / water paste is supplied to the furnace, the lumped paste is diffused in the fluidized bed of the furnace by the fluidizing air, and the moisture in the paste is evaporated in this diffusion process to form pulverized coal and ignite. Leading to. In the conventional reheat steam temperature and bed temperature control technologies described above, this combustion delay is not taken into consideration.Therefore, when the reheat steam temperature or bed temperature hunts when the load changes and deviates from the initial design plan value. There is. Also, if reheat spraying is activated, it will reduce plant efficiency.

【0008】本発明は、加圧流動層ボイラに特有の燃焼
遅れを補償して、負荷が急激に変化する場合にも、再熱
蒸気温度や流動層温度を設計計画値内におさめることが
できる、加圧流動層ボイラの制御方法及び装置を提供す
ることを目的とする。
The present invention compensates for the combustion delay peculiar to a pressurized fluidized bed boiler, so that the reheat steam temperature and fluidized bed temperature can be kept within the designed design values even when the load changes rapidly. An object of the present invention is to provide a method and apparatus for controlling a pressurized fluidized bed boiler.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の第1の発明は、加圧流動層ボイラへの負荷要求に応じ
て、このボイラの再熱蒸気温度の適正値である再熱蒸気
温度設定値を算出する工程と、この算出された再熱蒸気
温度設定値に基づいて、前記ボイラの流動層高の適正値
である層高設定値を算出する工程と、この算出値に基づ
いて、前記流動層高を調節する工程とを有する加圧流動
層ボイラの制御方法において、前記再熱蒸気温度の動特
性を示す式により、所定時間経過後の前記再熱蒸気温度
の予測値を算出する工程を備え、前記層高設定値算出工
程は、前記の算出した予測値を計算要素のひとつとする
ことを特徴とする加圧流動層ボイラの制御方法である。
The first invention for solving the above-mentioned problems is to provide a reheated steam which is an appropriate value of the reheated steam temperature of the boiler in response to a load request to the pressurized fluidized bed boiler. A step of calculating the temperature set value, based on the calculated reheat steam temperature set value, a step of calculating a bed height set value that is an appropriate value of the fluidized bed height of the boiler, and based on this calculated value In the method for controlling a pressurized fluidized bed boiler having a step of adjusting the fluidized bed height, a predictive value of the reheated steam temperature after a predetermined time has elapsed is calculated by an equation showing the dynamic characteristics of the reheated steam temperature. And a step of calculating the bed height setting value, wherein the calculated predicted value is used as one of the calculation elements.

【0010】また、加圧流動層ボイラへの負荷要求に応
じて、このボイラの再熱蒸気温度の適正値である再熱蒸
気温度設定値を算出する工程と、この算出された再熱蒸
気温度設定値に基づいて、前記ボイラの流動層高の適正
値である層高設定値を算出する工程と、この算出値に基
づいて、前記流動層高を調節する工程と、前記負荷要求
に応じて、前記ボイラの流動層温度の適正値である層温
設定値を算出する工程と、この算出された層温設定値と
前記の算出された層高設定値とに基づいて前記ボイラの
燃料流量の適正値である燃料流量設定値を算出する工程
と、この算出値に基づいて、前記燃料流量を調節する工
程とを有する加圧流動層ボイラの制御方法において、前
記再熱蒸気温度の動特性を示す式により、所定時間経過
後の前記再熱蒸気温度の予測値を算出する工程と、前記
流動層温度の特性を示す式により、所定時間経過後の前
記流動層温度の予測値を算出する工程とを備え、前記層
高設定値算出工程は、前記の算出した再熱蒸気温度の予
測値を計算要素のひとつとし、前記燃料流量設定値算出
工程は、前記の算出した流動層温度の予測値を計算要素
のひとつとすることを特徴とする加圧流動層ボイラの制
御方法を第2の発明とする。
Further, a step of calculating a reheated steam temperature set value which is an appropriate value of the reheated steam temperature of the boiler according to a load request to the pressurized fluidized bed boiler, and the calculated reheated steam temperature. Based on the set value, a step of calculating a bed height setting value that is an appropriate value of the fluidized bed height of the boiler, a step of adjusting the fluidized bed height based on the calculated value, and depending on the load request. A step of calculating a bed temperature set value which is an appropriate value of the fluidized bed temperature of the boiler, and a fuel flow rate of the boiler based on the calculated bed temperature set value and the calculated bed height set value. In a method for controlling a pressurized fluidized bed boiler having a step of calculating a fuel flow rate set value that is an appropriate value and a step of adjusting the fuel flow rate based on the calculated value, the dynamic characteristics of the reheat steam temperature are According to the formula shown, the reheated steam after a predetermined time And a step of calculating a predicted value of the fluidized bed temperature after a lapse of a predetermined time by a formula showing a characteristic of the fluidized bed temperature, the bed height setting value calculation step, The predicted value of the reheated steam temperature calculated above is one of the calculation elements, and the fuel flow rate set value calculation step is characterized in that the predicted value of the fluidized bed temperature calculated above is one of the calculation elements. A method of controlling a pressure fluidized bed boiler is a second invention.

