JPH07268651A - Reflowed solder plated square wire and its production - Google Patents
Reflowed solder plated square wire and its productionInfo
- Publication number
- JPH07268651A JPH07268651A JP8791994A JP8791994A JPH07268651A JP H07268651 A JPH07268651 A JP H07268651A JP 8791994 A JP8791994 A JP 8791994A JP 8791994 A JP8791994 A JP 8791994A JP H07268651 A JPH07268651 A JP H07268651A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- square wire
- layer
- reflow
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐食性、半田付性、曲
げ性、耐磨耗性に優れたリフロー半田めっき角線及びそ
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflow solder-plated square wire excellent in corrosion resistance, solderability, bendability, and wear resistance, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】銅又は銅合金線材にSn又はSn合金を
被覆した材料は、銅又は銅合金の持つ導電性と強度、S
n又はSn合金被覆層の持つ耐食性と半田接合性とがう
まく噛み合わされた高性能導体であり、端子、コネクタ
ー、リード線、電線ケーブル等に幅広く用いられてい
る。そして、前記コネクター等にはSn又はSn合金を
被覆した銅合金条の打抜き材が用いられていたが、打抜
き屑が出ないピン型コネクター(ピン・グリッド・アレ
イ等)が開発され、このピンに半田めっき角線が使われ
出した。2. Description of the Related Art Copper or copper alloy wire coated with Sn or Sn alloy is a material having the conductivity and strength of copper or copper alloy.
It is a high performance conductor in which the corrosion resistance and solder bondability of the n or Sn alloy coating layer are well meshed, and is widely used for terminals, connectors, lead wires, electric cables and the like. Then, a punching material of a copper alloy strip coated with Sn or a Sn alloy was used for the connector and the like, but a pin type connector (pin grid array, etc.) that does not produce punching scraps was developed, Solder-plated square wire was used.
【0003】銅角線に半田めっきするには、安価な溶融
めっき法が一部で使用されている。この方法は偏肉が大
きく、又銅錫化合物層が厚く形成されて曲げ性や半田付
性に劣った。光沢電気めっき法は、均一厚さの薄めっき
層が得られる利点を有し多用されている。しかし、この
光沢電気めっき法には次の欠点があった。表面を光沢
化する光沢剤と表面を平滑にする平滑剤を電解液に添加
する為、これら添加剤がめっき層の結晶粒界に吸臓され
て結晶粒間の結合が弱まり、この粒界を銅が自由に拡散
して銅錫化合物層が厚く形成され、半田めっき角線の曲
げ性や半田付性が低下する。光沢剤により結晶粒が微
細化して粒界歪が大となり、銅の拡散を助長する。結
晶粒の微細化は、結晶粒界を核として生じる変色を促進
させ、結晶粒界や表面に残存する添加剤は変色を速め
る。結晶粒間の結合力弱化は、加工時にめっき層が治
具等と接触して半田粉を発生する原因ともなり、製造歩
留りを下げ又製品の耐磨耗性を低める。ウイスカーが
生じ易い。An inexpensive hot dip plating method is partially used for solder plating on a copper square wire. This method has a large uneven thickness, and the copper-tin compound layer is formed thick, resulting in poor bendability and solderability. The bright electroplating method is widely used because it has an advantage that a thin plating layer having a uniform thickness can be obtained. However, this bright electroplating method has the following drawbacks. Since a brightening agent that brightens the surface and a smoothing agent that smoothes the surface are added to the electrolytic solution, these additives are sucked into the crystal grain boundaries of the plating layer, weakening the bond between the crystal grains, and Copper freely diffuses to form a thick copper-tin compound layer, which reduces the bendability and solderability of the solder-plated square wire. The brightening agent makes the crystal grains finer to increase the grain boundary strain and promotes the diffusion of copper. The refinement of the crystal grains accelerates the discoloration caused by the crystal grain boundaries as nuclei, and the additives remaining on the crystal grain boundaries and the surface accelerate the discoloration. The weakening of the bonding force between the crystal grains also causes the plating layer to come into contact with a jig or the like during processing to generate solder powder, which lowers the manufacturing yield and the wear resistance of the product. Whiskers are likely to occur.
