JP2005105307A - REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER - Google Patents

REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER Download PDF

Info

Publication number
JP2005105307A
JP2005105307A JP2003337136A JP2003337136A JP2005105307A JP 2005105307 A JP2005105307 A JP 2005105307A JP 2003337136 A JP2003337136 A JP 2003337136A JP 2003337136 A JP2003337136 A JP 2003337136A JP 2005105307 A JP2005105307 A JP 2005105307A
Authority
JP
Japan
Prior art keywords
reflow
layer
plating
plated
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337136A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
智 鈴木
Hitoshi Tanaka
仁志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Kanzacc Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Kyowa Electric Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kyowa Electric Wire Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2003337136A priority Critical patent/JP2005105307A/en
Publication of JP2005105307A publication Critical patent/JP2005105307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflow-Sn-plated member which does not cause thickness deviation even when a stamped electroconductive substrate to be reflow-Sn-plated is finely worked, and has superior solder wettability and heat resistance; a method for manufacturing the member; and an electrical and electronic component using the member. <P>SOLUTION: The reflow-Sn-plated member has a reflow-Sn-plated layer of Sn or an Sn alloy on the surface of the stamped electroconductive substrate. The reflow-Sn-plated layer has a plated structure consisting of a melt and solidified structure in an outer part and a not-yet-melt structure in an inner part. The method for manufacturing the reflow-Sn-plated member comprises forming a matte Sn layer on the surface of the stamped electroconductive substrate by electroplating, a bright Sn layer thereon by electroplating, and subsequently subjecting the electroconductive substrate to reflow treatment by traveling it in a heating oven at a predetermined temperature. The traveling speed of the electroconductive substrate in the heating oven is controlled to 80-96% of the slowest traveling speed among such speeds as not to melt the above Sn layers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、Snめっき層に偏肉がなく、はんだ付け性に優れるリフローSnめっき部材、前記部材の製造方法、および前記部材が用いられた電気電子機器用部品に関する。   The present invention relates to a reflow Sn-plated member having no unevenness in Sn plating layer and having excellent solderability, a method for producing the member, and a component for electrical and electronic equipment using the member.

CuまたはCu合金などからなる導電性基材の表面をSnまたはSn合金で被覆しためっき部材は、CuまたはCu合金などが備える良好な導電性および機械的強度と、SnまたはSn合金被覆層の良好な耐食性およびはんだ接合性とがうまく組合わされた高性能導体であって、端子、コネクタ、リード線などの電気電子機器部品や電線ケーブルなどに広く用いられている。   A plated member obtained by coating the surface of a conductive base material made of Cu or Cu alloy with Sn or Sn alloy has good conductivity and mechanical strength provided by Cu or Cu alloy, etc., and good Sn or Sn alloy coating layer It is a high-performance conductor that is well combined with excellent corrosion resistance and solderability, and is widely used in electrical and electronic equipment parts such as terminals, connectors, and lead wires, and electric cables.

端子、コネクタ、リードなどの電気電子機器部品の製造方法には、前記基材にSnまたはSn合金をめっき後打抜加工する“プレめっき法”と、打抜加工後SnまたはSn合金をめっきする“後めっき法”とがあり、前記後めっき法は打抜破面にもめっき層が必要な場合に用いられる。   In the manufacturing method of electrical and electronic equipment parts such as terminals, connectors, leads, etc., a “pre-plating method” in which Sn or Sn alloy is plated on the base material and then stamped, and Sn or Sn alloy is plated after punching. There is a “post-plating method”, and the post-plating method is used when a plated layer is also required on the punched-out surface.