【0011】加圧流動層ボイラへの負荷要求に応じて、
このボイラの再熱蒸気温度の適正値である再熱蒸気温度
設定値を算出する第1の演算器と、この算出された再熱
蒸気温度設定値に基づいて、前記ボイラの流動層高の適
正値である層高設定値を算出する第2の演算器と、この
算出値に基づいて、前記流動層高を調節する手段とを有
する加圧流動層ボイラの制御装置において、前記再熱蒸
気温度の動特性を示す式により、所定時間経過後の前記
再熱蒸気温度の予測値を算出する第3の演算器を備え、
前記第2の演算器は、前記の算出した予測値を計算要素
のひとつとすることを特徴とする加圧流動層ボイラの制
御装置を第3の発明とする。
Depending on the load demand on the pressurized fluidized bed boiler,
A first computing unit that calculates a reheated steam temperature set value that is an appropriate value of the reheated steam temperature of the boiler, and an appropriate fluidized bed height of the boiler based on the calculated reheated steam temperature set value. In the controller of the pressurized fluidized bed boiler, which has a second arithmetic unit for calculating a bed height set value, which is a value, and means for adjusting the fluidized bed height based on the calculated value, the reheat steam temperature A third arithmetic unit for calculating a predicted value of the reheated steam temperature after a predetermined time has passed, by an equation showing the dynamic characteristics of
A third aspect of the present invention is a control device for a pressurized fluidized bed boiler, wherein the second computing unit uses the calculated predicted value as one of the calculation elements.

【0012】加圧流動層ボイラへの負荷要求に応じて、
このボイラの再熱蒸気温度の適正値である再熱蒸気温度
設定値を算出する第1の演算器と、この算出された再熱
蒸気温度設定値に基づいて、前記ボイラの流動層高の適
正値である層高設定値を算出する第2の演算器と、この
算出値に基づいて、前記流動層高を調節する手段と、前
記負荷要求に応じて、前記ボイラの流動層温度の適正値
である層温設定値を算出する第3の演算器と、この算出
された層温設定値と前記の算出された層高設定値とに基
づいて前記ボイラの燃料流量の適正値である燃料流量設
定値を算出する第4の演算器と、この算出値に基づい
て、前記燃料流量を調節する手段とを有する加圧流動層
ボイラの制御装置において、前記再熱蒸気温度の動特性
を示す式により、所定時間経過後の前記再熱蒸気温度の
予測値を算出する第5の演算器と、前記流動層温度の特
性を示す式により、所定時間経過後の前記流動層温度の
予測値を算出する第6の演算器とを備え、前記第2の演
算器は、前記の算出した再熱蒸気温度の予測値を計算要
素のひとつとし、前記第4の演算器は、前記の算出した
流動層温度の予測値を計算要素のひとつとすることを特
徴とする加圧流動層ボイラの制御装置を第4の発明とす
る。
Depending on the load demand on the pressurized fluidized bed boiler,
A first computing unit that calculates a reheated steam temperature set value that is an appropriate value of the reheated steam temperature of the boiler, and an appropriate fluidized bed height of the boiler based on the calculated reheated steam temperature set value. A second computing unit for calculating a bed height set value, which is a value, a means for adjusting the fluidized bed height based on the calculated value, and an appropriate value of the fluidized bed temperature of the boiler according to the load request. And a fuel flow rate that is an appropriate value of the fuel flow rate of the boiler based on the calculated bed temperature set value and the calculated bed height set value. In a controller of a pressurized fluidized bed boiler having a fourth arithmetic unit for calculating a set value and means for adjusting the fuel flow rate based on the calculated value, an equation showing the dynamic characteristics of the reheat steam temperature. Calculate the predicted value of the reheat steam temperature after a predetermined time by And a sixth calculator that calculates a predicted value of the fluidized bed temperature after a lapse of a predetermined time by an equation indicating the characteristic of the fluidized bed temperature, and the second calculator is the above-mentioned A pressurized fluidized bed, wherein the calculated predicted value of the reheated steam temperature is one of the calculation elements, and the fourth computing unit uses the calculated predicted value of the fluidized bed temperature as one of the calculation elements. A boiler control device is a fourth invention.