【0004】[0004]
【発明が解決しようとする課題】このようなことから、
光沢剤を用いず、平滑剤のみを添加して電気めっきし、
電気めっき後リフロー処理して光沢を出す方法が開発さ
れた。リフロー処理は、半田を電気めっきした銅角線を
走間炉に連続的に通して半田めっき層を溶融させて半田
めっき層に光沢を持たせる為の処理であり、同時に内部
応力の緩和、平滑剤の熱分解除去、結晶粒の粗大化もな
される。しかし、このリフロー処理では、リフロー処理
時の加熱によって銅錫化合物層が厚く形成されて、リフ
ロー半田めっき角線の曲げ性や半田付性が阻害された。
又製造中に半田粉が僅かながら発生した。又リフロー処
理で角線の角部分の半田が平面部に流れて薄層化して、
ここに角線のCuが半田層の表面にまで拡散して変色す
るという問題が生じた。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Electroplating without adding brightener, only smoothing agent,
A method has been developed in which electroplating is followed by reflow treatment to give gloss. The reflow process is a process to continuously pass a copper square wire electroplated with solder through a running furnace to melt the solder plating layer and make the solder plating layer glossy, while at the same time relaxing internal stress and smoothing it. The agent is also removed by thermal decomposition and the crystal grains are coarsened. However, in this reflow treatment, the copper-tin compound layer was thickly formed by heating during the reflow treatment, and the bendability and solderability of the reflow solder-plated square wire were hindered.
Also, a small amount of solder powder was generated during manufacturing. In addition, the reflow process causes the solder at the corners of the square wire to flow to the flat surface and make it thinner,
Here, there arises a problem that the Cu of the square wire diffuses to the surface of the solder layer and is discolored.
【0005】[0005]
【課題を解決する為の手段】このような中で鋭意研究を
行い、リフロー処理材の半田付性、曲げ性、耐磨耗性
(半田粉発生)は、半田めっき層の結晶組織に左右され
ることを知見し、更に研究を進めて本発明を完成するに
至った。即ち、請求項1の発明は、Sn−Pb合金半田
層を電気めっきした銅又は銅合金角線に所定のリフロー
処理を施したリフロー半田めっき角線において、前記S
n−Pb合金半田層が、粒界にPbが析出したSnの多
結晶体からなることを特徴とするリフロー半田めっき角
線である。[Means for Solving the Problems] Under such circumstances, earnest research was conducted, and the solderability, bendability, and abrasion resistance (generation of solder powder) of the reflow treated material depended on the crystal structure of the solder plating layer. Therefore, the present invention has been completed through further research. That is, the invention of claim 1 is a reflow solder-plated square wire obtained by subjecting a copper or copper alloy square wire electroplated with an Sn-Pb alloy solder layer to a predetermined reflow treatment,
The n-Pb alloy solder layer is a reflow solder-plated square wire, characterized in that it is made of a polycrystal of Sn in which Pb is precipitated at grain boundaries.
【0006】この発明の角線は、リフロー処理により形
成された銅錫化合物層に起因する半田付性、曲げ性、耐
磨耗性(半田粉発生)の低下を、半田めっき層の結晶組
織をSnの結晶粒界にPbが析出した組織にすることに
より防止したものである。この発明のリフロー半田めっ
き角線の、半田めっき層の結晶組織は、図1に示すよう
にSnの結晶粒界にPb相1が析出した組織である。こ
れに対し、従来のリフロー半田めっき角線は、図3に示
すようにSnの結晶粒2内に球状のPb相1がランダム
に析出した組織である。The square wire according to the present invention reduces the solderability, bendability, and abrasion resistance (generation of solder powder) due to the copper-tin compound layer formed by the reflow treatment and reduces the crystal structure of the solder plating layer. This is prevented by forming a structure in which Pb is precipitated in the Sn crystal grain boundary. The crystal structure of the solder plating layer of the reflow solder-plated square wire of the present invention is a structure in which Pb phase 1 is precipitated at the Sn crystal grain boundary as shown in FIG. On the other hand, the conventional reflow solder plating square wire has a structure in which spherical Pb phases 1 are randomly deposited in Sn crystal grains 2 as shown in FIG.
【0007】この発明において、リフロー半田めっき層
の結晶組織を図1に示す結晶組織にすることにより、半
田付性、曲げ性、耐磨耗性が改善される。半田めっき層
のSnの結晶粒径の平均値を2μm以上に大きくするこ
とにより、結晶粒界が減少し、それに伴いCuの粒界拡
散量が低減し、銅錫化合物層が薄く生成される。半田め
っき層と角線の界面に生成する銅錫化合物層の厚さは0.
