JPH06221506A - Steam temperature control method of thermal power plant and device therefor - Google Patents

Steam temperature control method of thermal power plant and device therefor

Info

Publication number
JPH06221506A
JPH06221506A JP1375193A JP1375193A JPH06221506A JP H06221506 A JPH06221506 A JP H06221506A JP 1375193 A JP1375193 A JP 1375193A JP 1375193 A JP1375193 A JP 1375193A JP H06221506 A JPH06221506 A JP H06221506A
Authority
JP
Japan
Prior art keywords
furnace
flow rate
steam temperature
gas temperature
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1375193A
Other languages
Japanese (ja)
Inventor
Tetsuo Itami
哲郎 伊丹
Hidehisa Yoshizako
秀久 吉廻
Hiroshi Oshima
拓 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1375193A priority Critical patent/JPH06221506A/en
Publication of JPH06221506A publication Critical patent/JPH06221506A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit following to the quick change of a load by a method wherein a PI regulating signal for a difference between the set value of gas temperature of a furnace and the operated value of gas temperature of the furnace is added as the feedback signal to the flow rate of fuel. CONSTITUTION:The gas temperature setting value 20 of a furnace is constituted of an output demand 5 through a function generator 8c while a difference 13c between the setting value 20 and the gas temperature operated value 19 of the furnace, which is operated as the output of the physical model 18 of the furnace, is obtained by a subtractor 2c. Then, the difference 13c is added to a fuel flow rate commanding value 15 of traditional technique by a PI regulator 6c through an adder 7d as a feedback signal 14c to operate a fuel flow rate commanding value 16. According to this method, the time lag of responce of a steam temperature with respect to the flow rate of fuel can be absorbed and the quick change of a load can be followed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は火力プラントにおけるボ
イラの蒸気温度の制御装置に係わり、特にボイラ火炉の
物理モデルを制御系に内蔵し、火炉ガス温度の計算値と
設定値の偏差を、燃料流量指令値にフィードバックする
ことによりボイラ蒸気温度の時間遅れを吸収することが
でき、速い負荷変化に対しても追従性よく蒸気温度を制
御することができる火力プラントの蒸気温度制御方法お
よびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for controlling a steam temperature of a boiler in a thermal power plant, and in particular, a physical model of a boiler furnace is incorporated in a control system to calculate a deviation between a calculated value of a furnace gas temperature and a set value. The present invention relates to a steam temperature control method and device for a thermal power plant, which can absorb the time delay of the boiler steam temperature by feeding back the flow rate command value and can control the steam temperature with good followability even for fast load changes. .

【0002】[0002]