【0013】[0013]

【作用】所定時間経過後の再熱蒸気温度の予測値は、再
熱蒸気温度の動特性を示す式により算出することができ
る。そこで、所定時間経過後の再熱蒸気温度の予測値を
算出し、算出した予測値を計算要素のひとつとすること
で再熱蒸気温度設定値を算出し、これにより層高を調節
すれば(例えば、燃焼遅れ時間τを考慮し、現時点での
操作量が時間τだけ保持されるとした場合の、現時点か
ら時間τ後の再熱蒸気温度を予測し、再熱蒸気温度設定
値との偏差により層高設定値を補正する。)、燃焼遅れ
を補償して、負荷が急激に変化する場合にも、再熱蒸気
温度を設計計画値内におさめることができる。再熱蒸気
温度を設計計画値内におさめることができれば、非常用
としての再熱スプレーが作動せず、加圧流動層ボイラの
効率を落すことがない。
The predicted value of the reheated steam temperature after the lapse of a predetermined time can be calculated by the equation showing the dynamic characteristics of the reheated steam temperature. Therefore, the predicted value of the reheated steam temperature after a predetermined time has elapsed is calculated, the reheated steam temperature set value is calculated by using the calculated predicted value as one of the calculation elements, and the bed height is adjusted by this ( For example, considering the combustion delay time τ, if the manipulated variable at the present time is held for the time τ, predict the reheat steam temperature after the time τ from the present time, and deviate from the reheat steam temperature set value. The bed height setting value is corrected by the above), and the combustion delay can be compensated to keep the reheat steam temperature within the design plan value even when the load changes rapidly. If the reheat steam temperature can be kept within the design plan value, the reheat spray as an emergency will not work and the efficiency of the pressurized fluidized bed boiler will not be reduced.

【0014】また、層高の変動時に流動層温度を安定化
させるために、燃料流量を調節する場合、所定時間経過
後の流動層温度の予測値は、流動層温度の特性を示す式
により算出することができる。そこで、この算出した流
動層温度の予測値を計算要素のひとつとすることで燃料
流量設定値を算出し、これにより燃料流量を調節すれば
(例えば、燃焼遅れ時間τを考慮し、現時点での操作量
が時間τだけ保持されるとした場合の、現時点から時間
τ後の流動層温度を予測し、燃料流量設定値との偏差に
より燃料流量設定値を補正する。)、燃焼遅れを補償し
て、負荷が急激に変化する場合にも、流動層温度を設計
計画値内におさめることができる。流動層温度を設計計
画値内におさめることができれば、火炉出口でのNO
x、SOx濃度を設計計画値内におさめることができ
る。NOx濃度の低減は、脱硝装置への負荷を低減し、
アンモニア使用量を減らすことができる。
When the fuel flow rate is adjusted in order to stabilize the fluidized bed temperature when the bed height changes, the predicted value of the fluidized bed temperature after a lapse of a predetermined time is calculated by an equation showing the characteristics of the fluidized bed temperature. can do. Therefore, the fuel flow rate set value is calculated by using the calculated predicted value of the fluidized bed temperature as one of the calculation elements, and the fuel flow rate is adjusted by this (for example, considering the combustion delay time τ, If the manipulated variable is held for time τ, the fluidized bed temperature after time τ from the present time is predicted, and the fuel flow rate set value is corrected by the deviation from the fuel flow rate set value.), And combustion delay is compensated. Thus, even if the load changes abruptly, the fluidized bed temperature can be kept within the design plan value. If the fluidized bed temperature can be kept within the design plan, NO at the furnace outlet
The x and SOx concentrations can be kept within the designed design values. The reduction of NOx concentration reduces the load on the denitration device,
Ammonia consumption can be reduced.

【0015】[0015]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明の一実施例である加圧流動層ボイラの制御
装置のフロー図である。図3と同一符号の部材は、図3
を参照して説明した従来の加圧流動層ボイラの制御装置
におけると同様の部材であり、詳細な説明は省略する。
また、本実施例の制御装置が適用される加圧流動層ボイ
ラは、例えば、図2に示した加圧流動層ボイラなどであ
り、これについても詳細な説明は省略する。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a flow chart of a control device for a pressurized fluidized bed boiler which is an embodiment of the present invention. Members having the same reference numerals as those in FIG.
These are the same members as those in the control device for the conventional pressurized fluidized bed boiler described with reference to FIG.
Further, the pressurized fluidized bed boiler to which the control device of this embodiment is applied is, for example, the pressurized fluidized bed boiler shown in FIG. 2, and the detailed description thereof will be omitted.

【0016】401は演算器であり、現時刻からボイラ
の燃焼遅れ時間τ後の再熱蒸気温度及び流動層温度の予
測値を演算する。再熱蒸気温度及び流動層温度の動特性
計算モデルは以下のようなものであり、下式で記述され
る。
A calculator 401 calculates predicted values of the reheat steam temperature and the fluidized bed temperature after the combustion delay time τ of the boiler from the present time. The dynamic characteristics calculation model of the reheat steam temperature and the fluidized bed temperature is as follows and is described by the following equation.

