JPH0694210A - Vapor temperature controller for boiler - Google Patents

Vapor temperature controller for boiler

Info

Publication number
JPH0694210A
JPH0694210A JP24609192A JP24609192A JPH0694210A JP H0694210 A JPH0694210 A JP H0694210A JP 24609192 A JP24609192 A JP 24609192A JP 24609192 A JP24609192 A JP 24609192A JP H0694210 A JPH0694210 A JP H0694210A
Authority
JP
Japan
Prior art keywords
steam temperature
superheater
secondary superheater
furnace
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24609192A
Other languages
Japanese (ja)
Inventor
Tetsuo Itami
哲郎 伊丹
Hiroshi Oshima
拓 大島
Hidehisa Yoshizako
秀久 吉廻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP24609192A priority Critical patent/JPH0694210A/en
Publication of JPH0694210A publication Critical patent/JPH0694210A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve control performance of a fuel flow rate by enhancing a predicting accuracy of an outlet steam temperature of a superheater even by using a furnace physical model parameter which is difficult to be previously set. CONSTITUTION:In order to compensate a delay of a control correcting operation due to steam temperature response delay of a boiler, a predicted value of a steam temperature Ts of an outlet of a secondary superheater in n min to be calculated by sing a predicting model 1 of the superheater with a input steam temperature of the superheater and an outlet steam temperature of the superheater as input values is input to a furnace physical model parameter regulator 3. Optimum parameters F, Fcg, F1 calculated by the regulator 3 are applied to a furnace physical model 2, a furnace outlet gas temperature calculated by the model 2 is input to the model 1 to obtain a predicted value of the Ts in n min. A sum of a signal due to a deviation between the predicted value and a target value obtained from a target temperature setter 4 and a precedent value to be decided from a boiler input command is used as a fuel amount command, and an operation signal of a fuel regulating valve 5 is formed by feeding back a fuel flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボイラの蒸気温度制御装
置に係わり、特に好適な計算予測モデルを有する火力プ
ラント用ボイラの蒸気温度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam temperature control device for a boiler, and more particularly to a steam temperature control device for a boiler for a thermal power plant having a suitable calculation prediction model.

【0002】[0002]

【従来の技術】従来の蒸気温度制御方法としては、ボイ
ラプラントのプロフィールをあらかじめ予測して決定さ
れる先行値と、蒸気温度の設定値と実測値との偏差のフ
ィードバックとの和として燃料流量、スプレー量を補正
するものが主流である。しかし、高頻度起動停止(DS
S)運用等の運用の多様化に対応できるように過熱器の
物理モデルを制御系に内蔵させ、蒸気温度のn分先の値
を予測する制御手法が考えられている(特開昭57−1
6719号)。
2. Description of the Related Art As a conventional steam temperature control method, a fuel flow rate as a sum of a preceding value determined by predicting a boiler plant profile in advance and a feedback of a deviation between a set value of steam temperature and an actually measured value, The mainstream method is to correct the spray amount. However, high frequency start / stop (DS
S) A control method has been considered in which a physical model of a superheater is incorporated in a control system so as to cope with diversification of operations such as operation, and the value of steam temperature n minutes ahead is predicted (Japanese Patent Laid-Open No. 57- 1
6719).

【0003】さらに過熱器の物理モデルにおいて、計算
条件として与える過熱器外部ガス温度をバーナ域と2段
燃焼域とに分割したボイラ火炉の物理モデルを適用して
計算算出するような制御方法が考えられている(特願平
4−8642号)。
Further, in a physical model of a superheater, a control method is considered in which the physical temperature of a boiler furnace in which a superheater external gas temperature given as a calculation condition is divided into a burner region and a two-stage combustion region is applied for calculation. (Japanese Patent Application No. 4-8642).

【0004】図3を用いて上記の従来技術による予測制
御方法を説明する。従来の制御方法は、ボイラの蒸気温
度応答遅れによる制御修正動作の遅れを補償するため
に、2段燃焼空気流量、燃料流量、空気流量、再循環ガ
ス流量、全ガス(燃料の燃焼ガスと再循環ガスとの和)
流量を入力値とする火炉物理モデル12と、二次過熱器
の入口蒸気温度と二次過熱器出口蒸気温度を入力値とす
る二次過熱器の予測モデル11を用いて計算されるn分
先の二次過熱器出口の蒸気温度の予測値により先行的に
燃料流量を補正するもので、二次過熱器予測モデルの計
算条件となる過熱器外部ガス温度をボイラ火炉の物理モ
デルから算出するものである。
The above-mentioned conventional predictive control method will be described with reference to FIG. The conventional control method uses two-stage combustion air flow rate, fuel flow rate, air flow rate, recirculation gas flow rate, all gas (fuel combustion gas and Sum with circulating gas)
N minutes ahead calculated using the furnace physics model 12 with the input value of the flow rate, and the prediction model 11 of the secondary superheater with the inlet steam temperature of the secondary superheater and the secondary superheater outlet steam temperature as input values The fuel flow rate is corrected in advance based on the predicted value of the steam temperature at the secondary superheater outlet, and the superheater external gas temperature, which is the calculation condition for the secondary superheater prediction model, is calculated from the physical model of the boiler furnace. Is.