【従来の技術】従来の蒸気温度制御方法の代表例を図2
に示す。図において、出力デマンド(MWD)5から、
変圧プログラム設定器(FX)3によって設定された主
蒸気圧力設定値(MSPD)4と主蒸気圧力(MSP)
1とから、減算器(Δ)2aにより偏差13aを作り、
これをPI調節器(PI)6aによりフィードバック信
号14aとし、これを出力デマンド5と加算器(Σ)7
aで加算することによりボイラマスタ(BM)9を構成
する。このボイラマスタ(BM)9から関数発生器(F
X)8aによって、1次過熱器出口蒸気温度設定値12
を求め、1次過熱器出口蒸気温度(PSHOT)17と
比較して、減算器2bで偏差13bを算出した後、この
偏差13bが、PI調節器6bによりフィードバック信
号14bとなる。一方、ボイラマスタ(BM)9から関
数発生器(FX)8bにより燃料流量先行値(JSPR
G)11が構成され、これがボイラ入力加速信号(Bi
R)10と加算器7bで加算され、さらにこの加算され
た操作量と、先のフィードバック信号14bが加算器7
cで加算されて燃料流量指令値(FRD)16になる。
なお、従来技術として、例えば特開昭57−16719
号公報、同61−70304号公報、同61−2255
02号公報などが挙げられる。
2. Description of the Related Art A typical example of a conventional steam temperature control method is shown in FIG.
Shown in. In the figure, from the output demand (MWD) 5,
Main steam pressure set value (MSPD) 4 and main steam pressure (MSP) set by the transformer program setting device (FX) 3
From 1, and the deviation 13a is made by the subtractor (Δ) 2a,
This is made a feedback signal 14a by the PI adjuster (PI) 6a, which is used as the output demand 5 and the adder (Σ) 7
The boiler master (BM) 9 is configured by adding the value a. From this boiler master (BM) 9 to the function generator (F
X) 8a, the primary superheater outlet steam temperature set value 12
Is calculated and the deviation 13b is calculated by the subtractor 2b by comparing with the primary superheater outlet steam temperature (PSHOT) 17, and the deviation 13b becomes the feedback signal 14b by the PI controller 6b. On the other hand, from the boiler master (BM) 9 to the function generator (FX) 8b, the fuel flow rate advance value (JSPR
G) 11 is configured, and this is the boiler input acceleration signal (Bi
R) 10 and the adder 7b, and the added operation amount and the feedback signal 14b are added to the adder 7b.
The fuel flow rate command value (FRD) 16 is added by c.
As a conventional technique, for example, Japanese Patent Laid-Open No. 57-16719.
No. 61-70304, No. 61-2255.
No. 02 publication and the like.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術にお
いては、燃料流量に対する蒸気温度の応答が時間的に遅
れるので、1次過熱器出口蒸気温度とその設定値との偏
差を燃料流量にフィードバックしても、速い負荷変化に
おいては燃料流量の制御操作が後追いになるという問題
があった。
In the above-mentioned prior art, since the response of the steam temperature to the fuel flow rate is delayed with time, the deviation between the primary superheater outlet steam temperature and its set value is fed back to the fuel flow rate. However, there is a problem in that the control operation of the fuel flow rate is delayed after a rapid load change.

【0004】本発明の目的は、上記従来技術における問
題点を解消するものであって、燃料流量に対する蒸気温
度の応答の時間遅れを吸収し、速い負荷変化に対しても
蒸気温度の制御性に優れた火力プラントにおける蒸気温
度の制御方法およびその装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, to absorb the time delay of the response of the steam temperature to the fuel flow rate, and to improve the controllability of the steam temperature even with a rapid load change. An object of the present invention is to provide an excellent method and apparatus for controlling the steam temperature in a thermal power plant.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、火力プラントの蒸気温度の制御方法におい
て、燃料流量に対しほとんど時間遅れ無しに応答する火
炉のガス温度を操作量の指標として用いるものである。
すなわち、本発明においては火炉の物理モデルを導入し
て火炉のガス温度を計算推定し、この推定値と、火炉の
ガス温度の設定値との偏差を燃料流量にフィードバック
して制御するものである。これにより、蒸気温度の応答
遅れ時間を吸収し、速い負荷変化に対しても追従できる
極めて制御性のよい火力プラントの蒸気温度の制御を実
現することができる。本発明は、負荷要求に対応して燃
料流量を修正し火炉の蒸気温度を制御する火炉プラント
の蒸気温度制御方法において、火炉の物理モデルから計
算推定される火炉のガス温度推定値と、火炉の出力デマ
ンドから設定される火炉のガス温度設定値を比較して、
その偏差を燃料流量にフィードバックして蒸気温度を制
御する火力プラントの蒸気温度制御方法である。さらに
本発明は、負荷要求に対応して燃料流量を修正し火炉の
蒸気温度を制御する手段を備えた火炉プラントの蒸気温
度制御装置において、火炉の物理モデルによって火炉の
ガス温度を計算により推定する手段と、火炉の出力デマ
ンドから設定される火炉のガス温度設定手段と、上記火
炉ガス温度推定値と火炉のガス温度設定値を比較して偏
差を求める手段と、上記偏差のPI調節信号をフィード
バックして燃料流量指令値に加算して燃料流量を制御す
る手段を少なくとも設けた火炉プラントの蒸気温度制御
装置である。
In order to achieve the above object of the present invention, in a method for controlling a steam temperature of a thermal power plant, an index of a manipulated variable is a gas temperature of a furnace which responds to a fuel flow rate with almost no time delay. Is used as.
That is, in the present invention, the physical model of the furnace is introduced to calculate and estimate the gas temperature of the furnace, and the deviation between this estimated value and the set value of the gas temperature of the furnace is fed back to the fuel flow rate for control. . As a result, it is possible to realize the control of the steam temperature of the thermal power plant which absorbs the response delay time of the steam temperature and can follow a rapid load change and which has extremely good controllability. The present invention, in the steam temperature control method of the furnace plant for correcting the fuel flow rate and controlling the steam temperature of the furnace in response to the load demand, the estimated gas temperature of the furnace calculated from the physical model of the furnace, and the furnace temperature Compare the gas temperature set values of the furnace set from the output demand,
This is a steam temperature control method for a thermal power plant in which the deviation is fed back to the fuel flow rate to control the steam temperature. Further, the present invention, in a steam temperature control device for a furnace plant equipped with means for correcting the fuel flow rate and controlling the steam temperature of the furnace according to the load demand, estimates the gas temperature of the furnace by calculation using a physical model of the furnace. Means, a furnace gas temperature setting means set from the output demand of the furnace, a means for obtaining a deviation by comparing the estimated furnace gas temperature value and the furnace gas temperature set value, and a PI adjustment signal for the deviation as feedback Then, the steam temperature control device for a furnace plant is provided with at least means for controlling the fuel flow rate by adding it to the fuel flow rate command value.