【0017】[0017]

【数1】 [Equation 1]

【0018】ここで、tは時間〔s〕、d/dtは時間
微分〔s~1〕であり、 TB(t) :流動層温度〔℃〕 Ts(t) :再熱蒸気温度〔℃〕 Cs :流動層比熱〔kcal/kg・℃〕 ρs :流動層密度〔kg/m3〕 x(t) :流動層高〔m〕 VB(x(t)) :流動層体積〔m3〕 Hn :石炭の発熱量〔kcal/kg〕 Gf(t) :燃焼量〔kg/s〕 Cg :燃焼ガス比熱〔kcal/kg ℃〕 α(x(t)):流動層〜水/蒸気の熱貫流率〔kcal
/m2℃s〕 A(x(t)):再熱器有効伝熱面積〔m2〕 ρw :水/蒸気密度〔kg/m3〕 Vw :再熱器水/蒸気容積〔m3〕 H(t) :再熱器出口エンタルピ〔kcal/kg〕 HSH(t):再熱器入口エンタルピ〔kcal/kg〕 P(t) :圧力〔at〕 J :単位換算係数〔at・m3/kcal〕 であり、 Gf(t)=(1+τS)~1Gfuel(t) ……(3) Ts(t)=f(H(t),P(t)) ……(4) の関係がある。ここで、 S :ラプラス演算子(=d/dt) τ :火炉内の燃焼遅れ時間〔s〕 Gfuel(t):燃料流量〔kg/s〕 f(H、P):エンタルピHと圧力Pから温度を算出す
る関数〔℃〕 である。また層体積VB(X(t))は,層高X(t)によ
り変化する火炉形状から決まる関数であり、層高X
(t)の変化は次の式で定まる。
Where t is time [s] and d / dt is time differential [s to 1 ], TB (t): fluidized bed temperature [° C] Ts (t): reheated steam temperature [° C] Cs: specific heat of fluidized bed [kcal / kg · ° C.] ρs: density of fluidized bed [kg / m 3 ] x (t): height of fluidized bed [m] VB (x (t)): volume of fluidized bed [m 3 ] Hn : Calorific value of coal [kcal / kg] Gf (t): Burning amount [kg / s] Cg: Specific heat of combustion gas [kcal / kg ° C] α (x (t)): Heat transfer of fluidized bed to water / steam Rate [kcal
/ M 2 ° Cs] A (x (t)): Reheater effective heat transfer area [m 2 ] ρw: Water / steam density [kg / m 3 ] Vw: Reheater water / steam volume [m 3 ] H (t): Reheater outlet enthalpy [kcal / kg] HSH (t): Reheater inlet enthalpy [kcal / kg] P (t): Pressure [at] J: Unit conversion coefficient [at · m 3 / kcal] and Gf (t) = (1 + τS) to 1 Gfuel (t) (3) Ts (t) = f (H (t), P (t)) (4) . Here, S: Laplace operator (= d / dt) τ: Combustion delay time in the furnace [s] Gfuel (t): Fuel flow rate [kg / s] f (H, P): From enthalpy H and pressure P This is a function for calculating the temperature [° C]. Further, the bed volume VB (X (t)) is a function determined by the furnace shape that changes with the bed height X (t), and the bed height X
The change in (t) is determined by the following equation.

【0019】[0019]

【数2】 [Equation 2]

【0020】ここで、 GBMin(t) :BMタンクから火炉へのBM投入流量
〔kg/s〕 GBMout(t):火炉からBMタンクへのBM抜き出し
流量〔kg/s〕 CBM :BMタンク内BM比熱〔kcal/k
g・℃〕 TBM :BMタンク内BM温度〔℃〕 以上(1)(2)式から、層温TB(t)を制御する操作
量は、燃料流量Gfuel(t)及び層高X(t)であり、
再熱蒸気温度を制御する操作量は層高X(t)であり、
現時点で流量Gfuel(t)を操作しても、それは、現時
刻から時間τ後の層温TB(t+τ)に効果を及ぼすこ
とになる。すなわち、式(1)において、再熱蒸気温度
と層温の動特性式には、燃焼遅れ時間τが含まれること
がわかる。
Here, GBMin (t): BM input flow rate from the BM tank to the furnace [kg / s] GBMout (t): BM withdrawal flow rate from the furnace to the BM tank [kg / s] CBM: BM in the BM tank Specific heat [kcal / k
g · ° C.] TBM: BM temperature in BM tank [° C.] From the above equations (1) and (2), the manipulated variables for controlling the bed temperature TB (t) are the fuel flow rate Gfuel (t) and the bed height X (t). And
The manipulated variable controlling the reheat steam temperature is the bed height X (t),
Even if the flow rate Gfuel (t) is manipulated at the present time, it has an effect on the bed temperature TB (t + τ) after time τ from the current time. That is, in the equation (1), it is understood that the combustion delay time τ is included in the dynamic characteristic equation of the reheat steam temperature and the bed temperature.