【0005】定圧貫流(UP)ボイラの蒸気温度制御へ
の適用を想定して、前記物理モデル化して扱う過熱器と
しては二次過熱器(最終過熱器)を取る。すなわち、二
次過熱器の予測モデルにおいて二次過熱器出口流体エン
タルピ(水/蒸気エンタルピ)Hsと二次過熱器メタル
温度Tmとに対するエネルギー保存方程式は VRdHs/dt =(Hin−Hs)Fs+Asαs(Tm−Ts) (1) MmCmdTm/dt =−Asαs(Tm−Ts)+Amαm(Tg−Tm) (2) として表される。ここで、 V:二次過熱器流路容積[m3] R:二次過熱器流体比重[kg/m3] Hs:二次過熱器出口流体エンタルピ[kcal/k
g] Hin:二次過熱器入口流体エンタルピ[kcal/k
g] Fs:二次過熱器流体流量[kg/s] As:二次過熱器流体側伝熱面積[m2] αs:二次過熱器メタル/流体熱伝達率[kcal/m
2℃s] Ts:二次過熱器流体温度(Hsの関数)[℃] Mm:二次過熱器メタル質量[kg] Tm:二次過熱器メタル温度[℃] Tg:二次過熱器外部ガス温度[℃] Am:二次過熱器メタル側伝熱面積[m2] αm:二次過熱器ガス/メタル熱伝達率[kcal/m
2℃s] Cm:二次過熱器メタル比熱[kcal/kg℃] ここで二次過熱器流体とは二次過熱器管内を通過する蒸
気のことであり、二次過熱器外部ガスまたは二次過熱器
ガスとは二次過熱器を加熱するための燃焼ガスのことで
ある。
A secondary superheater (final superheater) is taken as the superheater to be treated in the physical model, assuming application to the steam temperature control of a constant pressure once-through (UP) boiler. That is, in the prediction model of the secondary superheater, the energy conservation equation for the secondary superheater outlet fluid enthalpy (water / steam enthalpy) Hs and the secondary superheater metal temperature Tm is VRdHs / dt = (Hin-Hs) Fs + Asαs (Tm −Ts) (1) MmCmdTm / dt = −Asαs (Tm−Ts) + Amαm (Tg−Tm) (2) Here, V: Secondary superheater channel volume [m 3 ] R: Secondary superheater fluid specific gravity [kg / m 3 ] Hs: Secondary superheater outlet fluid enthalpy [kcal / k]
g] Hin: Secondary superheater inlet fluid enthalpy [kcal / k
g] Fs: Secondary superheater fluid flow rate [kg / s] As: Secondary superheater fluid side heat transfer area [m 2 ] αs: Secondary superheater metal / fluid heat transfer coefficient [kcal / m]
2 ℃ s] Ts: Secondary superheater fluid temperature (function of Hs) [℃] Mm: Secondary superheater metal mass [kg] Tm: Secondary superheater metal temperature [℃] Tg: Secondary superheater external gas Temperature [° C] Am: Heat transfer area of the secondary superheater metal side [m 2 ] αm: Secondary superheater gas / metal heat transfer coefficient [kcal / m
2 ℃ s] Cm: Secondary superheater metal specific heat [kcal / kg ℃] Here, the secondary superheater fluid is the vapor passing through the inside of the secondary superheater pipe, and is the secondary superheater external gas or secondary Superheater gas is combustion gas for heating the secondary superheater.

【0006】二次過熱器外部ガス温度Tgは後述する火
炉の物理モデルを使って Tg=F(Ff、Fa、Fgr、Fgas) (3) で計算される。ただし、 Ff:燃料流量[kg/s] Fa:空気流量[kg/s] Fgr:再循環ガス流量[kg/s] Fgas:全ガス流量[kg/s] であり、二次過熱器外部ガス温度Tgはこの他にも燃
料、空気、ガスのエンタルピ、比熱にも依存して算出さ
れ、さらに後述する火炉の物理モデルパラメータにも依
存するものである。
The secondary superheater external gas temperature Tg is calculated by Tg = F (Ff, Fa, Fgr, Fgas) (3) using the physical model of the furnace described later. However, Ff: fuel flow rate [kg / s] Fa: air flow rate [kg / s] Fgr: recirculation gas flow rate [kg / s] Fgas: total gas flow rate [kg / s], and the secondary superheater external gas In addition to this, the temperature Tg is calculated depending on the enthalpies and specific heats of fuel, air and gas, and also depends on the physical model parameters of the furnace described later.

【0007】次に、二次過熱器外部ガス温度Tgを計算
する手法を説明する。まず、バーナ域と二段燃焼域に火
炉を要素分割した火炉の物理モデルを説明する。火炉を
バーナ域と二段燃焼域とに分割し、両方の領域での熱収
支の方程式の解がバーナ域と二段燃焼域の燃焼ガス温度
である。すなわち、バーナ域における熱収支は次の方程
式で表現される。 QBin=QBout+QBtr (4) ここで、バーナ域への入熱QBinはバーナ域での燃料
の発生熱量QBgenと空気の顕熱QBair、燃料の
顕熱Qfuel及び再循環ガスの顕熱QBgr,inの
持込み量の総和である。すなわち、 QBin=QBgen+QBair+Qfuel+QBgr,in (5) である。このうち燃料の発生熱量QBgenは燃焼率F
lに依存して決まる。
Next, a method for calculating the secondary superheater external gas temperature Tg will be described. First, a physical model of a furnace in which the furnace is divided into a burner area and a two-stage combustion area will be described. The furnace is divided into a burner region and a two-stage combustion region, and the solution of the heat balance equation in both regions is the combustion gas temperature in the burner region and the two-stage combustion region. That is, the heat balance in the burner region is expressed by the following equation. QBin = QBout + QBtr (4) Here, the heat input QBin to the burner region is the amount of heat QBgen generated in the burner region, the sensible heat of air QBair, the sensible heat of fuel Qfuel, and the sensible heat of the recirculated gas QBgr, in. It is the sum of the quantities. That is, QBin = QBgen + QBair + Qfuel + QBgr, in (5). Of these, the heat generation amount QBgen of the fuel is the combustion rate F
It depends on l.