【0006】[0006]

【作用】火炉の物理モデルによる火炉のガス温度の計算
推測値と、火炉のガス温度の設定値との偏差のPI調節
信号を燃料流量の制御にフィードバックすると、速い火
力プラントの負荷変動においても燃料流量に対する蒸気
温度の応答の時間遅れを吸収することができるので、従
来技術に比べ蒸気温度の負荷変化に対する追従性がよく
なり、蒸気温度の制御性能を一段と向上させることがで
きる。
When the PI adjustment signal of the deviation between the estimated value of the gas temperature of the furnace based on the physical model of the furnace and the set value of the gas temperature of the furnace is fed back to the control of the fuel flow rate, the fuel can be used even when the load fluctuation of the thermal power plant is fast. Since the time delay of the response of the steam temperature to the flow rate can be absorbed, the followability to the load change of the steam temperature is improved as compared with the conventional technique, and the control performance of the steam temperature can be further improved.

【0007】[0007]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。従来技術との相違点は以下のよ
うになる。すなわち、図1に示すごとく、出力デマンド
5から火炉のガス温度設定値20を、関数発生器8cに
より構成し、これと火炉の物理モデル18の出力として
計算される火炉のガス温度計算値19との偏差13c
を、減算器2cにより求め、これをPI調節器6cによ
りフィードバック信号14cとして加算器7dで従来技
術の燃料流量指令値15に加算して、本発明の燃料流量
指令値16を算出する。以下に火炉の物理モデル18の
構成について説明する。火炉のガス温度計算値(Tg)
19は、次の(数1)式で計算される。 Tg=F(Ff,Fa,Fgr,Fgas,Fa2) …(数1) (式中、Ff:燃料流量(図1の22)、Fa:空気流量
(図1の23)、Fgr:再循環ガス流量(図1の2
4)、Fgas:全ガス流量(図1の25)、Fa2:2段
燃焼空気流量(図1の21)を示す。) なお、Tgは、この他にも燃料、空気、ガスのエンタル
ピ、比熱にも依存して算出され、さらに火炉のモデルパ
ラメータにも依存するものである。次に、2次過熱器外
部ガス温度Tgを計算する手法を説明する。まず、バー
ナ域と2段燃焼域に火炉を要素分割した火炉の物理モデ
ルについて述べる。火炉を、バーナ域と2段燃焼域とに
分割し、両域での熱収支の方程式の解が、バーナ域およ
び2段燃焼域の燃焼ガス温度である。すなわち、バーナ
域における熱収支は次の(数2)の方程式で表わされ
る。 QBin=QBout+QBtr …(数2) (式中、QBin:バーナ域への入熱量、QBout:バー
ナ域からの出熱量、QBtr:バーナ域の水壁への伝熱量
を示す。) ここで、バーナ域への入熱量QBinは、バーナ域での燃
料の発生熱量QBgenと、空気、燃料および再循環ガス
の顕熱量、それぞれ、QBair、QfuelおよびQBgr、i
nの持込み量の総和である。このうち発生熱量QBgen
は、燃焼率Flに依存して決まる。すなわち、次の(数
3)式で表わされる。 QBin=QBgen+QBair+Qfuel+QBgr,in …(数3) (式中、QBin:バーナ域への入熱量、QBgen:バー
ナ域での燃料の発生熱量、QBair:空気の顕熱量、Q
Bfuel:燃料の顕熱量、QBgr,in:再循環ガスの顕熱
量を示す。) またバーナ域からの出熱QBoutは、燃焼ガス、再循環
ガス、未燃分の顕熱量、それぞれQBgas、QBgr,out
及びQubcの持ち出し量の総和である。すなわち、次の
(数4)式で表わされる。 QBout=QBgas+QBgr,out+Qubc …(数4) (式中、QBout:バーナ域からの出熱量 QBgas:燃焼ガスの顕熱量 QBgr,out:再循環ガスの顕熱量 Qubc:未燃分の顕熱量を示す。) さらに、バーナ域の火炎からバーナ域の水壁への伝熱量
QBtrは、輻射QBradと熱伝達QBcvとの総和であ
る。このうち、輻射QBradは、輻射率と形態係数の積
Fと火炎充満率Fcgに依存して決まる。すなわち、次の
(数5)式で示される。 QBtr=QBrad+QBcv …(数5) このように、バーナ域の熱収支方程式の両辺はバーナ域
の燃焼ガス温度TGBの関数であり、この方程式を解く
ことによりTGBが算出される。すなわち、TGBは燃
料流量、空気流量、再循環ガス流量、2段燃焼空気流量
の関数として求められるが、この関数にはパラメータと
して燃焼率Fl、輻射率と形態数の積F、火炎充満率Fc
gが含まれている。これらのパラメータを“火炉モデル
パラメータ”と言う。一方、2段燃焼域における熱収支
は、(数6)式で表わされる。 QYin=QYout+QYtr …(数6) (式中、QYin:2段燃焼域への入熱量、QYout:2
段燃焼域からの出熱量、QYtr:2段燃焼域の水壁への
伝熱量を示す。) ここで、2段燃焼域への入熱QYinは、バーナ域での未
燃分の発生熱量QYgenと、バーナ域からの流入ガスの
顕熱量、すなわちバーナ域からの出熱量QBout、2
段燃焼空気の顕熱量QYair、および再循環ガスの顕
熱量QYgr,inの持込み量の総和である。すなわち、次
の(数7)式で表わされる。 QYin=QYgen+QBout+QYair+QYgr,in …(数7) また、2段燃焼域からの出熱量QYoutは、燃焼ガスの
顕熱量QYgas、再循環ガスの顕熱量QYgr,outの持ち
出し量の総和である。このうち、発生熱量QYgenは燃
焼率Flに依存して決まる。すなわち、次の(数8)式
で表わされる。 QYout=QYgas+QYgr,out …(数8) さらに、2段燃焼域の火炎から2段燃焼域の水壁への伝
熱量QYtrは、輻射量QYradと熱伝達量QYcvとの総
和である。このうち輻射QYradは輻射率と形態係数の
積F、火炎充満率Fcgに依存して決まる。すなわち、
(数9)式で表わされる。 QYtr=QYrad+QYcv …(数9) このように、2段燃焼域の熱収支方程式の両辺は、2段
燃焼域の燃焼ガス温度TGYおよびバーナ域の燃焼ガス
温度TGBの関数であり、TGBはバーナ域の熱収支方
程式から算出することができ、この方程式を解くことに
よりTGYが算出される。すなわち、TGYは、燃料流
量、空気流量、再循環ガス流量、2段燃焼空気流量の関
数として(数1)式の形式で求められる。以上のように
して算出された2段燃焼域の燃焼ガス温度TGYを、火
炉のガス温度計算値Tg、19として適用することがで
きる。