45μm以下にすることにより、曲げ性が大幅に改善され
る。In the present invention, the reflow solder plating layer having the crystal structure shown in FIG. 1 improves the solderability, bendability, and abrasion resistance. By increasing the average value of the Sn crystal grain size of the solder plating layer to 2 μm or more, the crystal grain boundaries are reduced, the grain boundary diffusion amount of Cu is accordingly reduced, and the copper tin compound layer is thinly formed. The thickness of the copper-tin compound layer formed at the interface between the solder plating layer and the square wire is 0.
By setting the thickness to 45 μm or less, bendability is significantly improved.
【0008】半田めっき層はリフロー処理により一時的
に溶融する。このとき溶融状態が長時間に及んだり、溶
融時に角線が激しく振動したりすると、溶融半田がその
表面張力により角部から平面部に流れて角部のめっき層
厚さが薄くなることがある。この場合角部はめっき層が
薄い為、加湿や加熱により酸化変色したり、化合物層が
露出したりして、半田付性が低下する。この為めっき層
の偏肉度kは1.5 以下にするのが望ましい。但し、偏肉
度kは次式により定義する。偏肉度k=(螢光X線膜厚
計で測定した半田めっき層の最大厚さ)/(定電流アノ
ード溶解法で測定した半田めっき層の平均厚さ)。尚、
蛍光X線膜厚計のコリメータ径は0.1mmとする。The solder plating layer is temporarily melted by the reflow process. At this time, if the molten state lasts for a long time or if the square wire vibrates violently during melting, the molten solder may flow from the corner portion to the flat portion due to the surface tension, and the plating layer thickness at the corner portion may become thin. is there. In this case, since the corner portion has a thin plating layer, it is oxidized and discolored by humidification or heating, or the compound layer is exposed, so that the solderability is deteriorated. Therefore, it is desirable that the thickness deviation k of the plating layer be 1.5 or less. However, the thickness deviation k is defined by the following equation. Thickness deviation k = (maximum thickness of solder plating layer measured by fluorescent X-ray film thickness meter) / (average thickness of solder plating layer measured by constant current anodic dissolution method). still,
The fluorescent X-ray film thickness meter has a collimator diameter of 0.1 mm.
【0009】この発明において、Sn−Pb合金半田に
は、Pbを5〜60wt%含有する通常のSn−Pb合金半
田が適用される。銅合金角線には、耐食性や機械的性質
に優れた黄銅、又はりん青銅、ベリリウム銅、コルソン
合金、洋白等のバネ材料が好適である。これら合金線に
は、必要に応じてCuを下地めっきしてから半田めっき
とリフロー処理を施す。In the present invention, as the Sn-Pb alloy solder, a normal Sn-Pb alloy solder containing 5 to 60 wt% of Pb is applied. For the copper alloy square wire, a brass material excellent in corrosion resistance and mechanical properties, or a spring material such as phosphor bronze, beryllium copper, Corson alloy, nickel silver is suitable. These alloy wires are subjected to undercoating with Cu, if necessary, and then subjected to solder plating and reflow treatment.
【0010】請求項5の発明は、請求項1の発明のリフ
ロー半田めっき角線の製造方法である。即ち、Sn−P
b合金半田層を電気めっきした銅又は銅合金角線を、所
定温度に加熱した炉中を所定速度で走行させてリフロー
処理するリフロー半田めっき角線の製造方法において、
前記半田層をめっきした銅又は銅合金角線の炉中の走行
速度を、半田層が未溶融状態となる下限速度の80〜96%
の速度にすることを特徴とするものである。A fifth aspect of the present invention is a method for manufacturing a reflow solder-plated square wire according to the first aspect of the invention. That is, Sn-P
In a method for producing a reflow solder-plated square wire, a copper or copper alloy square wire electroplated with a b-alloy solder layer is run in a furnace heated to a predetermined temperature at a predetermined speed for reflow treatment,
The traveling speed of the copper or copper alloy square wire plated with the solder layer in the furnace is 80 to 96% of the lower limit speed at which the solder layer is in an unmelted state.
It is characterized by setting the speed to.