めっき材には、低コスト、はんだ付け性に優れ(低融点)、ウイスカーが発生しないなどの理由からSn−Pb合金が使用されてきたが、世界的な環境対策からPbフリー化の動きが加速しており、その結果ウイスカーが発生しないとされるリフローSnめっき材が有望視されている。
めっき材としてはSn、Sn−Cu合金、Sn−Ag合金、Sn−Bi合金、Sn−Zn合金、Sn−In合金などが検討されている。
Sn-Pb alloys have been used for plating materials for reasons such as low cost, excellent solderability (low melting point), and the absence of whiskers. As a result, a reflow Sn plating material that is considered to be free of whiskers is promising.
As the plating material, Sn, Sn—Cu alloy, Sn—Ag alloy, Sn—Bi alloy, Sn—Zn alloy, Sn—In alloy and the like have been studied.

しかし、前記プレめっき法はリフロー処理について長い歴史があり容易に行えるが、前記後めっき法は偏肉が発生するという問題がある。すなわち、リフロー処理時に、溶融しためっき層の流動性が高まったり、またはめっき層の溶融状態が長期間続いたり、更には、リフロー処理時に基材が激しく振動したりすると、リフロー処理後のめっき層の厚みは偏肉して厚い個所と薄い個所が生ずる。
とくに、基材が角線である場合には、溶融しためっき層は、その表面張力により角線の角の部分から平面部分へと流れていき、そのため、リフロー処理後のめっき層の厚みが偏肉し、角の部分が著しく薄肉化した状態になる。
そして、このリフローめっき部材を高温下で長時間実使用していると、前記薄い個所では、基材のCu成分やSnCu金属間化合物などがめっき層の表面にまで拡散してきてそこが変色するということが起こる。このようなリフローめっき部材は耐熱性に劣るものである。
However, the pre-plating method has a long history of reflow treatment and can be easily performed, but the post-plating method has a problem that uneven thickness occurs. That is, if the fluidity of the molten plating layer increases during the reflow treatment, or the molten state of the plating layer continues for a long period of time, or if the substrate vibrates vigorously during the reflow treatment, the plated layer after the reflow treatment The thickness of the material is uneven, producing thick and thin parts.
In particular, when the substrate is a square wire, the molten plating layer flows from the corner portion of the square wire to the plane portion due to the surface tension, and therefore the thickness of the plating layer after the reflow treatment is uneven. It becomes meaty and the corners become extremely thin.
And when this reflow plating member is actually used for a long time at a high temperature, the Cu component of the base material, the SnCu intermetallic compound, etc. diffuses to the surface of the plating layer and changes color in the thin part. Things happen. Such a reflow plating member is inferior in heat resistance.

前記の偏肉問題に対しては、Snめっき層の内層部の結晶粒径を表層部より小さくしてリフロー処理する方法が提案されている(例えば、特許文献1)。この方法はリフローSnめっき層のはんだ濡れ性、加工性、耐熱性、耐摩耗性などの改善を目的としている。   In order to deal with the uneven thickness problem, there has been proposed a reflow treatment method in which the crystal grain size of the inner layer portion of the Sn plating layer is made smaller than that of the surface layer portion (for example, Patent Document 1). This method aims to improve the solder wettability, workability, heat resistance, wear resistance, etc. of the reflow Sn plating layer.

特開平9−228094号公報Japanese Patent Laid-Open No. 9-228094

近年、端子やコネクター、リード線の小型化により、打抜加工を微細に行うことが求められた。基材の打ち抜き幅は1mm未満となり、さらに狭くなってきている。発明者が研究を行った結果、打ち抜き部の幅が狭い場合前記特許文献1の方法ではめっき層に偏肉が生じ易いことが判明した。
本発明の目的は、打抜加工した導電性基材にリフローSnめっきを施す際に、加工が微細である場合でも偏肉が発生せず、耐熱性および半田濡れ性に優れたリフローSnめっき部材、前記部材の製造方法、および前記部材が用いられた電気電子機器用部品を提供することにある。
In recent years, with the miniaturization of terminals, connectors, and lead wires, it has been required to perform fine punching. The punching width of the base material is less than 1 mm and is becoming narrower. As a result of the research conducted by the inventor, it has been found that when the width of the punched portion is narrow, the method of Patent Document 1 tends to cause uneven thickness in the plating layer.
An object of the present invention is to provide a reflow Sn-plated member that is excellent in heat resistance and solder wettability, even when the reflow Sn plating is performed on a punched conductive substrate, even if the processing is fine. An object of the present invention is to provide a method for manufacturing the member, and a component for an electric and electronic device using the member.