Embodiments of the present invention will be described below in more detail with reference to the drawings. Differences from the prior art are as follows. That is, as shown in FIG. 1, the gas temperature set value 20 of the furnace from the output demand 5 is configured by the function generator 8c, and the calculated gas temperature 19 of the furnace is calculated as the output of the physical model 18 of the furnace. Deviation 13c
Is calculated by the subtracter 2c, and this is added as the feedback signal 14c by the PI controller 6c to the fuel flow rate command value 15 of the prior art by the adder 7d to calculate the fuel flow rate command value 16 of the present invention. The configuration of the physical model 18 of the furnace will be described below. Calculated furnace gas temperature (Tg)
19 is calculated by the following equation (1). Tg = F (Ff, Fa, Fgr, Fgas, Fa 2 ) (Equation 1) (where Ff: fuel flow rate (22 in FIG. 1), Fa: air flow rate (23 in FIG. 1), Fgr: recirculation Gas flow rate (2 in Fig. 1)
4), Fgas: total gas flow rate (25 in FIG. 1), and Fa 2 : two-stage combustion air flow rate (21 in FIG. 1) are shown. In addition to this, Tg is also calculated depending on the enthalpies and specific heats of fuel, air and gas, and also depends on the model parameters of the furnace. Next, a method of calculating the secondary superheater external gas temperature Tg will be described. First, a physical model of a furnace in which the furnace is divided into a burner area and a two-stage combustion area is described. The furnace is divided into a burner region and a two-stage combustion region, and the solution of the heat balance equation in both regions is the combustion gas temperature in the burner region and the two-stage combustion region. That is, the heat balance in the burner region is expressed by the following equation (Equation 2). QBin = QBout + QBtr (Equation 2) (where, QBin: heat input to burner area, QBout: heat output from burner area, QBtr: heat transfer quantity to water wall in burner area). The heat input amount QBin to the burner region is the heat generation amount QBgen of the fuel in the burner region and the sensible heat amounts of the air, the fuel and the recirculation gas, respectively, QBair, Qfuel and QBgr, i.
It is the total amount of n brought in. Of these, the amount of heat generated QBgen
Is determined depending on the combustion rate Fl. That is, it is expressed by the following equation (3). QBin = QBgen + QBair + Qfuel + QBgr, in (Equation 3) (where, QBin: heat input to burner area, QBgen: heat generation amount of fuel in burner area, QBair: sensible heat of air, Q
Bfuel: sensible heat amount of fuel, QBgr, in: sensible heat amount of recirculated gas. ) Also, the heat output QBout from the burner area is the sensible heat quantity of combustion gas, recirculation gas, and unburned gas, QBgas, QBgr, out, respectively.
