JPH0643441Y2 - Pressure control device for cold heat generation equipment - Google Patents

Pressure control device for cold heat generation equipment

Info

Publication number
JPH0643441Y2
JPH0643441Y2 JP1987121441U JP12144187U JPH0643441Y2 JP H0643441 Y2 JPH0643441 Y2 JP H0643441Y2 JP 1987121441 U JP1987121441 U JP 1987121441U JP 12144187 U JP12144187 U JP 12144187U JP H0643441 Y2 JPH0643441 Y2 JP H0643441Y2
Authority
JP
Japan
Prior art keywords
pressure
delivery gas
control
control signal
turbine inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987121441U
Other languages
Japanese (ja)
Other versions
JPS6427405U (en
Inventor
健一 望月
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP1987121441U priority Critical patent/JPH0643441Y2/en
Publication of JPS6427405U publication Critical patent/JPS6427405U/ja
Application granted granted Critical
Publication of JPH0643441Y2 publication Critical patent/JPH0643441Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案はLNG冷熱発電設備の如き冷熱発電設備に用いる
送出ガス圧力制御装置に関するものである。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a delivery gas pressure control device for use in cold heat power generation equipment such as LNG cold heat power generation equipment.

[従来の技術] 従来のLNG冷熱発電設備における直接膨張再熱式の送出
ガス圧力制御方式としては、第3図に示す構成のものが
ある。すなわち、受入れられたLNG1が昇圧ポンプ2で昇
圧された後、LNG流量調節弁3を経て気化器4で気化さ
れてガスとなるようにし、気化器4を出た高圧のガスが
加減弁5を経て高圧タービン6で膨張させられた後、再
熱器7で加熱されて更に低圧タービン8で膨張させられ
ることによって発電機9が駆動されて発電が行われ、一
方、低圧タービン8で膨張したガスは、加熱器10で常温
まで加熱されて送出ガス11となるようにしてある。更
に、上記送出ガス11の圧力は、ガス消費側の需要に応じ
て次のように制御されるようにしてある。先ず、送出ガ
ス11の圧力の変化に対して圧力一定となるように送出ガ
ス圧力調節計12で制御信号aがLNG流量指令としてLNG流
量調節計13へ出され、LNG流量がその値になるように上
記LNG流量調節計13にて流量調節弁3の開閉指令が出さ
れて、LNG流量が調節され、その結果、タービン入口圧
力の変化を生じるので、タービン入口圧力が一定になる
ようにタービン入口圧力調節計14にて加減弁5の開閉指
令が出される。この結果、タービン6,8を通るガス流量
が変化して送出ガス流量が変えられ、送出ガス11の圧力
が制御されるようにしてある。
[Prior Art] As a direct expansion reheat type delivery gas pressure control system in a conventional LNG cold heat power generation facility, there is a configuration shown in FIG. That is, after the received LNG 1 is boosted by the booster pump 2, it is vaporized by the carburetor 4 through the LNG flow rate control valve 3 into gas, and the high-pressure gas leaving the carburetor 4 is controlled by the regulator valve 5. After being expanded by the high-pressure turbine 6, it is heated by the reheater 7 and further expanded by the low-pressure turbine 8 to drive the generator 9 to generate electricity, while the gas expanded by the low-pressure turbine 8 is generated. Is heated to room temperature by the heater 10 to become the delivery gas 11. Further, the pressure of the delivery gas 11 is controlled as follows according to the demand on the gas consuming side. First, the delivery gas pressure controller 12 outputs a control signal a to the LNG flow controller 13 as an LNG flow rate command so that the pressure becomes constant with respect to the change in the pressure of the delivery gas 11, so that the LNG flow rate becomes that value. The LNG flow rate controller 13 issues an opening / closing command for the flow rate control valve 3 to adjust the LNG flow rate. As a result, the turbine inlet pressure changes, so that the turbine inlet pressure is kept constant. The pressure controller 14 issues an opening / closing command for the regulating valve 5. As a result, the gas flow rate passing through the turbines 6 and 8 is changed, the delivery gas flow rate is changed, and the pressure of the delivery gas 11 is controlled.