請求項1記載発明は、打抜加工した導電性基材の表面に、第1層としてSnまたはSn合金からなる無光沢Snめっき、第2層としてSnまたはSn合金からなる光沢Snめっきが順次形成され、リフロー処理されているSnめっき部材において、前記第1層が結晶粒径2μm未満のめっき組織からなり、前記第2層が結晶粒径2μm以上の溶融凝固組織からなることを特徴とするリフローSnめっき部材である。   According to the first aspect of the present invention, a matte Sn plating made of Sn or Sn alloy as the first layer and a bright Sn plating made of Sn or Sn alloy as the second layer are sequentially formed on the surface of the punched conductive substrate. In the reflow-treated Sn plated member, the first layer is made of a plated structure having a crystal grain size of less than 2 μm, and the second layer is made of a melt-solidified structure having a crystal grain size of 2 μm or more. It is a Sn plating member.

請求項2記載発明は、打抜加工した導電性基材の表面に、第1層としてSnまたはSn合金からなる無光沢Snめっき、第2層としてSnより融点の低いSn合金からなるSnめっきが順次形成され、リフロー処理されているSnめっき部材において、前記第1層が結晶粒径2μm未満のめっき組織からなり、前記第2層が結晶粒径2μm以上の溶融凝固組織からなることを特徴とするリフローSnめっき部材である。   According to the second aspect of the present invention, the surface of the punched conductive substrate is matte Sn plating made of Sn or Sn alloy as the first layer, and Sn plating made of Sn alloy having a melting point lower than Sn as the second layer. In the Sn-plated member that is sequentially formed and reflowed, the first layer is made of a plated structure having a crystal grain size of less than 2 μm, and the second layer is made of a melt-solidified structure having a crystal grain size of 2 μm or more. This is a reflow Sn plating member.

請求項3記載発明は、打抜加工した導電性基材の表面に無光沢Snめっき層を電気めっきし、その上に光沢Snめっき層を電気めっきし、次いで前記導電性基材を所定温度の加熱炉中に走行させてリフロー処理するリフローSnめっき部材の製造方法において、前記導電性基材の前記加熱炉中での走行速度を、前記Snめっき層が溶融しない範囲の最も遅い走行速度の80〜96%の速度とすることを特徴とするリフローSnめっき部材の製造方法である。   According to a third aspect of the present invention, the surface of the punched conductive substrate is electroplated with a matte Sn plating layer, and the gloss Sn plating layer is electroplated thereon, and then the conductive substrate is heated at a predetermined temperature. In the method of manufacturing a reflow Sn-plated member that travels in a heating furnace and performs reflow treatment, the traveling speed of the conductive substrate in the heating furnace is set to 80, which is the slowest traveling speed within a range where the Sn plating layer does not melt. It is a manufacturing method of the reflow Sn plating member characterized by setting it as speed of -96%.

請求項4記載発明は、打抜加工した導電性基材の表面に無光沢Snめっき層を電気めっきし、その上にSnより融点の低いSn合金めっき層を電気めっきし、次いで前記Snめっき層を形成した導電性基材を所定温度の加熱炉中に走行させてリフロー処理するリフローSnめっき部材の製造方法において、前記導電性基材の前記加熱炉中の走行速度を、前記Snめっき層が溶融しない範囲の最も遅い走行速度の80〜96%の速度とすることを特徴とするリフローSnめっき部材の製造方法である。   According to a fourth aspect of the present invention, the surface of the punched conductive base material is electroplated with a matte Sn plating layer, an Sn alloy plating layer having a melting point lower than Sn is electroplated thereon, and then the Sn plating layer In the manufacturing method of the reflow Sn plating member for running the conductive base material formed in a heating furnace at a predetermined temperature and performing the reflow treatment, the running speed of the conductive base material in the heating furnace is determined by the Sn plating layer. It is a manufacturing method of the reflow Sn plating member characterized by setting it as 80 to 96% of the slowest running speed of the range which does not melt.