【0008】また、バーナ域からの出熱QBoutは燃
焼ガスの顕熱QBgas、再循環ガスの顕熱QBgr,
outおよび未燃分の顕熱Qubcの持ち出し量の総和
である。すなわち、 QBout=QBgas+QBgr,out+Qubc (6) である。
The heat output QBout from the burner region is sensible heat QBgas of combustion gas, sensible heat QBgr of recirculated gas,
It is the sum of the carry-out amounts of out and unburned sensible heat Qubc. That is, QBout = QBgas + QBgr, out + Qubc (6).

【0009】さらにバーナ域の火炎からバーナ域の水壁
への伝熱量QBtrは輻射による伝熱量QBradと熱
伝達による伝熱量QBcvとの総和である。すなわち、 QBtr=QBrad+QBcv (7) である。このうち輻射による伝熱量QBradは輻射率
と形態係数の積Fと火炎充満率Fcgに依存して決ま
る。
Further, the heat transfer amount QBtr from the flame in the burner region to the water wall in the burner region is the sum of the heat transfer amount QBrad due to radiation and the heat transfer amount QBcv due to heat transfer. That is, QBtr = QBrad + QBcv (7). Of these, the heat transfer amount QBrad due to radiation is determined depending on the product F of the emissivity and the form factor and the flame filling rate Fcg.

【0010】このように、バーナ域の熱収支方程式の両
辺はバーナ域の燃焼ガス温度TGBの関数であり、この
方程式を解くことにより前記TGBが算出される。すな
わち、TGBは熱量流量Ff、再循環ガス流量Fgr、
二段燃焼空気流量Faの関数として求められる。この関
数にはパラメータとして燃焼率F1、輻射率と形態係数
の積F、火炎充満率Fcgが含まれており、これらのパ
ラメータを以後“火炉モデルパラメータ”と称するもの
とする。
Thus, both sides of the heat balance equation in the burner region are functions of the combustion gas temperature TGB in the burner region, and the TGB is calculated by solving this equation. That is, TGB is the heat flow rate Ff, the recirculation gas flow rate Fgr,
It is obtained as a function of the two-stage combustion air flow rate Fa. This function includes, as parameters, the combustion rate F1, the product F of the emissivity and the form factor, and the flame filling rate Fcg, and these parameters are hereinafter referred to as "furnace model parameters".

【0011】一方、二段燃焼域における熱収支は次の方
程式で表現される。 QYin=QYout+QYtr (8) ここで、二段燃焼域への入熱QYinはバーナ域での未
燃分の発生熱量QYgenとバーナ域からの流入ガスの
顕熱QBout、二段燃焼空気の顕熱QYairおよび
再循環ガスの顕熱QYgr,inの持込み量との総和で
ある。すなわち、 QYin=QYgen+QBout+QYair+QYar,in (9) である。
On the other hand, the heat balance in the two-stage combustion region is expressed by the following equation. QYin = QYout + QYtr (8) Here, the heat input QYin to the two-stage combustion area is the heat quantity QYgen of the unburned portion in the burner area, the sensible heat QBout of the inflow gas from the burner area, and the sensible heat QYair of the two-stage combustion air. And the amount of sensible heat QYgr, in of the recirculated gas brought in. That is, QYin = QYgen + QBout + QYair + QYar, in (9).

【0012】また、二段燃焼域からの出熱QYoutは
燃焼ガスの顕熱QYgas、再循環ガスの顕熱QYg
r,outの持ち出し量の総和である。すなわち、 QYout=QYgas+QYgr,out (10) である。このうち発生熱量QYgenは燃焼率F1に依
存して決まる。
The heat output QYout from the two-stage combustion region is the sensible heat QYgas of the combustion gas and the sensible heat QYg of the recirculated gas.
This is the sum of the amount of r and out carried out. That is, QYout = QYgas + QYgr, out (10). Of these, the heat generation amount QYgen is determined depending on the combustion rate F1.

【0013】さらに、二段燃焼域の火炎から二段燃焼域
の水壁への伝熱量QYtrは輻射QYradと熱伝達Q
Ycvとの総和である。すなわち、 QYtr=QYrad+QYcv (11) である。このうち輻射QYradは輻射率と形態係数の
積F、火炎充満率Fcgに依存して決まる。
Further, the amount of heat transfer QYtr from the flame in the two-stage combustion region to the water wall in the two-stage combustion region is determined by radiation QYrad and heat transfer Q.
This is the sum of Ycv. That is, QYtr = QYrad + QYcv (11). Of these, the radiation QYrad is determined depending on the product F of the radiation rate and the form factor and the flame filling rate Fcg.