[考案が解決しようとする問題点] ところが、上記従来の方式では、送出ガス11の圧力変化
に対して送出ガス流量の変化が、タービン入口圧力の変
化の制御の結果として生じるため、消費側の変化に対し
て遅れるおそれがある。又、冷熱発電設備が他の気化器
と並列に運転されたり、送出ガスの配管が長く、大きな
ガス容積をもっている場合には、上記の遅れは吸収され
てしまうが、ガス消費側と1対1で且つ送出ガスの配管
が短かい場合、たとえば、近接するLNG火力発電所の燃
料ガスを冷熱発電設備1系列にて供給する場合には、送
出ガス量の遅れは大きな送出ガス圧力の変動を生じ、ガ
ス消費側の要求を満足しなくなる、という問題がある。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional method, a change in the delivery gas flow rate with respect to a change in the pressure of the delivery gas 11 occurs as a result of the control of the change in the turbine inlet pressure. May be delayed for changes. Further, when the cold heat power generation facility is operated in parallel with another vaporizer, or when the delivery gas pipe is long and has a large gas volume, the above delay is absorbed, but it is 1: 1 with the gas consumption side. When the piping of the delivery gas is short, for example, when the fuel gas of the adjacent LNG thermal power plant is supplied by one series of cold thermal power generation equipment, the delay of the delivery gas amount causes a large variation of the delivery gas pressure. However, there is a problem that the requirement on the gas consumer side cannot be satisfied.

そこで、本考案は、送出ガス圧力の変化に対して追従性
を良くしようとするものである。
Therefore, the present invention seeks to improve the followability with respect to changes in the delivery gas pressure.

[問題点を解決するための手段] 本考案は、上記目的を達成するために、LNGを気化して
直接膨張タービンに通して発電し、一定圧力の送出ガス
を消費先へ送り出すときに該送出ガス圧力を制御すると
共にタービンの入口圧力を制御する冷熱発電設備の圧力
制御装置において、タービン入口圧力調節計からの制御
信号に、送出ガス圧力調節計からLNG流量調節計に送ら
れる制御信号を加算するため、該送出ガス圧力調節計か
らの制御信号に加える一次遅れ要素と、微分器と、該微
分器からの信号を上記タービン入口圧力調節計からの制
御信号に加算する加算器とからなる制御演算装置を儲
け、該制御演算装置で演算処理した信号をタービン入口
側の加減弁に送るようにしてなる構成とする。
[Means for Solving Problems] In order to achieve the above-mentioned object, the present invention vaporizes LNG and directly passes it through an expansion turbine to generate electric power, and when a delivery gas having a constant pressure is delivered to a consumer, the delivery is performed. In the pressure control device of the cold thermal power generation facility that controls the gas pressure and the turbine inlet pressure, add the control signal sent from the delivery gas pressure controller to the LNG flow controller to the control signal from the turbine inlet pressure controller. To do so, a control comprising a first-order lag element added to the control signal from the delivery gas pressure regulator, a differentiator, and an adder for adding the signal from the differentiator to the control signal from the turbine inlet pressure regulator. The arithmetic unit is made profitable, and the signal arithmetically processed by the control arithmetic unit is sent to the control valve on the turbine inlet side.

[作用] 送出ガス圧力の変化に対して送出ガス圧力調節計からの
制御信号でLNG流量調節計にてLNG流量が調節されると同
時に制御演算装置にて上記制御信号がタービン入口圧力
調節計からの制御信号に加算されて、該制御演算装置で
演算処理された信号で加減弁の開閉が調節される。これ
により加減弁によるタービン入口圧力制御に送出ガス圧
力制御が加味されることによってタービンを通して送出
される送出ガス量をより早く変化させて送出ガス圧力の
制御性を良くすることができる。
[Operation] The LNG flow controller adjusts the LNG flow rate with the control signal from the delivery gas pressure controller in response to the change in the delivery gas pressure, and at the same time, the control signal is sent from the turbine inlet pressure controller by the control arithmetic unit. The control signal is added to the control signal, and the opening and closing of the regulator valve is adjusted by the signal processed by the control processor. As a result, the delivery gas pressure control is added to the turbine inlet pressure control by the regulator valve, whereby the delivery gas amount delivered through the turbine can be changed more quickly and the delivery gas pressure controllability can be improved.