And the total amount of Qubc taken out. That is, it is expressed by the following equation (4). QBout = QBgas + QBgr, out + Qubc (Equation 4) (wherein, QBout: heat output from burner area, QBgas: sensible heat of combustion gas, QBgr, out: sensible heat of recirculated gas, Qubc: sensible heat of unburned gas. Further, the amount of heat transfer QBtr from the flame in the burner area to the water wall in the burner area is the sum of the radiation QBrad and the heat transfer QBcv. Of these, the radiation QBrad is determined depending on the product F of the radiation rate and the view factor and the flame filling rate Fcg. That is, it is expressed by the following equation (5). QBtr = QBrad + QBcv (Equation 5) As described above, both sides of the heat balance equation in the burner region are functions of the combustion gas temperature TGB in the burner region, and TGB is calculated by solving this equation. That is, TGB is obtained as a function of the fuel flow rate, the air flow rate, the recirculation gas flow rate, and the two-stage combustion air flow rate. This function has parameters such as the combustion rate Fl, the product F of the emissivity and the number of forms, and the flame filling rate Fc.
g is included. These parameters are called "furnace model parameters". On the other hand, the heat balance in the two-stage combustion region is expressed by the equation (6). QYin = QYout + QYtr (Equation 6) (where, QYin: heat input to the second-stage combustion area, QYout: 2
Heat output from the staged combustion zone, QYtr: Heat transfer to the water wall in the two-staged combustion zone. ) Here, the heat input QYin to the two-stage combustion region is the heat generation amount QYgen of the unburned portion in the burner region and the sensible heat amount of the inflow gas from the burner region, that is, the heat output amount QBout from the burner region, 2
It is the sum total of the sensible heat amount QYair of the stage combustion air and the carried-in amount of the sensible heat amount QYgr, in of the recirculated gas. That is, it is expressed by the following equation (7). QYin = QYgen + QBout + QYair + QYgr, in (Equation 7) Further, the heat output amount QYout from the two-stage combustion region is the sum of the carried amount of the sensible heat amount QYgas of the combustion gas and the sensible heat amount QYgr, out of the recirculation gas. Of these, the amount of generated heat QYgen is determined depending on the combustion rate Fl. That is, it is expressed by the following equation (Equation 8). QYout = QYgas + QYgr, out (Equation 8) Furthermore, the amount of heat transfer QYtr from the flame in the second-stage combustion region to the water wall in the second-stage combustion region is the sum of the radiation amount QYrad and the heat transfer amount QYcv. Of these, the radiation QYrad is determined depending on the product F of the radiation rate and the view factor and the flame filling rate Fcg. That is,
It is expressed by the equation (9). QYtr = QYrad + QYcv (Equation 9) Thus, both sides of the heat balance equation in the two-stage combustion region are functions of the combustion gas temperature TGY in the two-stage combustion region and the combustion gas temperature TGB in the burner region, and TGB is the burner region. The heat balance equation can be calculated, and TGY can be calculated by solving this equation. That is, TGY is obtained in the form of the equation (1) as a function of the fuel flow rate, the air flow rate, the recirculation gas flow rate, and the two-stage combustion air flow rate. The combustion gas temperature TGY in the two-stage combustion region calculated as described above can be applied as the furnace gas temperature calculated value Tg, 19.