【0021】演算器401は、上述の式に従い、現時刻
tの空気流量Ga(t)、給水流量Gw(t)、燃料流量
Gfuel(t),402、層高X(t),313、BMタ
ンク内BM温度TBM,403、BM投入・抜出流量GBM
in(t)、GBMout(t),404を、現時刻から時間
τ後まで保持し、初期条件として現時刻tでの再熱蒸気
温度Ts(t),301、層温TB(t)315を与え、
時刻t+τでの再熱蒸気温度予測計算値Ts(t+
τ),405及び時刻t+τでの層温予測計算値TB
(t+τ),406を算出するものである。
The arithmetic unit 401 calculates the air flow rate Ga (t) at the present time t, the feed water flow rate Gw (t), the fuel flow rate Gfuel (t), 402, the bed height X (t), 313, and the BM according to the above formula. Tank BM temperature TBM, 403, BM input / output flow rate GBM
in (t) and GBMout (t), 404 are held from the current time until after time τ, and the reheat steam temperature Ts (t), 301 and the bed temperature TB (t) 315 at the current time t are held as initial conditions. Give,
Reheat steam temperature prediction calculation value Ts (t +
τ), 405 and the predicted value TB of the layer temperature at time t + τ
(T + τ), 406 is calculated.

【0022】演算器401から算出された時刻t+τで
の再熱蒸気温度予測計算値405と、負荷要求302か
ら関数407aで構成される時刻t+τの再熱蒸気温度
設定値408とを減算器409aで比較し、その偏差4
10aを調節器411aに導き、操作信号412aを作
る。これを加算器311aにて、層高先行信号310
と、現時刻tでの再熱蒸気温度301と再熱蒸気温度設
定値304との偏差306aから定まる操作信号308
aと加算し、層高設定値413を作る。層高313と層
高設定値413とを減算器305bで比較し、偏差30
6bを調節器307bに導いて操作信号308bを作
り、所定の層高制御設備314にて、層高313を再熱
蒸気温度301が再熱蒸気温度設定値304に追従する
ように調節する。
A subtractor 409a calculates the reheated steam temperature predicted value 405 calculated at the time t + τ calculated from the calculator 401 and the reheated steam temperature set value 408 at the time t + τ composed of the function 407a from the load request 302. Comparison, deviation 4
10a is led to the adjuster 411a, which produces an operating signal 412a. This is added by the adder 311a to the layer height preceding signal 310.
And an operation signal 308 determined from a deviation 306a between the reheated steam temperature 301 and the reheated steam temperature set value 304 at the current time t.
It is added to a to create a layer height set value 413. The floor height 313 and the floor height set value 413 are compared by the subtractor 305b, and the deviation 30
6b to the controller 307b to generate the operation signal 308b, and the bed height 313 is adjusted by the predetermined bed height control equipment 314 so that the reheated steam temperature 301 follows the reheated steam temperature set value 304.

【0023】また、演算器401から算出された、時刻
t+τでの層温計算予測値406と、負荷要求302か
ら関数407bで構成される時刻t+τの層温設定値4
14とを減算器409bで比較し、その偏差410bを
調節器411bに導き、操作信号412bを作る。これ
を加算器311bにて、燃料流量先行信号317及び現
時刻tでの層温315と層温設定値316との偏差30
6cから定まる操作信号308bと加算し、燃料流量設
定値415を作り、これに基づいて所定の燃料流量調節
装置により燃料流量を調節する。
Further, the predicted value 406 of the bed temperature calculation at the time t + τ calculated by the arithmetic unit 401 and the set value 4 of the bed temperature at the time t + τ composed of the function 407b from the load request 302.
14 is compared by the subtractor 409b, and the deviation 410b is led to the adjuster 411b to generate the operation signal 412b. This is calculated by the adder 311b and the deviation 30 between the fuel flow rate leading signal 317 and the bed temperature 315 at the current time t and the bed temperature set value 316 is set.
6c is added to the operation signal 308b which is determined from 6c to create a fuel flow rate set value 415, and the fuel flow rate is adjusted by a predetermined fuel flow rate adjusting device based on this.

【0024】本実施例の制御装置によれば、現時刻での
層高制御設備314の操作量が、時間τだけ保持される
とした場合の、現時刻から時間τ後の再熱蒸気温度を予
測し、再熱蒸気温度設定値との偏差により層高設定値を
補正することができる。また、現時刻での燃料流量の操
作量が時間τだけ保持されるとした場合の、現時刻から
時間τ後の流動層温度を予測し、燃料流量設定値との偏
差により燃料流量設定値を補正することができる。
According to the control device of the present embodiment, the reheat steam temperature after time τ from the current time, when the operation amount of the height control facility 314 at the current time is maintained for the time τ, It is possible to predict and correct the bed height setting value by the deviation from the reheat steam temperature setting value. Also, assuming that the manipulated variable of the fuel flow rate at the current time is held for the time τ, the fluidized bed temperature after the time τ from the current time is predicted, and the fuel flow rate set value is calculated by the deviation from the fuel flow rate set value. Can be corrected.