【0014】このように、二段燃焼域の熱収支方程式の
両辺は二段燃焼域の燃焼ガス温度TGYおよびバーナ域
の燃焼ガス温度TGBの関数であり、前記TGBはバー
ナ域の熱収支方程式から算出されているので、この方程
式(11)を解くことによりTGYが算出される。すな
わち、TGYは燃料流量Fl、空気流量Fa、再循環ガ
ス流量Fgr、全ガス流量Fgasの関数として式
(3)の形式でもとめられるが、前述のように、この関
数として火炉モデルパラメータ(輻射率と形態係数の積
F、火炎充満Fcg)も含まれている。以上のように算
出された二段燃焼域の燃焼ガス温度TGYを二段過熱器
外部ガス温度Tgとして適用できる。
Thus, both sides of the heat balance equation in the two-stage combustion region are functions of the combustion gas temperature TGG in the two-stage combustion region and the combustion gas temperature TGB in the burner region, and the TGB is calculated from the heat balance equation in the burner region. Since it has been calculated, TGY is calculated by solving this equation (11). That is, TGY can be obtained as a function of the fuel flow rate Fl, the air flow rate Fa, the recirculation gas flow rate Fgr, and the total gas flow rate Fgas in the form of the equation (3), but as described above, as a function, the furnace model parameter (emissivity And the product of the form factor F and the flame fill Fcg) are also included. The combustion gas temperature TGY in the two-stage combustion region calculated as described above can be applied as the two-stage superheater external gas temperature Tg.

【0015】さて、上記方程式(1)、(2)は時間常
微分方程式であるから、Hin(二段過熱器入口エンタ
ルピ(蒸気温度))と方程式(3)から計算されるTg
(二段過熱器外部ガス温度)を与えれば、現時点のHs
とTmを初期条件として積分することにより、n分後の
Hs(二次過熱器出口流体エンタルピ(蒸気温度))と
Tm(二次過熱器メタル温度)を計算し、予測すること
ができる。ただし、HinとTgは現時点からn分間一
定であると仮定する。
Since the above equations (1) and (2) are time ordinary differential equations, Tg calculated from Hin (two-stage superheater inlet enthalpy (steam temperature)) and equation (3)
If (2 step superheater external gas temperature) is given, the current Hs
And Tm are integrated as initial conditions, Hs (secondary superheater outlet fluid enthalpy (steam temperature)) and Tm (secondary superheater metal temperature) after n minutes can be calculated and predicted. However, it is assumed that Hin and Tg are constant for n minutes from the present time.

【0016】以上のようにして計算される二次過熱器出
口蒸気温度のn分後の予測値と目標温度設定回路13
(図3)から得る目標値との偏差に応じてフィードバッ
ク信号を作成し、これとボイラ入力指令から決まる先行
値との和を燃料量指令とし、さらに燃料量指令と燃料流
量との偏差をフィードバックすることにより燃料調節弁
14の操作信号を作成する。
The predicted value of the secondary superheater outlet steam temperature calculated as described above after n minutes and the target temperature setting circuit 13
A feedback signal is created according to the deviation from the target value obtained from (Fig. 3), the sum of this and the preceding value determined from the boiler input command is used as the fuel amount command, and the deviation between the fuel amount command and the fuel flow rate is fed back. By doing so, an operation signal of the fuel control valve 14 is created.

【0017】このような火炉の物理モデル12を用いて
二次過熱器外部ガス温度Tgを算出しているので、これ
を二次過熱器モデルの計算条件とすることにより、二次
過熱器出口蒸気温度を計算予測することができ、予測計
算値に基づく燃料流量の制御性能を向上させることがで
きる。
Since the secondary superheater external gas temperature Tg is calculated using such a physical model 12 of the furnace, the secondary superheater outlet steam is set by using this as the calculation condition of the secondary superheater model. The temperature can be calculated and predicted, and the control performance of the fuel flow rate based on the predicted calculation value can be improved.

【0018】[0018]

【発明が解決しようとする課題】しかし、火炉物理モデ
ル12を適用して火炉伝熱量・水壁熱吸収量を計算する
場合、輻射伝熱量を算出するためには火炉物理モデルパ
ラメータを決めておく必要がある。しかし、このパラメ
ータ(燃焼率Fl、輻射率と形態係数の積F、火炎充満
率Fcg)はモデル化に恣意性があり、また、燃焼様式
への依存性が強く、これらを予め設定することは困難な
場合がある。
However, when the furnace physics model 12 is applied to calculate the furnace heat transfer and water wall heat absorption, the furnace physics model parameters are determined in advance in order to calculate the radiant heat transfer. There is a need. However, these parameters (combustion rate Fl, emissivity and form factor product F, flame filling rate Fcg) are arbitrary in modeling, and strongly depend on combustion mode, and it is not possible to preset them. It can be difficult.

【0019】これを解決するには火炉物理モデル12に
より燃焼率Fl、輻射率と形態係数の積F、火炎充満率
Fcgという火炉物理モデルパラメータの関数として算
出された火炉出口ガス温度が実測値に一致するように上
記パラメータを時々刻々に推定すればよい。しかし火炉
出口ガス温度を直接に実測することは困難な場合が多い
という問題がある。そこで本発明の目的は予め設定する
ことは困難な火炉物理モデルパラメータを用いながら過
熱器出口蒸気温度の予測精度を高めて、燃料流量の制御
性能を向上させることである。
To solve this, the furnace outlet gas temperature calculated by the furnace physics model 12 as a function of the parameters of the furnace physics model such as the combustion rate Fl, the product F of the emissivity and the form factor, and the flame filling rate Fcg becomes the measured values. The above parameters may be estimated moment by moment so that they match. However, it is often difficult to directly measure the furnace outlet gas temperature. Therefore, an object of the present invention is to improve the accuracy of predicting the superheater outlet steam temperature while improving the fuel flow control performance while using the furnace physical model parameters that are difficult to set in advance.