【0011】この発明において、半田層が未溶融状態と
なる下限速度とは、半田層が溶融する速度から走行速度
を次第に速めていったときに半田層が未溶融状態となる
下限速度である。この発明において、半田層をめっきし
た銅又は銅合金角線の炉中の走行速度を、半田層が未溶
融状態となる下限速度の80〜96%の速度に限定した理由
は、80%未満でも又96%を超えても、半田めっき層の結
晶組織が、Snの結晶粒界にPbが析出した組織になら
ない為である。又80%未満では、角線の角部のPb層が
平面部に流れて薄くなり、角線のCuが角部の半田層表
面にまで拡散して、変色が起きる。In the present invention, the lower limit speed at which the solder layer is in the unmelted state is the lower limit speed at which the solder layer is in the unmelted state when the running speed is gradually increased from the melting speed of the solder layer. In the present invention, the reason why the traveling speed in the furnace of the copper or copper alloy square wire plated with the solder layer is limited to 80 to 96% of the lower limit speed at which the solder layer is in an unmelted state is even less than 80%. Further, even if it exceeds 96%, the crystal structure of the solder plating layer does not become the structure in which Pb is precipitated in the crystal grain boundary of Sn. On the other hand, if it is less than 80%, the Pb layer at the corner portion of the square wire flows to the flat surface portion and becomes thin, Cu of the square wire diffuses to the solder layer surface at the corner portion, and discoloration occurs.
【0012】[0012]
【作用】本発明のリフロー半田めっき角線は、半田めっ
き層の結晶組織が、粒界にPbが析出したSnの多結晶
体からなるので、結晶粒間の結合が強化され、曲げ加工
での割れの発生、治具との接触による磨耗粉の発生が防
止される。Cuの拡散経路となる粒界にCuと反応しな
いPbが析出しているので、Cuの拡散が抑制され銅錫
化合物層が薄く形成される。その結果、曲げ性が改善さ
れ又高温等での半田付性の劣化が防止される。この効果
は半田めっき層の結晶粒径の平均値が2μm以上とな
り、粒界面積が小さくなる程顕著である。前述の銅錫化
合物層は硬質の為割れの起源となる。その厚さは、0.45
μm以下にすることにより曲げ性が大幅に改善される。
リフロー処理における半田めっき角線の走行速度を半田
層が未溶融状態となる下限速度の80〜96%の速度にする
ことにより、Sn多結晶体の粒界にPbが析出した組織
が得られ、曲げ性や半田付性が改善される。又角線角部
の偏肉度が 1.5以下となり、加湿、加温下での変色が防
止される。In the reflow solder-plated square wire of the present invention, since the crystal structure of the solder-plated layer is made of a polycrystal of Sn in which Pb is precipitated at the grain boundaries, the bond between the crystal grains is strengthened and the bending process is performed. Generation of cracks and abrasion powder due to contact with the jig are prevented. Since Pb that does not react with Cu is deposited on the grain boundaries that serve as the diffusion path of Cu, the diffusion of Cu is suppressed and the copper-tin compound layer is formed thin. As a result, bendability is improved, and deterioration of solderability at high temperatures is prevented. This effect becomes more remarkable as the average grain size of the solder plating layer becomes 2 μm or more and the grain boundary area becomes smaller. Since the above-mentioned copper-tin compound layer is hard, it causes cracks. Its thickness is 0.45
By setting the thickness to be less than μm, the bendability is significantly improved.
By setting the traveling speed of the solder plating square wire in the reflow treatment to a speed of 80 to 96% of the lower limit speed at which the solder layer is in an unmelted state, a structure in which Pb is precipitated at the grain boundaries of the Sn polycrystalline body is obtained, Bendability and solderability are improved. In addition, the thickness deviation of the corners of the square wire is 1.5 or less, and discoloration under humidification and heating is prevented.