【0025】したがって、ボイラの燃焼遅れを補償し
て、負荷が急激に変化する場合にも、再熱蒸気温度及び
流動層温度を設計計画値内におさめることができる。再
熱蒸気温度を設計計画値内におさめることができれば、
非常用としての再熱スプレーが作動せず、加圧流動層ボ
イラの効率を落すことがない。また、流動層温度を設計
計画値内におさめることができれば、火炉出口でのNO
x、SOx濃度を設計計画値内におさめることができ
る。NOx濃度の低減は、脱硝装置への負荷を低減し、
アンモニア使用量を減らすことができる。
Therefore, the combustion delay of the boiler can be compensated and the reheat steam temperature and the fluidized bed temperature can be kept within the designed values even when the load changes abruptly. If the reheat steam temperature can be kept within the design plan value,
The emergency reheat spray does not work and the efficiency of the pressurized fluidized bed boiler is not reduced. Also, if the fluidized bed temperature can be kept within the design plan value, NO at the furnace outlet
The x and SOx concentrations can be kept within the designed design values. The reduction of NOx concentration reduces the load on the denitration device,
Ammonia consumption can be reduced.

【0026】[0026]

【発明の効果】以上説明した本発明によれば、現時点よ
り後の時点での再熱蒸気温度や流動層温度を予測し、こ
れらがそれぞれの設定値に追従するように層高設定値及
び燃料流量設定値を与えるので、加圧流動層ボイラに特
有の燃焼遅れを補償し、急激に負荷が変化する場合にお
いても、再熱蒸気温度や流動層温度を設計計画値内にお
さめることができる。
According to the present invention described above, the reheat steam temperature and the fluidized bed temperature at a time point later than the present time are predicted, and the bed height set value and the fuel are set so that they follow the respective set values. Since the flow rate setting value is given, the combustion delay peculiar to the pressurized fluidized bed boiler can be compensated, and the reheat steam temperature and the fluidized bed temperature can be kept within the designed values even when the load changes abruptly.

【0027】再熱蒸気温度が設計計画値内であると、非
常用としての再熱スプレーが作動せず、ボイラの効率を
落とすことがない。また、流動層温度が設計計画値内で
あると、ボイラの火炉出口のNNOx、SOx濃度を設
計計画値内とすることができる。NOx濃度が設計計画
値内であるときは、脱硝装置への負荷を低減し、アンモ
ニア使用量を低減することができる。
When the reheat steam temperature is within the design plan value, the reheat spray as an emergency does not operate and the efficiency of the boiler is not reduced. When the fluidized bed temperature is within the design plan value, the NNOx and SOx concentrations at the furnace outlet of the boiler can be kept within the design plan value. When the NOx concentration is within the design plan value, the load on the denitration device can be reduced and the amount of ammonia used can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である加圧流動層ボイラの制
御装置のフロー図である。
FIG. 1 is a flow diagram of a control device for a pressurized fluidized bed boiler that is an embodiment of the present invention.

【図2】従来の加圧流動層ボイラの水/蒸気フロー図で
ある。
FIG. 2 is a water / steam flow diagram of a conventional pressurized fluidized bed boiler.

【図3】従来の加圧流動層ボイラの制御装置のフロー図
である。
FIG. 3 is a flow chart of a control device for a conventional pressurized fluidized bed boiler.

【符号の説明】[Explanation of symbols]

302 負荷要求 401 演算器 405 再熱蒸気温度予測計算値 406 層温計算予測値 408 再熱蒸気温度設定値 413 層高設定値 414 層温設定値 302 Load request 401 Calculator 405 Reheat steam temperature prediction calculation value 406 Bed temperature calculation prediction value 408 Reheat steam temperature setting value 413 Bed height setting value 414 Bed temperature setting value