【0020】[0020]

【課題を解決するための手段】本発明の目的は次の構成
によって、達成される。すなわち、ボイラ火炉と二次過
熱器の計算予測モデルにより、n分先の二次過熱器出口
蒸気温度を定格値に維持する火力プラントの蒸気温度制
御装置において、ボイラ火炉と二次過熱器の計算予測モ
デルによる二次過熱器出口蒸気温度の推定値とその実測
値との偏差によって、前記計算予測モデルが含むパラメ
ータを適応値となるように自動調整するボイラの蒸気温
度制御装置である。ここで、前記計算予測モデルが含む
パラメータの適応値への自動調整は最急降下法により行
うことが望ましい。また、前記計算予測モデルが含むパ
ラメータは燃焼率、輻射率と形態係数の積、火炎充満率
を用いることができる。
The object of the present invention is achieved by the following constitutions. That is, in the steam temperature control device of the thermal power plant that maintains the secondary superheater outlet steam temperature n minutes ahead at the rated value by the calculation prediction model of the boiler furnace and the secondary superheater, calculation of the boiler furnace and the secondary superheater is performed. It is a steam temperature control device for a boiler that automatically adjusts parameters included in the calculation prediction model to adaptive values according to a deviation between an estimated value of the secondary superheater outlet steam temperature based on the prediction model and an actually measured value thereof. Here, it is desirable to automatically adjust the parameters included in the calculation prediction model to the adaptive values by the steepest descent method. Further, the parameters included in the calculation prediction model may be the combustion rate, the product of the emissivity and the form factor, and the flame filling rate.

【0021】[0021]

【作用】本発明は二次過熱器出口蒸気温度の計算予測値
を実測値と比較し、計算予測値が実測値に一致するよう
に二次過熱器外部ガス温度、したがって、火炉物理モデ
ルパラメータである輻射率と形態係数の積F、燃焼率F
l、火炎充満率Fcgを調節し、その調節結果に基づい
て二次過熱器出口蒸気温度のn分先の予測値を求めるよ
うにすることで、予め設定することは困難な火炉物理モ
デルパラメータを用いながら過熱器出口蒸気温度の予測
精度を高めて、燃料流量の制御性能を向上させるもので
ある。
The present invention compares the calculated predicted value of the secondary superheater outlet steam temperature with the actual measured value, and the secondary superheater external gas temperature, and therefore the furnace physical model parameter, is adjusted so that the calculated predicted value matches the actual measured value. Product F of a certain emissivity and form factor, burning rate F
By adjusting the flame filling rate Fcg and obtaining the predicted value of the secondary superheater outlet steam temperature n minutes ahead based on the adjustment result, it is possible to set a furnace physical model parameter that is difficult to set in advance. While using it, the prediction accuracy of the superheater outlet steam temperature is increased to improve the control performance of the fuel flow rate.

【0022】上記のようにパラメータの実測値を用いた
自動調節を行うならば、どのような運転状態あるいはど
のような燃焼状態においても、火炉物理モデルパラメー
タは最適値に保持され、したがって二次過熱器出口蒸気
温度のn分先の計算予測値の精度も向上し、従来技術に
比較して予測計算値に基づく燃料流量の制御性能を向上
させることができる。
If the automatic adjustment using the actual measured values of the parameters is performed as described above, the furnace physical model parameters are held at the optimum values in any operating condition or in any combustion condition, so that the secondary superheat is maintained. The accuracy of the calculated prediction value n minutes ahead of the steam outlet temperature is also improved, and the control performance of the fuel flow rate based on the predicted calculation value can be improved as compared with the prior art.

【0023】[0023]

【実施例】以下に本発明の実施例について図1を用いて
説明する。また、図2は本実施例になるボイラ蒸気温度
制御方法を適用するボイラの全体フローを示す図であ
る。図1において、ボイラの蒸気温度応答遅れによる制
御修正動作の遅れを補償するための制御手順の概略を説
明する。二次過熱器の入口蒸気温度と二次過熱器出口蒸
気温度を入力値とする二次過熱器の予測モデル1を用い
て計算されるn分先の二次過熱器出口の蒸気温度の予測
値を火炉物理モデルパラメータ調節部3に入力し、そこ
で算出される最適パラメータF、Fcg、F1を火炉物
理モデル2に適用するパラメータとして採用する。そし
て、パラメータF、Fcg、F1を用いて火炉物理モデ
ル2で算出される火炉出口ガス温度を二次過熱器予測モ
デル1に入力して二次過熱器出口蒸気温度のn分先の予
測値を求める。
Embodiment An embodiment of the present invention will be described below with reference to FIG. Further, FIG. 2 is a diagram showing an entire flow of a boiler to which the boiler steam temperature control method according to this embodiment is applied. In FIG. 1, an outline of a control procedure for compensating the delay of the control correction operation due to the steam temperature response delay of the boiler will be described. Predicted value of steam temperature at the outlet of the secondary superheater n minutes ahead calculated using the prediction model 1 of the secondary superheater with the inlet steam temperature of the secondary superheater and the outlet superheater outlet steam temperature as input values Is input to the furnace physical model parameter adjusting unit 3, and the optimum parameters F, Fcg, and F1 calculated there are adopted as parameters to be applied to the furnace physical model 2. Then, the furnace outlet gas temperature calculated by the furnace physical model 2 using the parameters F, Fcg, and F1 is input to the secondary superheater prediction model 1 to obtain a predicted value n minutes ahead of the secondary superheater outlet steam temperature. Ask.