【0013】[0013]
【実施例】0.5mm角の黄銅線に 9/1半田を電気めっき
し、これをリフロー処理してリフロー半田めっき角線を
製造した。用いた装置の概略を図2に示した。図で、4
は黄銅角線、9は前記黄銅角線に半田層をめっきする半
田めっき槽、11は前記半田層をリフロー処理する走間炉
である。アンコイラー3から供給される黄銅角線4を、
電解脱脂槽5、水洗槽6、酸洗槽7、水洗槽16に順次通
してめっき前処理を行い、次いでCuめっき槽8にてC
uを 1.0μm厚さに下地めっきし、水洗槽26にて水洗
後、半田めっき槽9にて半田を 2.0μm厚さに電気めっ
きした。次にこれを水洗槽36にて水洗し、熱風乾燥器10
により乾燥後、走間炉11にてリフロー処理し、冷却水槽
12にて冷却後、コイラー13に巻き取った。半田めっき
は、平滑剤を添加したホウフッ酸系電解液を用いて行っ
た。リフロー処理条件は種々に変化させた。Example A brass wire of 0.5 mm square was electroplated with 9/1 solder, and this was reflow-treated to manufacture a reflow solder-plated square wire. The outline of the apparatus used is shown in FIG. In the figure, 4
Is a brass square wire, 9 is a solder plating bath for plating a solder layer on the brass square wire, and 11 is a running furnace for reflowing the solder layer. The brass square wire 4 supplied from the uncoiler 3,
The electrolytic degreasing tank 5, the water washing tank 6, the pickling tank 7, and the water washing tank 16 are sequentially passed through to perform a pretreatment for plating, and then a Cu plating tank 8 is used for C treatment.
u was plated to a thickness of 1.0 μm, washed with water in a washing bath 26, and then electroplated with solder to a thickness of 2.0 μm in a solder plating bath 9. Next, this is washed with water in a washing tank 36, and a hot air dryer 10
After drying, reflow process is performed in the running furnace 11 and cooling water tank
After cooling at 12, it was wound around a coiler 13. The solder plating was performed using a borofluoric acid-based electrolytic solution containing a smoothing agent. The reflow processing conditions were variously changed.
【0014】こうして得られた各々のリフロー半田めっ
き角線について、耐食性、半田付性、曲げ性、耐磨耗性
を調べた。耐食性は下記条件で加速劣化試験を行い試験
後の変色有無で判定した。半田付性は、加速劣化試験後
のサンプルを用い下記条件にて調査した。曲げ性は、自
己径巻付後の表面割れを実体顕微鏡で1000倍に拡大して
観察し、割れの状態で判定した。耐磨耗性は、Bowden型
磨耗試験機を用い、半田粉の発生状況を調べた。摺動プ
ローブに先端5Rにプレス加工したリフロー錫めっき条
を用い、摺動距離50mm、荷重50gfの条件で 100往復させ
た。結果を表2に示した。表1にSnの結晶粒径、Pb
の析出状態、半田めっき層の偏肉度、銅錫化合物層の厚
さを示した。 加速劣化試験:耐湿試験、温度 105℃、相対湿度100%
RH、放置時間24時間。 大気加熱試験、温度 155℃、放置時間24時間。 半田付性試験(メニスコク゛ラフ法): 共晶半田使用、温度 230
℃、フラックス25%ロジン/メタノール、浸漬速度2mm
/sec、浸漬深さ2mm、浸漬時間10sec 、評価ゼロクロス
タイム。The reflow solder-plated square wires thus obtained were examined for corrosion resistance, solderability, bendability, and wear resistance. The corrosion resistance was evaluated by the accelerated deterioration test under the following conditions and the presence or absence of discoloration after the test. The solderability was investigated under the following conditions using the sample after the accelerated deterioration test. The bendability was evaluated by observing the surface cracks after self-diameter winding with a stereoscopic microscope at a magnification of 1000 times and observing the cracks. For the abrasion resistance, a Bowden type abrasion tester was used to examine the generation state of solder powder. A reflow tin-plated strip press-processed at the tip 5R was used for the sliding probe, and 100 reciprocations were performed under the conditions of a sliding distance of 50 mm and a load of 50 gf. The results are shown in Table 2. Table 1 shows the crystal grain size of Sn and Pb.