【0008】[0008]

【発明の効果】以上詳細に説明したごとく、本発明の火
力プラントの蒸気温度制御装置によれば、火炉の物理モ
デルの出力である火炉のガス温度計算値と、火炉のガス
温度設定値との偏差のPI調節信号を、燃料流量へのフ
ィードバック信号として加算するので、これにより燃料
流量に対する蒸気温度の応答の時間遅れを吸収すること
か可能となり、速い負荷変化に対しても追従できる制御
性に極めて優れた火力プラントの蒸気温度制御装置を実
現することができる。
As described in detail above, according to the steam temperature control apparatus for a thermal power plant of the present invention, the calculated gas temperature of the furnace, which is the output of the physical model of the furnace, and the set value of the gas temperature of the furnace. Since the PI adjustment signal of the deviation is added as a feedback signal to the fuel flow rate, it becomes possible to absorb the time delay of the response of the steam temperature to the fuel flow rate, and the controllability that can follow a rapid load change. It is possible to realize an extremely excellent steam temperature control device for a thermal power plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において例示した火力プラント
の蒸気温度制御装置の構成を示す系統図。
FIG. 1 is a system diagram showing a configuration of a steam temperature control device for a thermal power plant exemplified in an embodiment of the present invention.

【図2】従来の火力プラントの蒸気温度制御装置の構成
を示す系統図。
FIG. 2 is a system diagram showing a configuration of a conventional steam temperature control device for a thermal power plant.