【0024】以上のようにして計算される二次過熱器出
口蒸気温度のn分後の予測値と目標温度設定回路4から
得る目標値との偏差に応じてフィードバック信号を作成
し、これとボイラ入力指令から決まる先行値との和を燃
料量指令とし、さらに燃料流量とのフィードバックによ
り燃料調節弁5の操作信号を作成する。
A feedback signal is created in accordance with the deviation between the predicted value of the secondary superheater outlet steam temperature after n minutes calculated as described above and the target value obtained from the target temperature setting circuit 4. The sum of the preceding value determined from the input command is used as the fuel amount command, and the operation signal of the fuel control valve 5 is created by feedback with the fuel flow rate.

【0025】本実施例の二次過熱器の物理モデルにおけ
る二次過熱器出口流体エンタルピHsと二次過熱器メタ
ル温度Tmに対するエネルギー保存方程式は式(1)、
(2)の通りであるが、これを前記エンタルピHsに対
する2階常微分方程式に変形できる。 d2Hs/dt2 =1/VR((dHin/dt-dHs/dt)Fs +(Hin-Hs)dFs/dt +Asαs(dTm/dt−dTs/dt)) (1)’ ここでdTm/dtを式(2)により表現すると、 d2Hs/dt2 =1/VR((dHin/dt−dHs/dt)Fs +(Hin−Hs)dFs/dt +Asαs[(1/MmCm){−Asαs(Tm−Ts) +Amαm(Tg−Tm)}−dTs/dt] (1)” となる。このようにエンタルピHsの2階微分方程式に
なる。
The energy conservation equation for the secondary superheater outlet fluid enthalpy Hs and the secondary superheater metal temperature Tm in the physical model of the secondary superheater of this embodiment is expressed by the following equation (1):
As in (2), this can be transformed into a second-order ordinary differential equation with respect to the enthalpy Hs. d 2 Hs / dt 2 = 1 / VR ((dHin / dt-dHs / dt) Fs + (Hin-Hs) dFs / dt + Asαs (dTm / dt-dTs / dt)) (1) 'where dTm / dt Is expressed by Expression (2), d 2 Hs / dt 2 = 1 / VR ((dHin / dt-dHs / dt) Fs + (Hin-Hs) dFs / dt + Asαs [(1 / MmCm) {-Asαs ( Tm−Ts) + Amαm (Tg−Tm)} − dTs / dt] (1) ″. Thus, the second-order differential equation of the enthalpy Hs is obtained.

【0026】したがって、二次過熱器出口蒸気温度の計
算時点tおける値Ts(t)、前ステップt−dtでの
値Ts(t−dt)、二次過熱器入口流体エンタルピH
inの計算時点tにおける値Hin(t)、前ステップ
t−dtでの値Hin(t−dt)からそれぞれ計算さ
れる二次過熱器入口蒸気温度のt、t−dtでのTin
(t)、Tin(t−dt)、二次過熱器メタル温度T
m(t)を与えれば、火炉物理モデルの出力値である二
次過熱器外部蒸気温度Tg(t)を式(1)”を適用す
ることにより次ステップt+dtでの二次過熱器出口温
度計算値Ts、cal(t+dt)を算出することがで
きる。
Therefore, the value Ts (t) at the calculation time t of the secondary superheater outlet steam temperature, the value Ts (t-dt) at the previous step t-dt, the secondary superheater inlet fluid enthalpy H
Tin at the inlet steam temperature of the secondary superheater calculated from the value Hin (t) at the calculation time point t of in and the value Hin (t-dt) at the previous step t-dt, respectively, and Tin at t-dt.
(T), Tin (t-dt), secondary superheater metal temperature T
If m (t) is given, the secondary superheater external steam temperature Tg (t), which is the output value of the furnace physical model, is applied to the secondary superheater outlet temperature at the next step t + dt by applying the equation (1) ". The values Ts and cal (t + dt) can be calculated.

【0027】以上から次ステップでの二次過熱器出口蒸
気温度を計算するための必要な情報は二次過熱器出口蒸
気温度の計算時点tおける値Ts(t)、前ステップt
−dtでの値Ts(t−dt)、二次過熱器入口蒸気温
度のt、t−dtでのTin(t)、Tin(t−d
t)、二次過熱器メタル温度Tm(t)、二次過熱器外
部蒸気温度Tg(t)であるから、これを関数の形で書
くと次のようになる。すなわち、 Ts、cal(t+dt) =F(Ts(t)、Ts(t−dt)、 Tin(t)、Tm(t)、Tg(t)) (12) この二次過熱器出口蒸気温度計算値Ts、cal(t+
dt)は、二次過熱器外部ガス温度Tg(t)が火炉物
理モデルパラメータである輻射率と形態係数の積F、火
炎充満率Fcg、燃焼率Flの有する不確かさを含んで
いるため、二次過熱器出口蒸気温度の実測値Ts(t+
dt)と必ずしも一致しない。
From the above, the necessary information for calculating the secondary superheater outlet steam temperature in the next step is the value Ts (t) at the calculation time t of the secondary superheater outlet steam temperature, the previous step t.
The value Ts (t-dt) at -dt, the secondary superheater inlet steam temperature t, Tin (t) at t-dt, Tin (t-d)
t), the secondary superheater metal temperature Tm (t), and the secondary superheater external steam temperature Tg (t). That is, Ts, cal (t + dt) = F (Ts (t), Ts (t-dt), Tin (t), Tm (t), Tg (t)) (12) This secondary superheater outlet steam temperature calculation Values Ts, cal (t +
dt) is because the secondary superheater external gas temperature Tg (t) includes the uncertainty of the product F of the emissivity and the form factor which are the physical model parameters of the furnace, the flame filling rate Fcg, and the burning rate Fl. Measured value of the steam temperature at the outlet of the next superheater Ts (t +
dt) does not always match.