The deposition state, the thickness deviation of the solder plating layer, and the thickness of the copper-tin compound layer are shown. Accelerated deterioration test: Humidity resistance test, temperature 105 ℃, relative humidity 100%
RH, leaving time 24 hours. Atmospheric heating test, temperature 155 ℃, leaving time 24 hours. Solderability test (meniscograph method): Eutectic solder used, temperature 230
℃, flux 25% rosin / methanol, dipping speed 2mm
/ sec, immersion depth 2 mm, immersion time 10 sec, evaluation zero cross time.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】表1及び表2より明らかなように、本発明
例品(No.1〜8)は、耐食性、半田付性、曲げ性、耐磨耗
性のいずれにも良好な特性を示した。このうちNo.7は、
Snの結晶粒径が 1.6μmとやや小さくなった為、結晶
粒界が増加して半田付性と耐磨耗性が若干低下した。又
No.8は偏肉度が1.6 とやや大きかった為、半田層が薄く
なった角部の表面に黄銅角線のCuが一部拡散して僅か
に変色を起こした。又化合物層の厚さがやや厚くなり、
加工性が悪化して曲げ性及び耐磨耗性が幾分低下した。As is clear from Tables 1 and 2, the products of Examples of the present invention (Nos. 1 to 8) exhibited good characteristics in all of corrosion resistance, solderability, bendability, and abrasion resistance. . Of these, No. 7 is
Since the crystal grain size of Sn was slightly small at 1.6 μm, the crystal grain boundaries increased and the solderability and wear resistance were slightly reduced. or
Since No. 8 had a relatively large thickness deviation of 1.6, the Cu of the brass square wire partially diffused on the surface of the corner where the solder layer was thin, causing a slight discoloration. In addition, the thickness of the compound layer becomes slightly thicker,
The workability deteriorated, and the bendability and wear resistance were somewhat reduced.
【0018】これに対し、比較例のNo.9〜12は、耐食
性、半田付性、曲げ性、耐磨耗性のいずれかが低下し
た。耐湿試験後の外観では、No11,12 のサンプルに黄色
変色が見られた。これは結晶粒が小径(No.11,12)な為
で、特にNo.12 は添加剤の吸着が加わり変色が大きかっ
た。耐湿試験後の半田付性は、No.9〜12ともに濡れ時間
(ゼロクロスタイム)が1秒程度で顕著な差がなかっ
た。変色したNo.11,12でも、表面に生成したSnの酸化
物は溶融半田に短時間で容易に溶解する為、半田付性の
低下は見られなかった。On the other hand, in Comparative Examples Nos. 9 to 12, any of corrosion resistance, solderability, bendability, and abrasion resistance was deteriorated. In the appearance after the moisture resistance test, yellow discoloration was seen in the No. 11 and 12 samples. This is because the crystal grains have a small diameter (No. 11 and 12), and in particular No. 12, the discoloration was large due to the adsorption of the additive. Regarding solderability after the moisture resistance test, there was no significant difference in the No. 9 to 12 soldering time (zero cross time) of about 1 second. Even in the discolored Nos. 11 and 12, the Sn oxide formed on the surface was easily dissolved in the molten solder in a short time, so that the solderability was not deteriorated.
【0019】大気加熱後の表面外観は、No.9〜10では角
部の半田が平面部に流れ、角部の半田厚さが減少した
(偏肉度大)為、この薄い半田層部分が、加熱により拡
散してきた角線のCuと反応して銅錫化合物を生成し、
これが露出して角部が灰色に変色した。No.11,12は半田
の結晶粒径が緻密であり又結晶粒間の間隔が広い為、角
線のCuが高速拡散して半田層全体が銅錫化合物層にな
り、全面が灰色に変色した。大気加熱後の半田付性は、
No.9〜12とも銅錫化合物が表面に露出した為、濡れ時間
が大幅に長くなった。Regarding the surface appearance after heating in the atmosphere, in Nos. 9 to 10, since the solder at the corners flowed to the flat surface and the solder thickness at the corners decreased (the thickness unevenness was large), this thin solder layer portion was , Reacts with Cu of the square wire diffused by heating to produce a copper tin compound,
This was exposed and the corners turned gray. In Nos. 11 and 12, the crystal grain size of the solder is dense and the gaps between the crystal grains are wide, so the Cu of the square wire diffuses at high speed and the entire solder layer becomes a copper tin compound layer, and the entire surface turns gray. did. Solderability after heating to the atmosphere is
In Nos. 9 to 12, the copper tin compound was exposed on the surface, so the wetting time was significantly lengthened.
【0020】自己径巻付試験(曲げ性)では、No.9,10
は銅錫化合物層が厚かった為、又No.11,12は半田層が未
溶解で、結晶粒間の密着度が弱かった為、いずれにも割
れが発生した。In the self-diameter winding test (bendability), No. 9 and 10
In No. 11 and 12, the copper-tin compound layer was thick, and in No. 11 and 12, the solder layer was not melted, and the degree of adhesion between crystal grains was weak.