【符号の説明】 1…主蒸気圧力 2a、2b、2c…減算器 3…変圧プログラム設定器 4…主蒸気圧力設定値 5…出力デマンド 6a、6b、6c…PI調節器 7a、7b、7c、7d…加算器 8a、8b、8c…関数発生器 9…ボイラマスタ 10…ボイラ入力加速信号 11…燃料流量先行値 12…1次過熱器出口蒸気温度設定値 13a、13b、13c…偏差 14a、14b、14c…フィードバック信号 15…従来の燃料流量指令値 16…燃料流量指令値 17…1次過熱器出口蒸気温度 18…火炉の物理モデル 19…火炉のガス温度計算値(Tg) 20…火炉のガス温度設定値 21…2段燃焼空気流量(Fa2) 22…燃料流量(Ff) 23…空気流量(Fa) 24…再循環ガス流量(Fgr) 25…全ガス流量(Fgas)[Explanation of Codes] 1 ... Main steam pressure 2a, 2b, 2c ... Subtractor 3 ... Transformation program setter 4 ... Main steam pressure set value 5 ... Output demand 6a, 6b, 6c ... PI regulator 7a, 7b, 7c, 7d ... Adder 8a, 8b, 8c ... Function generator 9 ... Boiler master 10 ... Boiler input acceleration signal 11 ... Fuel flow preceding value 12 ... Primary superheater outlet steam temperature set value 13a, 13b, 13c ... Deviation 14a, 14b, 14c ... Feedback signal 15 ... Conventional fuel flow rate command value 16 ... Fuel flow rate command value 17 ... Primary superheater outlet steam temperature 18 ... Physical model of furnace 19 ... Calculated gas temperature of furnace (Tg) 20 ... Gas temperature of furnace setpoint 21 ... two-stage combustion air flow rate (Fa 2) 22 ... fuel flow (Ff) 23 ... air flow rate (Fa) 24 ... recycle gas flow rate (Fgr) 25 ... total gas flow rate (Fgas)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負荷要求に対応して燃料流量を修正し火炉
の蒸気温度を制御する火炉プラントの蒸気温度制御方法
において、火炉の物理モデルから計算推定される火炉の
ガス温度推定値と、火炉の出力デマンドから設定される
火炉のガス温度設定値を比較して、その偏差を燃料流量
にフィードバックして蒸気温度を制御することを特徴と
する火力プラントの蒸気温度制御方法。
1. A steam temperature control method for a furnace plant, which corrects a fuel flow rate according to a load demand and controls a steam temperature of a furnace, and a furnace gas temperature estimated value calculated and estimated from a physical model of the furnace, and a furnace. A method for controlling a steam temperature of a thermal power plant, comprising: comparing a gas temperature set value of a furnace set from the output demand of the above, and feeding back the deviation to the fuel flow rate to control the steam temperature.
【請求項2】負荷要求に対応して燃料流量を修正し火炉
の蒸気温度を制御する手段を備えた火炉プラントの蒸気
温度制御装置において、火炉の物理モデルによって火炉
のガス温度を計算により推定する手段と、火炉の出力デ
マンドから設定される火炉のガス温度設定手段と、上記
火炉ガス温度推定値と火炉のガス温度設定値を比較して
偏差を求める手段と、上記偏差のPI調節信号をフィー
ドバックして燃料流量指令値に加算して燃料流量を制御
する手段を少なくとも設けたことを特徴とする火炉プラ
ントの蒸気温度制御装置。
2. A steam temperature control device for a furnace plant comprising means for controlling the fuel flow rate and controlling the steam temperature of the furnace according to the load demand, wherein the gas temperature of the furnace is estimated by calculation using a physical model of the furnace. Means, a furnace gas temperature setting means set from the output demand of the furnace, a means for obtaining a deviation by comparing the estimated furnace gas temperature value and the furnace gas temperature set value, and a PI adjustment signal for the deviation as feedback And at least means for controlling the fuel flow rate by adding the fuel flow rate command value to the steam temperature control apparatus for the furnace plant.
JP1375193A 1993-01-29 1993-01-29 Steam temperature control method of thermal power plant and device therefor Pending JPH06221506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1375193A JPH06221506A (en) 1993-01-29 1993-01-29 Steam temperature control method of thermal power plant and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1375193A JPH06221506A (en) 1993-01-29 1993-01-29 Steam temperature control method of thermal power plant and device therefor