[実施例] 以下、図面に基づき本考案の実施例を説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本考案の実施例を示すもので、第3図に示した
従来方式と同様に、LNG1を昇圧ポンプ2で昇圧して流量
調節弁3を通し気化器4に導き、ここでガスとして加減
弁5を通し高圧タービン6で膨張させ、更に、再熱器7
を通して低圧タービン8で膨張させ、加熱器10で加熱し
て送出させるようにし、送出ガス11の圧力は、送出ガス
圧力調節計12によって検出され、一定となるように該調
節計12から制御信号aが出され、この制御信号aがLNG
流量を検出するLNG流量調節計13に送られ、検出したLNG
流量に対して上記制御信号aを流量指令として流量調節
弁3を調節するようにしてある構成において、タービン
入口圧力を検出して一定となるように制御信号bを出す
タービン入口圧力調節計14からの制御信号bで直接加減
弁5を開閉するような構成に代えて、上記タービン入口
圧力調節計14からの制御信号bを入力すると共に前記送
出ガス圧力調節計12からの制御信号aを入力して、両制
御信号a,bを演算処理する制御演算装置15を設け、該制
御演算装置15により加減弁5を調節するようにする。
FIG. 1 shows an embodiment of the present invention. Like the conventional method shown in FIG. 3, LNG 1 is boosted by a booster pump 2 and led to a carburetor 4 through a flow rate control valve 3 where the gas is fed. As a result, the pressure is increased by the high pressure turbine 6 through the regulator valve 5, and the reheater 7 is further expanded.
Through the low-pressure turbine 8 and is heated by the heater 10 to be delivered, and the pressure of the delivery gas 11 is detected by the delivery gas pressure controller 12, and is controlled by the control signal a from the controller 12 so as to be constant. Is issued and this control signal a is LNG
LNG sent to the LNG flow controller 13 that detects the flow rate and detected
From the turbine inlet pressure regulator 14 which detects the turbine inlet pressure and outputs the control signal b so as to be constant in a configuration in which the control signal a is used as a flow rate command for the flow rate to adjust the flow rate adjusting valve 3. Instead of directly opening and closing the control valve 5 by the control signal b, the control signal b from the turbine inlet pressure regulator 14 and the control signal a from the delivery gas pressure regulator 12 are input. Thus, the control arithmetic unit 15 for arithmetically processing both control signals a and b is provided, and the control arithmetic unit 15 adjusts the regulator valve 5.

上記制御演算装置15及びこれに接続される送出ガス圧力
調節計12とタービン入口圧力調節計14の実施例は第2図
に示す如くである。上記送出ガス圧力調節計12は、送出
ガス圧力を検出する送出ガス圧力検出器121と、減算器1
22と、送出ガス圧力設定器123と、送出ガス圧力調節器1
24とからなり、送出ガス圧力検出器121で検出した送出
ガス圧力の値と送出ガス圧力設定器123からの設定値と
を減算器122にて比較し、送出ガス圧力調節器124にてPI
演算して制御信号aとして出力するようにしてある。タ
ービン入口圧力調節計14は、タービン入口圧力検出器14
1と、減算器142と、タービン入口圧力設定器143と、タ
ービン入口圧力調節器144とからなり、タービン入口圧
力検出器141で検出されたタービン入口圧力値とタービ
ン入口圧力設定器143からの設定値とを減算器142にて比
較し、タービン入口圧力調節器144でPI演算して制御信
号bとして出力するようにしてある。
An embodiment of the control arithmetic unit 15, the delivery gas pressure regulator 12 and the turbine inlet pressure regulator 14 connected thereto is as shown in FIG. The delivery gas pressure controller 12 includes a delivery gas pressure detector 121 for detecting the delivery gas pressure and a subtractor 1.
22, delivery gas pressure setter 123, delivery gas pressure regulator 1
24, the value of the delivery gas pressure detected by the delivery gas pressure detector 121 and the set value from the delivery gas pressure setter 123 are compared by the subtractor 122, and the delivery gas pressure adjuster 124 is set to PI.
The calculation is performed and the control signal a is output. The turbine inlet pressure controller 14 is a turbine inlet pressure detector 14
1, a subtractor 142, a turbine inlet pressure setter 143, and a turbine inlet pressure adjuster 144, and the turbine inlet pressure value detected by the turbine inlet pressure detector 141 and the setting from the turbine inlet pressure setter 143. The value is compared with the subtractor 142, and the turbine inlet pressure regulator 144 performs PI calculation and outputs it as a control signal b.