【0021】摩耗試験では、No.9〜12の全てに半田粉の
発生が認められた。No.9,10 での半田粉の発生原因は不
明であるが、硬質な金属間化合物層が厚く強靱となっ
て、半田めっき層が削られ易くなったものと考えられ
る。No.11,12では結晶粒間の結合力弱化が原因である。In the abrasion test, generation of solder powder was found in all of Nos. 9-12. The cause of generation of solder powder in Nos. 9 and 10 is unknown, but it is considered that the hard intermetallic compound layer became thick and tough, and the solder plating layer was easily scraped. In Nos. 11 and 12, the weakening of the bonding force between the crystal grains is the cause.
【0022】[0022]
【効果】以上述べたように、本発明のリフロー半田めっ
き角線は、耐食性、半田付性、曲げ性、耐摩耗性が改善
され、又前記半田めっき銅角線はリフロー処理を所定条
件で施すことにより製造することができ、工業上顕著な
効果を奏する。As described above, the reflow solder-plated square wire of the present invention has improved corrosion resistance, solderability, bendability, and wear resistance, and the solder-plated copper square wire is subjected to reflow treatment under predetermined conditions. By doing so, it can be produced, and has a remarkable industrial effect.
【図1】本発明のリフロー半田めっき角線の半田めっき
層の結晶組織図である。FIG. 1 is a crystal structure diagram of a solder plating layer of a reflow solder plating square wire of the present invention.
【図2】本発明のリフロー半田めっき角線の製造方法の
概略図である。FIG. 2 is a schematic view of a method for manufacturing a reflow solder-plated square wire according to the present invention.
【図3】従来のリフロー半田めっき角線の半田めっき層
の結晶組織図である。FIG. 3 is a crystal structure diagram of a solder plating layer of a conventional reflow solder plating square wire.
1─────Pb相 2─────Snの結晶粒 3─────アンコイラー 4─────黄銅角線 5─────電解脱脂槽 6,16,26,36─水洗槽 7─────酸洗槽 8─────Cuめっき槽 9─────半田めっき槽 10─────熱風乾燥器 11─────走間炉 12─────冷却水槽 13─────コイラー 1─────Pb phase 2─────Sn crystal grains 3───── Uncoiler 4───── Brass square wire 5───── Electrolytic degreasing tank 6,16,26,36 ─ Washing tank 7 ───── Pickling tank 8 ───── Cu plating tank 9 ───── Solder plating tank 10 ───── Hot air dryer 11 ───── Running furnace 12─ ──── Cooling water tank 13 ───── Coiler
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 裕二 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Suzuki 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.
Claims (5)
銅又は銅合金角線に所定のリフロー処理を施したリフロ
ー半田めっき角線において、前記Sn−Pb合金半田層
が、粒界にPbが析出したSnの多結晶体からなること
を特徴とするリフロー半田めっき角線。1. A reflow solder-plated square wire obtained by subjecting a copper or copper alloy square wire electroplated with an Sn-Pb alloy solder layer to a predetermined reflow treatment, wherein the Sn-Pb alloy solder layer has Pb at grain boundaries. A reflow solder-plated square wire, which is made of a deposited Sn polycrystal.
が2μm以上であることを特徴とする請求項1記載のリ
フロー半田めっき角線。2. The reflow solder-plated square wire according to claim 1, wherein the average grain size of Sn in the solder-plated layer is 2 μm or more.
に形成される金属間化合物層の厚さが0.45μm以下であ
ることを特徴とする請求項1又は請求項2記載のリフロ
ー半田めっき角線。3. The reflow solder according to claim 1, wherein the thickness of the intermetallic compound layer formed at the interface between the copper or copper alloy square wire and the solder plating layer is 0.45 μm or less. Plated square wire.
ることを特徴とする請求項1乃至請求項3記載のリフロ
ー半田めっき角線。 但し、k=(蛍光X線膜厚計で測定した半田めっき層の
最大厚さ)/(定電流アノード溶解法で測定した半田め
っき層の平均厚さ)。 但し、蛍光X線膜厚計のコリメータ径は0.1mm とする。4. The reflow solder-plated square wire according to claim 1, wherein the thickness deviation k of the solder plating layer is 1.5 or less. However, k = (maximum thickness of solder plating layer measured by fluorescent X-ray film thickness meter) / (average thickness of solder plating layer measured by constant current anode melting method). However, the collimator diameter of the fluorescent X-ray film thickness meter is 0.1 mm.