Publications (1)

Publication Number Publication Date
JPH06221506A true JPH06221506A (en) 1994-08-09

Family

ID=11841958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1375193A Pending JPH06221506A (en) 1993-01-29 1993-01-29 Steam temperature control method of thermal power plant and device therefor

Country Status (1)

Country Link
JP (1) JPH06221506A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200875A (en) * 2004-12-22 2006-08-03 Nippon Steel Corp Determination method of boiler fuel input amount
JP2008008522A (en) * 2006-06-27 2008-01-17 Nippon Steel Corp Boiler fuel charging amount deciding method, boiler fuel control device and program
JP2010078318A (en) * 2004-12-22 2010-04-08 Nippon Steel Corp Method of determining boiler fuel charge amount
CN103225799A (en) * 2013-05-09 2013-07-31 北京四方继保自动化股份有限公司 Method for controlling main steam temperature in thermal power plant
CN105546508A (en) * 2016-02-18 2016-05-04 江苏科技大学 Main steam temperature control system and method for thermal power plant based on event-triggered mechanism

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200875A (en) * 2004-12-22 2006-08-03 Nippon Steel Corp Determination method of boiler fuel input amount
JP2010078318A (en) * 2004-12-22 2010-04-08 Nippon Steel Corp Method of determining boiler fuel charge amount
JP4522326B2 (en) * 2004-12-22 2010-08-11 新日本製鐵株式会社 Determination of boiler fuel input
JP2008008522A (en) * 2006-06-27 2008-01-17 Nippon Steel Corp Boiler fuel charging amount deciding method, boiler fuel control device and program
CN103225799A (en) * 2013-05-09 2013-07-31 北京四方继保自动化股份有限公司 Method for controlling main steam temperature in thermal power plant
CN105546508A (en) * 2016-02-18 2016-05-04 江苏科技大学 Main steam temperature control system and method for thermal power plant based on event-triggered mechanism
CN105546508B (en) * 2016-02-18 2017-10-31 江苏科技大学 Thermal power plant's Control on Main-steam Temperature and method based on event trigger mechanism

Similar Documents

Publication Publication Date Title
JPH0454135B2 (en)
JPH06221506A (en) Steam temperature control method of thermal power plant and device therefor
JPS61208403A (en) Automatic controller for thermal power plant
CN106287659A (en) Reheat steam temperature degree control method and device
JP2001041403A (en) Boiler controller
CN204063028U (en) Supercritical cfb boiler bed temperature control system
JPH0694210A (en) Vapor temperature controller for boiler
KR100496823B1 (en) A temperature control method of hot blast stoves in a blast furnace
JP2521709B2 (en) Steam temperature controller
JPS60263014A (en) Combustion controlling method
JPS62245009A (en) Automatic controller for boiler
JPH0366561B2 (en)
JP3707087B2 (en) Reheater outlet steam temperature control system in an exhaust-fired combined cycle plant
JPS5819608A (en) Self-controller for boiler
JPH1054508A (en) Temperature control method and apparatus for main steam
JPH0563683B2 (en)
JP2549711B2 (en) Process control equipment
JPH0238843B2 (en)
JP2565142B2 (en) Automatic plant controller
JPH07269801A (en) Method and apparatus for controlling pressurized fluidized-bed boiler
JPS621162B2 (en)
JPS6246103A (en) Boiler automatic controller
JPS6021639Y2 (en) Furnace pressure control device for combustion equipment
JPH04126901A (en) Method for controlling temperature of main steam from boiler
JPH0774683B2 (en) Gas recirculation boiler controller