請求項5記載発明は、請求項1または請求項2記載のリフローSnめっき部材が用いられていることを特徴とする電気電子機器用部品である。   According to a fifth aspect of the present invention, there is provided an electrical / electronic equipment component in which the reflow Sn plated member according to the first or second aspect is used.

請求項6記載発明は、前記電気電子機器用部品がリード、端子またはコネクタであることを特徴とする請求項5記載の電気電子機器用部品である。   The invention according to claim 6 is the component for electrical and electronic equipment according to claim 5, wherein the part for electrical and electronic equipment is a lead, a terminal or a connector.

以上に説明したように、本発明のリフローSnめっき部材は、打抜加工基材の表面にSnまたはSn合金からなるリフローSnめっき層が被覆され、前記リフローSnめっき層は表層部が溶融凝固組織からなり、内層部が未溶融のめっき組織からなるので、十分な光沢が得られ、幅が1mm未満の幅狭打抜部においてもめっき層の偏肉が小さく、またはんだ付け性にも優れる。前記リフローSnめっき部材はリフロー処理時において加熱炉内の走行速度を適正に規定することにより容易に製造できる。打抜加工基材表面に無光沢Snめっき層を、その上に融点の低い光沢めっき層またはSn合金めっき層を電気めっきすることにより溶融凝固層の厚さが制御し易くなる。従って、打抜加工基材の表面にリフローSnめっき層を偏肉を生じずに被覆でき、電子電気機器用リード材、端子、コネクタなどに好適に適用できる。依って、工業上顕著な効果を奏する。   As described above, in the reflow Sn plated member of the present invention, the surface of the punched substrate is coated with the reflow Sn plated layer made of Sn or Sn alloy, and the surface layer of the reflow Sn plated layer has a molten solidified structure. Since the inner layer portion is made of an unmelted plating structure, sufficient gloss is obtained, and even in a narrow punched portion having a width of less than 1 mm, the uneven thickness of the plating layer is small or excellent in soldering. The reflow Sn-plated member can be easily manufactured by appropriately defining the traveling speed in the heating furnace during the reflow process. By electroplating a matte Sn plating layer on the punched substrate surface and a gloss plating layer or Sn alloy plating layer having a low melting point thereon, the thickness of the melt-solidified layer can be easily controlled. Therefore, the surface of the punched substrate can be coated with the reflow Sn plating layer without causing uneven thickness, and can be suitably applied to lead materials for electronic devices, terminals, connectors, and the like. Therefore, there is an industrially significant effect.

以下、本発明を実施するための最良の実施形態について図を参照して説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings.

図1は本発明のリフローSnめっき部材の1実施形態を示す平面図である。
このリフローSnめっき部材1は、打抜加工した導電性基材(以下、適宜、打抜加工基材と略記する。)の表面に2層のSnまたはSn合金からなるSnめっきが被覆され、リフロー処理されたものである。
FIG. 1 is a plan view showing an embodiment of a reflow Sn plated member of the present invention.
In this reflow Sn-plated member 1, the surface of a punched conductive base material (hereinafter abbreviated as a punched base material as appropriate) is coated with Sn plating composed of two layers of Sn or Sn alloy, and reflowed. It has been processed.

本発明において、前記打抜加工基材には、純銅の他、黄銅、リン青銅、ベリリウム銅、コルソン合金、洋白などの銅合金が用いられる。また、鋼材やアルミニウム材などの上に純銅或いは銅合金を被覆した複合材も使用できる。   In the present invention, copper alloy such as brass, phosphor bronze, beryllium copper, corson alloy, or white is used for the punched substrate in addition to pure copper. Moreover, the composite material which coat | covered pure copper or copper alloy on steel materials, aluminum materials, etc. can also be used.