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加圧流動層ボイラへの負荷要求に応じ
て、このボイラの再熱蒸気温度の適正値である再熱蒸気
温度設定値を算出する工程と、この算出された再熱蒸気
温度設定値に基づいて、前記ボイラの流動層高の適正値
である層高設定値を算出する工程と、この算出値に基づ
いて、前記流動層高を調節する工程とを有する加圧流動
層ボイラの制御方法において、前記再熱蒸気温度の動特
性を示す式により、所定時間経過後の前記再熱蒸気温度
の予測値を算出する工程を備え、前記層高設定値算出工
程は、前記の算出した予測値を計算要素のひとつとする
ことを特徴とする加圧流動層ボイラの制御方法。
1. A step of calculating a reheated steam temperature set value which is an appropriate value of the reheated steam temperature of the boiler according to a load request to the pressurized fluidized bed boiler, and the calculated reheated steam temperature. A pressurized fluidized bed boiler having a step of calculating a bed height setting value that is an appropriate value of a fluidized bed height of the boiler based on a set value, and a step of adjusting the fluidized bed height based on the calculated value. In the control method, a step of calculating a predicted value of the reheated steam temperature after a predetermined time has elapsed by an equation showing the dynamic characteristics of the reheated steam temperature, the bed height set value calculation step is the calculation A method for controlling a pressurized fluidized bed boiler, wherein the predicted value is used as one of the calculation elements.
【請求項2】 加圧流動層ボイラへの負荷要求に応じ
て、このボイラの再熱蒸気温度の適正値である再熱蒸気
温度設定値を算出する工程と、この算出された再熱蒸気
温度設定値に基づいて、前記ボイラの流動層高の適正値
である層高設定値を算出する工程と、この算出値に基づ
いて、前記流動層高を調節する工程と、前記負荷要求に
応じて、前記ボイラの流動層温度の適正値である層温設
定値を算出する工程と、この算出された層温設定値と前
記の算出された層高設定値とに基づいて、前記ボイラの
燃料流量の適正値である燃料流量設定値を算出する工程
と、この算出値に基づいて、前記燃料流量を調節する工
程とを有する加圧流動層ボイラの制御方法において、前
記再熱蒸気温度の動特性を示す式により、所定時間経過
後の前記再熱蒸気温度の予測値を算出する工程と、前記
流動層温度の特性を示す式により、所定時間経過後の前
記流動層温度の予測値を算出する工程とを備え、前記層
高設定値算出工程は、前記の算出した再熱蒸気温度の予
測値を計算要素のひとつとし、前記燃料流量設定値算出
工程は、前記の算出した流動層温度の予測値を計算要素
のひとつとすることを特徴とする加圧流動層ボイラの制
御方法。
2. A step of calculating a reheated steam temperature set value which is an appropriate value of the reheated steam temperature of the boiler according to a load request to the pressurized fluidized bed boiler, and the calculated reheated steam temperature. Based on the set value, a step of calculating a bed height setting value that is an appropriate value of the fluidized bed height of the boiler, a step of adjusting the fluidized bed height based on the calculated value, and depending on the load request. A step of calculating a bed temperature set value that is an appropriate value of the fluidized bed temperature of the boiler, and a fuel flow rate of the boiler based on the calculated bed temperature set value and the calculated bed height set value. In the method for controlling a pressurized fluidized bed boiler, which comprises a step of calculating a fuel flow rate set value that is an appropriate value of the above, and a step of adjusting the fuel flow rate based on the calculated value, the dynamic characteristics of the reheat steam temperature. The reheated steam temperature after a predetermined time has passed And a step of calculating a predicted value of the fluidized bed temperature after a lapse of a predetermined time by a formula showing the characteristic of the fluidized bed temperature, wherein the bed height set value calculation step is The calculated reheat steam temperature predicted value is one of the calculation elements, and the fuel flow rate set value calculation step is characterized in that the calculated predicted fluidized bed temperature value is one of the calculation elements. Control method of fluidized bed boiler.
【請求項3】 加圧流動層ボイラへの負荷要求に応じ
て、このボイラの再熱蒸気温度の適正値である再熱蒸気
温度設定値を算出する第1の演算器と、この算出された
再熱蒸気温度設定値に基づいて、前記ボイラの流動層高
の適正値である層高設定値を算出する第2の演算器と、
この算出値に基づいて、前記流動層高を調節する手段と
を有する加圧流動層ボイラの制御装置において、前記再
熱蒸気温度の動特性を示す式により、所定時間経過後の
前記再熱蒸気温度の予測値を算出する第3の演算器を備
え、前記第2の演算器は、前記の算出した予測値を計算
要素のひとつとすることを特徴とする加圧流動層ボイラ
の制御装置。
3. A first arithmetic unit for calculating a reheated steam temperature set value which is an appropriate value of the reheated steam temperature of the boiler according to a load request to the pressurized fluidized bed boiler, and the calculated value. A second arithmetic unit for calculating a bed height set value that is an appropriate value of the fluidized bed height of the boiler based on the reheated steam temperature set value;
Based on this calculated value, in the control device of the pressurized fluidized bed boiler having means for adjusting the fluidized bed height, the reheated steam after a lapse of a predetermined time by an equation showing the dynamic characteristics of the reheated steam temperature. A control device for a pressurized fluidized bed boiler, comprising a third calculator for calculating a predicted value of temperature, wherein the second calculator uses the calculated predicted value as one of calculation elements.
【請求項4】 加圧流動層ボイラへの負荷要求に応じ
て、このボイラの再熱蒸気温度の適正値である再熱蒸気
温度設定値を算出する第1の演算器と、この算出された
再熱蒸気温度設定値に基づいて、前記ボイラの流動層高
の適正値である層高設定値を算出する第2の演算器と、
この算出値に基づいて、前記流動層高を調節する手段
と、前記負荷要求に応じて、前記ボイラの流動層温度の
適正値である層温設定値を算出する第3の演算器と、こ
の算出された層温設定値と前記の算出された層高設定値
とに基づいて前記ボイラの燃料流量の適正値である燃料
流量設定値を算出する第4の演算器と、この算出値に基
づいて、前記燃料流量を調節する手段とを有する加圧流
動層ボイラの制御装置において、前記再熱蒸気温度の動
特性を示す式により、所定時間経過後の前記再熱蒸気温
度の予測値を算出する第5の演算器と、前記流動層温度
の特性を示す式により、所定時間経過後の前記流動層温
度の予測値を算出する第6の演算器とを備え、前記第2
の演算器は、前記の算出した再熱蒸気温度の予測値を計
算要素のひとつとし、前記第4の演算器は、前記の算出
した流動層温度の予測値を計算要素のひとつとすること
を特徴とする加圧流動層ボイラの制御装置。
4. A first arithmetic unit for calculating a reheated steam temperature set value which is an appropriate value of the reheated steam temperature of the boiler according to a load request to the pressurized fluidized bed boiler, and the calculated value. A second arithmetic unit for calculating a bed height set value that is an appropriate value of the fluidized bed height of the boiler based on the reheated steam temperature set value;
A means for adjusting the fluidized bed height based on the calculated value; and a third computing unit for computing a bed temperature set value which is an appropriate value of the fluidized bed temperature of the boiler in response to the load request. A fourth calculator that calculates a fuel flow rate set value that is an appropriate value of the fuel flow rate of the boiler based on the calculated bed temperature set value and the calculated bed height set value, and based on this calculated value In the controller of the pressurized fluidized bed boiler having means for adjusting the fuel flow rate, the predicted value of the reheated steam temperature after a lapse of a predetermined time is calculated by the equation showing the dynamic characteristics of the reheated steam temperature. And a sixth arithmetic unit for calculating a predicted value of the fluidized bed temperature after a lapse of a predetermined time according to an equation indicating the characteristic of the fluidized bed temperature.
The computing unit of the above makes the calculated predicted value of the reheated steam temperature one of the calculation elements, and the fourth computing unit makes the calculated predicted value of the fluidized bed temperature one of the calculation elements. A control device for a pressurized fluidized bed boiler.
JP6190794A 1994-03-31 1994-03-31 Method and apparatus for controlling pressurized fluidized-bed boiler Pending JPH07269801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190794A JPH07269801A (en) 1994-03-31 1994-03-31 Method and apparatus for controlling pressurized fluidized-bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190794A JPH07269801A (en) 1994-03-31 1994-03-31 Method and apparatus for controlling pressurized fluidized-bed boiler