本考案の特徴をなす制御演算装置15は、送出ガス圧力調
節計12の調節器124からの制御信号aに加える一次遅れ
要素151と、微分器152と、該微分器152からの信号と前
記タービン入口圧力調節計14からの制御信号bとを加算
する加算器153とからなり、上記制御信号aに一次遅れ
要素151を加え、微分器152で微分演算して入力信号の変
化時のみ増減される信号とし、タービン入口圧力調節計
14の調節器144からの信号bと加算器153にて加算し、加
算して得られた信号にて加減弁5の開閉を行うようにし
てある。
The control arithmetic unit 15 characterizing the present invention includes a first-order lag element 151 added to the control signal a from the regulator 124 of the delivery gas pressure regulator 12, a differentiator 152, a signal from the differentiator 152, and the turbine. An adder 153 for adding the control signal b from the inlet pressure controller 14 to the control signal a, a first-order lag element 151 is added to the control signal a, and a differentiator 152 performs a differential operation to increase or decrease only when the input signal changes. As a signal, turbine inlet pressure regulator
The signal b from the controller 144 of 14 is added by the adder 153, and the signal obtained by the addition is used to open / close the regulator valve 5.

ガス消費側の需要の変化に応じて送出ガス圧力を制御す
る場合は、先ず、送出ガス圧力の変化に対し圧力一定に
なるように送出ガス圧力調節計12で制御信号aが出され
る。この信号aをLNG流量指令とし、その値になるよう
にLNG流量調節計13にて制御信号、すなわち、流量調節
弁3の開閉指令が出される。これによりLNG流量が調節
される。一方、タービン入口圧力に対し圧力一定になる
ようにタービン入口圧力調節計14にて制御信号bが加減
弁5の開閉指令として出されるが、送出ガス圧力調節計
12の制御信号aは制御演算装置15にも取り込まれ、ター
ビン入口圧力調節計14の制御信号bと組み合わされるこ
とによって加減弁5を流量調節弁3の開閉と同時期に開
閉する。これによりLNG流量が調節されてタービン入口
圧力に変化が生じて加減弁5が開閉する前に、タービン
6,8のガス流量を調節することができ、したがって、送
出ガス圧力もガス流量の遅れが少ないため変化が小さく
制御性を向上させることができる。
When the delivery gas pressure is controlled according to the change in demand on the gas consumption side, first, the delivery gas pressure controller 12 outputs a control signal a so that the pressure is constant with respect to the delivery gas pressure change. This signal a is used as an LNG flow rate command, and a control signal, that is, an opening / closing command of the flow rate control valve 3 is issued by the LNG flow rate controller 13 so as to have that value. This adjusts the LNG flow rate. On the other hand, the control signal b is issued as an opening / closing command of the regulator valve 5 by the turbine inlet pressure regulator 14 so that the pressure becomes constant with respect to the turbine inlet pressure.
The control signal a of 12 is also taken into the control arithmetic unit 15 and combined with the control signal b of the turbine inlet pressure regulator 14 to open / close the regulator valve 5 at the same timing as the opening / closing of the flow rate adjusting valve 3. As a result, the LNG flow rate is adjusted to change the turbine inlet pressure, and the turbine 5 is opened before the regulator valve 5 is opened or closed.
The gas flow rates of 6 and 8 can be adjusted, and therefore the delivery gas pressure can be improved with little change because the delay of the gas flow rate is small.

なお、タービンは再熱式を示したが、再熱式でなくても
よく、また、他の方式、たとえば、ランキンサイクルと
組合せてもよい。
Although the turbine is a reheat type, it may not be a reheat type and may be combined with another type, for example, a Rankine cycle.