【0028】そこで、二次過熱器出口蒸気温度Ts(t
+dt)と二次過熱器出口蒸気温度計算値Ts、cal
(t+dt)とを火炉物理モデルパラメータ調節部に入
力し、以下の演算を行う。まず、Ts(t+dt)とT
s、cal(t+dt)との誤差平方ERRを計算す
る。 ERR=(Ts(t+dt)−Ts、cal(t+dt))2 (13) このERRはTs、cal(t+dt)が火炉物理モデ
ル2のパラメータF、Fcg、Flに依存することか
ら、これらのパラメータの関数となり、 ERR=ERR(F、Fcg、Fl) (13)’ である。この誤差平方ERRを最小化するようにF、F
cg、Flを決定するには最急降下法を適用すればよ
い。すなわち、 F→F+ηdERR/dF (14)−1 Fcg→Fcg+ηdERR/dFcg (14)−2 F1→F1+ηdERR/dF1 (14)−3 によって遂次的にパラメータF、Fcg、Flを修正し
ていきERRが最小になる点で修正完了とすればよい。
ここでηは負の実数である。以上の演算によって算出さ
れた最適パラメータFopt、Fcgopt、F1op
tを火炉物理モデル2にて適用するパラメータとして採
用する。
Therefore, the secondary superheater outlet steam temperature Ts (t
+ Dt) and secondary superheater outlet steam temperature calculated value Ts, cal
(T + dt) is input to the furnace physical model parameter adjustment unit, and the following calculation is performed. First, Ts (t + dt) and T
Calculate the error squared ERR with s, cal (t + dt). ERR = (Ts (t + dt) −Ts, cal (t + dt)) 2 (13) This ERR is Ts, cal (t + dt) depends on the parameters F, Fcg, and Fl of the furnace physical model 2, It becomes a function, and ERR = ERR (F, Fcg, Fl) (13) ′. To minimize this error square ERR, F, F
The steepest descent method may be applied to determine cg and Fl. That is, F → F + ηdERR / dF (14) -1 Fcg → Fcg + ηdERR / dFcg (14) -2 F1 → F1 + ηdERR / dF1 (14) -3, the parameters F, Fcg, and Fl are sequentially corrected to obtain the ERR. The correction may be completed at the minimum point.
Where η is a negative real number. Optimal parameters Fopt, Fcgopt, F1op calculated by the above calculation
t is adopted as a parameter applied in the furnace physical model 2.

【0029】[0029]

【発明の効果】このように本発明においては、二次過熱
器外部ガス温度を計算するのに際して、過熱器物理モデ
ルの有する輻射率形態係数の積F、火炎充満率Fcg、
燃焼率F1のような必ずしも一意的には決めがたいパラ
メータを、オンライン計測量を利用してその最適値に時
々刻々調整している。このため算出された二次過熱器外
部ガス温度の計算精度は高く、これを二次過熱器モデル
に適用することにより、従来技術に比較してはるかに高
精度な過熱器出口蒸気温度を計算予測することができ、
予測計算値に基づく蒸気温度の制御性能を向上させるこ
とができる。
As described above, in the present invention, when calculating the secondary superheater external gas temperature, the product F of the emissivity form factor of the superheater physical model, the flame filling rate Fcg,
Parameters that are not necessarily uniquely determined, such as the burning rate F1, are adjusted to their optimum values moment by moment using the online measurement amount. For this reason, the calculated accuracy of the calculated secondary superheater external gas temperature is high, and by applying this to the secondary superheater model, it is possible to calculate and predict the superheater outlet steam temperature with much higher accuracy than the conventional technology. You can
The steam temperature control performance based on the predicted calculation value can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例になるボイラ蒸気温度適応
制御方法を示す図である。
FIG. 1 is a diagram showing a boiler steam temperature adaptive control method according to an embodiment of the present invention.

【図2】 本発明の一実施例になるボイラ蒸気温度制御
方法を適用するボイラの全体フローを示す図である。
FIG. 2 is a diagram showing an entire flow of a boiler to which a boiler steam temperature control method according to an embodiment of the present invention is applied.

【図3】 従来例になるボイラ蒸気温度制御方法を示す
図である。
FIG. 3 is a diagram showing a conventional boiler steam temperature control method.

【符号の説明】[Explanation of symbols]