Publications (1)

Publication Number Publication Date
JPH07269801A true JPH07269801A (en) 1995-10-20

Family

ID=13184705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190794A Pending JPH07269801A (en) 1994-03-31 1994-03-31 Method and apparatus for controlling pressurized fluidized-bed boiler

Country Status (1)

Country Link
JP (1) JPH07269801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156541A (en) * 2010-02-15 2010-07-15 Chugoku Electric Power Co Inc:The Apparatus for supplying paste-like mixed fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156541A (en) * 2010-02-15 2010-07-15 Chugoku Electric Power Co Inc:The Apparatus for supplying paste-like mixed fuel

Similar Documents

Publication Publication Date Title
CA2868093C (en) Steam temperature control using model-based temperature balancing
CA2747047C (en) Steam temperature control using dynamic matrix control
EP0194568B1 (en) Automatic control system for thermal power plant
JPH07269801A (en) Method and apparatus for controlling pressurized fluidized-bed boiler
JPH08128305A (en) Thermal power generation plant starting control system and starting control method
US5850740A (en) Fluidized bed power plant, and control apparatus and method thereof
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
JPH0783005A (en) Compound refuse power generation plant
JPH06221506A (en) Steam temperature control method of thermal power plant and device therefor
JP2000257809A (en) Pressurized fluidized bed boiler and starting method of same
CN104266183A (en) Bed temperature control system and method for supercritical CFB (circulating fluid bed) boiler
JPH0442920B2 (en)
JP2000257801A (en) Method for controlling process, fluidized bed boiler and method for supplying fuel therefor
JPH0694210A (en) Vapor temperature controller for boiler
JPH10318503A (en) Method and system for controlling fluidized bed incinerator
JPH10299424A (en) Steam temperature controlling method for refuse incinerating power plant
JPH0643441Y2 (en) Pressure control device for cold heat generation equipment
JPH1054508A (en) Temperature control method and apparatus for main steam
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JP2565142B2 (en) Automatic plant controller
Chaibakhsh et al. A new approach for temperature control in steam power plant
JPH0663606B2 (en) Steam generator controller
CN117539147A (en) Thermal power generating unit AGC control parameter optimization method based on sensitivity analysis and genetic algorithm
JPS621162B2 (en)
JPH09196311A (en) Adaptive control method and apparatus for pressurized fluid bed boiler