[考案の効果] 以上述べた如く、本考案の冷熱発電設備の圧力制御装置
によれば、一次遅れ要素と微分器と加算器とからなる制
御演算装置を有し、該制御演算装置にて送出ガス圧力調
節計からの制御信号をタービン入口圧力調節計からの制
御信号に加算するが、この際、上記送出ガス圧力調節計
からの制御信号に一次遅れ要素を加え、微分器で微分演
算して入力信号の変化時のみ増減される信号とし、この
信号を加算器にてタービン入口圧力調節計からの制御信
号に加算するようにし、該加算して得られた信号でター
ビン入口側の加減弁の開閉を行うようにしてあるので、
送出ガス流量のガス消費側の変化に対する応答性が良く
なり、送出ガス圧力の変動も小さく抑えることが可能と
なり、特に、近接するLNG火力発電所の燃料ガスを冷熱
発電設備1系列にて供給するような冷熱発電設備がガス
消費側と1対1で運用され且つ送出ガスの配管が短かい
場合に、送出ガス量の遅れが大きな送出ガス圧力の変動
を生じてガス消費側の要求を満足しなくなる、という問
題がある場合に対しても、上記構成の制御演算装置で演
算処理した信号にて加減弁によるタービン入口圧力制御
を行わせることにより、タービンを通じて送出される送
出ガス量をより早く変化させて送出ガス圧力の制御性を
良くすることができて、効果が大である、という優れた
効果を奏し得る。
[Advantages of the Invention] As described above, according to the pressure control device of the cold thermal power generation facility of the present invention, it has a control operation device including a first-order lag element, a differentiator, and an adder, and the control operation device sends it. The control signal from the gas pressure regulator is added to the control signal from the turbine inlet pressure regulator.At this time, a first-order lag element is added to the control signal from the delivery gas pressure regulator, and a differential operation is performed by a differentiator. The signal is increased / decreased only when the input signal changes, and this signal is added to the control signal from the turbine inlet pressure regulator by an adder, and the signal obtained by the addition is used to control the control valve on the turbine inlet side. Since it is designed to open and close,
The responsiveness to changes in the flow rate of the delivered gas on the gas consumption side is improved, and fluctuations in the delivered gas pressure can be suppressed to a small level. In particular, fuel gas from an adjacent LNG thermal power plant is supplied by a single thermal power generation facility. When such a cold thermal power generation facility is operated on a one-to-one basis with the gas consuming side and the delivery gas piping is short, the delivery gas amount is greatly delayed and the delivery gas pressure fluctuates to satisfy the requirements on the gas consumption side. Even if there is a problem of disappearing, by controlling the turbine inlet pressure by the control valve with the signal processed by the control processing device with the above configuration, the amount of delivery gas delivered through the turbine can be changed more quickly. Thus, the controllability of the delivery gas pressure can be improved, and the effect is great, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例を示す系統図、第2図は本考案
における制御演算装置とこれに接続される送出ガス圧力
調節計、タービン入口圧力調節計の具体例図、第3図は
従来の例を示す系統図である。 1……LNG、3……流量調節弁、5……加減弁、6……
高圧タービン、8……低圧タービン、9……発電機、12
……送出ガス圧力調節計、13……LNG流量調節計、14…
…タービン入口圧力調節計、15……制御演算装置、151
……一次遅れ要素、152……微分器、153……加算器、a
……送出ガス圧力調節計からの制御信号、b……タービ
ン入口圧力調節計からの制御信号。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a specific example diagram of a control arithmetic unit according to the present invention and a delivery gas pressure controller, a turbine inlet pressure controller, and FIG. It is a system diagram which shows the conventional example. 1 …… LNG, 3 …… Flow control valve, 5 …… Adjustment valve, 6 ……
High-pressure turbine, 8 ... Low-pressure turbine, 9 ... Generator, 12
...... Sending gas pressure controller, 13 …… LNG flow controller, 14…
… Turbine inlet pressure regulator, 15 …… Control computing device, 151
…… First-order lag element, 152 …… Differentiator, 153 …… Adder, a
...... Control signal from the delivery gas pressure controller, b …… Control signal from the turbine inlet pressure controller.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】LNGを気化して直接膨張タービンに通して
発電し、一定圧力の送出ガスを消費先へ送り出すときに
該送出ガス圧力を制御すると共にタービンの入口圧力を
制御する冷熱発電設備の圧力制御装置において、タービ
ン入口圧力調節計からの制御信号に、送出ガス圧力調節
計からLNG流量調節計に送られる制御信号を加算するた
め、該送出ガス圧力調節計からの制御信号に加える一次
遅れ要素と、微分器と、該微分器からの信号を上記ター
ビン入口圧力調節計からの制御信号に加算する加算器と
からなる制御演算装置を設け、該制御演算装置で演算処
理した信号をタービン入口側の加減弁に送るようにして
なることを特徴とする冷熱発電設備の圧力制御装置。
Claim: What is claimed is: 1. A cold thermal power generation facility, comprising: LNG vaporized and directly passed through an expansion turbine to generate electric power; and when the delivery gas having a constant pressure is delivered to a consumer, the delivery gas pressure is controlled and the inlet pressure of the turbine is controlled. In the pressure control device, in order to add the control signal sent from the delivery gas pressure regulator to the LNG flow controller to the control signal from the turbine inlet pressure regulator, a first-order delay added to the control signal from the delivery gas pressure regulator A control arithmetic unit including an element, a differentiator, and an adder for adding a signal from the differentiator to a control signal from the turbine inlet pressure regulator is provided, and a signal arithmetically processed by the control arithmetic unit is provided at a turbine inlet. A pressure control device for a cold heat power generation facility, wherein the pressure control device is configured to send the pressure control valve on the side.
JP1987121441U 1987-08-10 1987-08-10 Pressure control device for cold heat generation equipment Expired - Lifetime JPH0643441Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987121441U JPH0643441Y2 (en) 1987-08-10 1987-08-10 Pressure control device for cold heat generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987121441U JPH0643441Y2 (en) 1987-08-10 1987-08-10 Pressure control device for cold heat generation equipment