1、11…二次過熱器予測モデル、2、12…火炉物理
モデル、3…火炉物理モデルパラメータ調節部、4、1
3…目標温度設定回路、5、14…燃料調節弁
1, 11 ... Secondary superheater prediction model, 2, 12 ... Reactor physics model, 3 ... Reactor physics model parameter adjusting unit, 4, 1
3 ... Target temperature setting circuit, 5, 14 ... Fuel control valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ火炉と二次過熱器の計算予測モデ
ルにより、n分先の二次過熱器出口蒸気温度を定格値に
維持する火力プラントの蒸気温度制御装置において、 ボイラ火炉と二次過熱器の計算予測モデルによる二次過
熱器出口蒸気温度の推定値とその実測値との偏差によっ
て、前記計算予測モデルが含むパラメータを適応値とな
るように自動調整することを特徴とするボイラの蒸気温
度制御装置。
1. A steam temperature control device for a thermal power plant that maintains a steam temperature at a secondary superheater outlet n minutes ahead at a rated value by a calculation prediction model for a boiler furnace and a secondary superheater. Steam of the boiler characterized by automatically adjusting the parameter included in the calculation prediction model to an adaptive value by the deviation between the estimated value of the secondary superheater outlet steam temperature by the calculation prediction model of the reactor and its measured value Temperature control device.
【請求項2】 前記計算予測モデルが含むパラメータの
適応値への自動調整は最急降下法により行うことを特徴
とする請求項1記載のボイラの蒸気温度制御装置。
2. The steam temperature control device for a boiler according to claim 1, wherein the automatic adjustment of the parameter included in the calculation prediction model to the adaptive value is performed by the steepest descent method.
【請求項3】 前記計算予測モデルが含むパラメータは
燃焼率、輻射率と形態係数の積、火炎充満率であること
を特徴とする請求項1記載のボイラの蒸気温度制御装
置。
3. The steam temperature control device for a boiler according to claim 1, wherein the parameters included in the calculation prediction model are a combustion rate, a product of an emissivity and a form factor, and a flame filling rate.
JP24609192A 1992-09-16 1992-09-16 Vapor temperature controller for boiler Pending JPH0694210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24609192A JPH0694210A (en) 1992-09-16 1992-09-16 Vapor temperature controller for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24609192A JPH0694210A (en) 1992-09-16 1992-09-16 Vapor temperature controller for boiler

Publications (1)

Publication Number Publication Date
JPH0694210A true JPH0694210A (en) 1994-04-05

Family

ID=17143362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24609192A Pending JPH0694210A (en) 1992-09-16 1992-09-16 Vapor temperature controller for boiler

Country Status (1)

Country Link
JP (1) JPH0694210A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040695A (en) * 2011-08-11 2013-02-28 Toshiba Corp Apparatus and device for controlling vapor temperature
CN103134046A (en) * 2013-02-22 2013-06-05 东南大学 Superheated steam temperature two-stage coordination, prediction and control method of thermal power generating unit
CN103322553A (en) * 2013-07-04 2013-09-25 东南大学 Multi-model disturbance estimation predictive-control method for superheated steam temperature of thermal power generating unit
WO2016136506A1 (en) * 2015-02-23 2016-09-01 三菱重工業株式会社 Boiler, marine steam turbine propulsion system equipped with same, ship equipped with same, and boiler control method
CN114562713A (en) * 2022-01-17 2022-05-31 中冶华天南京工程技术有限公司 Main steam temperature control method and system for power generation boiler

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040695A (en) * 2011-08-11 2013-02-28 Toshiba Corp Apparatus and device for controlling vapor temperature
CN103134046A (en) * 2013-02-22 2013-06-05 东南大学 Superheated steam temperature two-stage coordination, prediction and control method of thermal power generating unit
CN103134046B (en) * 2013-02-22 2014-10-29 东南大学 Superheated steam temperature two-stage coordination, prediction and control method of thermal power generating unit
CN103322553A (en) * 2013-07-04 2013-09-25 东南大学 Multi-model disturbance estimation predictive-control method for superheated steam temperature of thermal power generating unit
WO2016136506A1 (en) * 2015-02-23 2016-09-01 三菱重工業株式会社 Boiler, marine steam turbine propulsion system equipped with same, ship equipped with same, and boiler control method
CN107614974A (en) * 2015-02-23 2018-01-19 三菱重工业株式会社 Boiler, the marine vapor turbine propulsion system with the boiler, the ship and boiler controlling method with the propulsion system
CN114562713A (en) * 2022-01-17 2022-05-31 中冶华天南京工程技术有限公司 Main steam temperature control method and system for power generation boiler
CN114562713B (en) * 2022-01-17 2024-04-09 中冶华天南京工程技术有限公司 Main steam temperature control method and system for power generation boiler

Similar Documents

Publication Publication Date Title
CN103343961B (en) Dynamic compensation method of attemperation water impact leading steam temperature measuring point in boiler steam temperature control system
US9447963B2 (en) Dynamic tuning of dynamic matrix control of steam temperature
US9217565B2 (en) Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
CN108386829A (en) A kind of temprature control method of boiler overheating steam, device and system
US9335042B2 (en) Steam temperature control using dynamic matrix control
CA2868093C (en) Steam temperature control using model-based temperature balancing
JPH0694210A (en) Vapor temperature controller for boiler
US10914467B2 (en) Method and apparatus for reheat steam temperature control of oxy-fired boilers
JPH08121704A (en) Steam temperature control apparatus for boiler
CN104976602B (en) Steam-heater controlling method
JP3162161B2 (en) Computing unit for boiler equipment
JPH06221506A (en) Steam temperature control method of thermal power plant and device therefor
JPH07332602A (en) Steam temperature prediction control device
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
CN112377890B (en) Method and system for adjusting flue gas recirculation quantity of double reheating unit
JPH06215786A (en) Control device for fuel cell
JPS6113531B2 (en)
JPH1054508A (en) Temperature control method and apparatus for main steam
JP2894118B2 (en) Boiler steam temperature control method
JPH1054545A (en) Lng pressure reduction/heating controller
JPH031563B2 (en)
JP2002286202A (en) Boiler vapor temperature control device
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPS5862453A (en) Control apparatus for instantaneous water heater
JPS6383544A (en) Control device for hot water feeder