銅又は銅合金角線を、所定温度に加熱した炉中を所定速
度で走行させてリフロー処理するリフロー半田めっき角
線の製造方法において、前記半田層をめっきした銅又は
銅合金角線の炉中の走行速度を、半田層が未溶融状態と
なる下限速度の80〜96%の速度にすることを特徴とする
請求項1記載のリフロー半田めっき角線の製造方法。5. A method for producing a reflow solder-plated square wire, comprising: reflowing copper or copper alloy square wire electroplated with a Sn-Pb alloy solder layer in a furnace heated to a predetermined temperature at a predetermined speed. The reflow according to claim 1, wherein the traveling speed of the copper or copper alloy square wire plated with the solder layer in the furnace is set to 80 to 96% of the lower limit speed at which the solder layer is in an unmelted state. Manufacturing method of solder-plated square wire.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8791994A JP2749773B2 (en) | 1994-03-31 | 1994-03-31 | Reflow solder plating square wire and method of manufacturing the same |
TW084109267A TW324688B (en) | 1994-03-31 | 1995-09-05 | A reflow-plated member and a manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8791994A JP2749773B2 (en) | 1994-03-31 | 1994-03-31 | Reflow solder plating square wire and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07268651A true JPH07268651A (en) | 1995-10-17 |
JP2749773B2 JP2749773B2 (en) | 1998-05-13 |
Family
ID=13928335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8791994A Expired - Fee Related JP2749773B2 (en) | 1994-03-31 | 1994-03-31 | Reflow solder plating square wire and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2749773B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6773827B2 (en) | 2000-05-24 | 2004-08-10 | Murata Manufacturing Co., Ltd. | Electronic component, method for producing electronic component, and circuit board |
-
1994
- 1994-03-31 JP JP8791994A patent/JP2749773B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6773827B2 (en) | 2000-05-24 | 2004-08-10 | Murata Manufacturing Co., Ltd. | Electronic component, method for producing electronic component, and circuit board |
KR100449121B1 (en) * | 2000-05-24 | 2004-09-18 | 가부시키가이샤 무라타 세이사쿠쇼 | Electronic component, method for producing electronic component, and circuit board |
Also Published As
Publication number | Publication date |
---|---|
JP2749773B2 (en) | 1998-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4279967A (en) | Soft copper alloy conductors and their method of manufacture | |
JP2009052076A (en) | Conductive material for connecting component, and method for manufacturing the same | |
KR100422026B1 (en) | Manufacturing method of reflow plating member, reflow plating member obtained by the method | |
JP2975246B2 (en) | Sn-plated wire for electrical contact and method of manufacturing the same | |
CN110277192B (en) | Tinned copper wire and manufacturing method thereof, and insulated wire and cable | |
JPH06235086A (en) | Lead steel wire for electronic parts and its production | |
JP2005105307A (en) | REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER | |
JP3303594B2 (en) | Heat-resistant silver-coated composite and method for producing the same | |
JP3378717B2 (en) | Method for manufacturing reflow plated member | |
JP2006283149A (en) | Surface treatment method for copper or copper alloy, surface-treated material, and electronic component using the same | |
JP2749773B2 (en) | Reflow solder plating square wire and method of manufacturing the same | |
JPH111793A (en) | Reflow solder plating material and its manufacture | |
JP2004232049A (en) | Cu PLATING TITANIUM COPPER | |
JPS6047344B2 (en) | Hot-dipped ultrafine copper alloy conductor | |
JP2012124025A (en) | Plated copper wire and manufacturing method thereof | |
JP4570948B2 (en) | Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same | |
JP2647656B2 (en) | Method of manufacturing contacts | |
JPH02145794A (en) | Copper or copper alloy material plated with tin or solder reflowed and excellent in thermal peeling resistance | |
JP4014739B2 (en) | Reflow Sn plating material and terminal, connector, or lead member using the reflow Sn plating material | |
JPH03188253A (en) | Tinned copper alloy material | |
JP3700924B2 (en) | Electrolytic capacitor lead wire and manufacturing method thereof | |
JPS6325078B2 (en) | ||
JPH0221508A (en) | Conductor for minute wire winding | |
JPH05311280A (en) | Reflow tin and solder plated material | |
JPH09111374A (en) | Beryllium-copper alloy spring material and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20110220 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20120220 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 15 Free format text: PAYMENT UNTIL: 20130220 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 16 |
|
LAPS | Cancellation because of no payment of annual fees |