Publications (2)

Publication Number Publication Date
JPS6427405U JPS6427405U (en) 1989-02-16
JPH0643441Y2 true JPH0643441Y2 (en) 1994-11-14

Family

ID=31368448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987121441U Expired - Lifetime JPH0643441Y2 (en) 1987-08-10 1987-08-10 Pressure control device for cold heat generation equipment

Country Status (1)

Country Link
JP (1) JPH0643441Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2196238C2 (en) * 2000-08-16 2003-01-10 ТУЗОВА Алла Павловна Method of recovery of natural gas expansion energy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430443A (en) * 1977-08-10 1979-03-06 Hitachi Ltd Interlock mechanism for breaker
JPS59221408A (en) * 1983-05-31 1984-12-13 Ishikawajima Harima Heavy Ind Co Ltd Control method of cold power plant

Also Published As

Publication number Publication date
JPS6427405U (en) 1989-02-16

Similar Documents

Publication Publication Date Title
EP0093118A1 (en) Hrsg damper control.
JPH02104906A (en) Exhaust heat recovering boiler system and its operation
CN107725122B (en) 9MW mixed-temperature steam inlet back-pressure steam turbine for controlling exhaust steam temperature and temperature adjusting method thereof
CN112596394A (en) Coordinated control method and system for adjusting electricity and heat loads of cogeneration unit
JPS6239648B2 (en)
EP3277933B1 (en) Combined control method of an organic rankine cycle
JPH0565808A (en) Steam turbine plant supplying heat
JPH04234505A (en) Method for reducing thermal stress on steam chamber and steam turbine device
CN209742979U (en) heat load balance distribution control device for multiple steam turbine generator units
JPH0643441Y2 (en) Pressure control device for cold heat generation equipment
US4049971A (en) Output regulator for a thermal power-producing plant
WO2023226202A1 (en) System for controlling pressure and power of steam turbine of three-boiler two-turbine header system biomass power plant
JP2578328B2 (en) Output control method for back pressure turbine generator
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
GB845013A (en) Regulation of thermal power plants
JP3488021B2 (en) LNG decompression heating controller
JPH06159603A (en) Control device for waste heat steam generator
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JP3792387B2 (en) Steam turbine plant
JP2839668B2 (en) Output control device of cogeneration plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
RU2204724C2 (en) Method for regulating temperature of heating system water in power-and-heat supply turboplant
JPS59138705A (en) Controller for temperature of supplied water
JPS6172808A (en) Output controlling equipment for combined cycle generating plant
JPS63100237A (en) Load control method of coal gasification power plant