前記めっきの第2層には、Sn−Cu合金、Sn−Ag合金、Sn−In合金、Sn−Bi合金、Sn−Zn合金などが用いられる。好ましくは、Cuが0を超え2.0重量%以下で残部がSnからなるSn合金、あるいは、Agが0を超え5.0重量%以下で残部がSnからなるSn合金、あるいは、Inが10.0重量%以下で残部がSnからなるSn合金、あるいは、Biが0を超え15.0重量%以下で残部がSnからなるSn合金、あるいは、Znが0を超え15.0重量%以下で残部がSnからなるSn合金である。   For the second plating layer, a Sn—Cu alloy, a Sn—Ag alloy, a Sn—In alloy, a Sn—Bi alloy, a Sn—Zn alloy, or the like is used. Preferably, the Sn alloy includes Cu exceeding 0 and not more than 2.0% by weight and the balance of Sn, or the Sn alloy including Ag exceeding 0 and not more than 5.0% by weight and the balance of Sn, or In of 10%. Sn alloy with Sn balance of less than 0.0% by weight or Sn, or Sn alloy with Bi exceeding 0 and less than 15.0% by weight and the balance of Sn, or Zn exceeding 0 and less than 15.0% by weight The balance is Sn alloy composed of Sn.

本発明のリフローSnめっき部材は、打抜加工基材の表面に無光沢Snめっき層を電気めっきし、その上に光沢Snめっき層またはSnより融点の低いSn合金層を電気めっきし、次いで前記打抜加工基材を所定温度の加熱炉中に走行させてリフロー処理する。この際、前記打抜加工基材の前記加熱炉中での走行速度Vを、前記Snめっき層が溶融しない範囲の最も遅い走行速度V0 の80〜96%の速度とした。   The reflow Sn-plated member of the present invention is obtained by electroplating a matte Sn plating layer on the surface of a stamped substrate, electroplating a bright Sn plating layer or a Sn alloy layer having a melting point lower than Sn, and then The punched substrate is run in a heating furnace at a predetermined temperature and reflowed. At this time, the running speed V of the punched base material in the heating furnace was set to 80 to 96% of the slowest running speed V0 within a range where the Sn plating layer does not melt.

本発明によれば、めっき第2層を溶融させることで溶融凝固組織からなるため光沢を有しており、さらに、めっき第1層が未溶融状態の微細なめっき組織からなるため偏肉を抑制し、半田付けが良好になされる。 According to the present invention, it is glossy because it consists of a melt-solidified structure by melting the second plating layer, and further, uneven thickness is suppressed because the first plating layer consists of a fine plating structure in an unmelted state. And soldering is done well.

前記走行速度Vが前記V0 の80%未満では、Snめっき層はリフロー処理で大部分が溶融し、リフローSnめっき層の偏肉の度合が大きくなる。前記偏肉によりめっき層の薄い個所では変色が生じ、耐熱性も悪化する。さらに内層部の微細なめっき組織が減少してはんだ濡れ性が低下し、はんだ付け性が悪化する。
一方、走行速度Vが前記V0 の96%を超えると、めっき第1層は大部分が未溶融状態であるめっき組織となり十分な光沢が得られなくなる。しかも、めっき層は耐摩耗性が低下して粉体化して打抜加工基材表面から剥落するという事態が起き易くなる。
When the running speed V is less than 80% of the V0, the Sn plating layer is mostly melted by the reflow process, and the uneven thickness of the reflow Sn plating layer increases. Due to the uneven thickness, discoloration occurs in a thin portion of the plating layer, and heat resistance is also deteriorated. Furthermore, the fine plating structure of the inner layer portion is reduced, solder wettability is lowered, and solderability is deteriorated.
On the other hand, when the running speed V exceeds 96% of V0, the plating first layer becomes a plating structure that is mostly in an unmelted state, and sufficient gloss cannot be obtained. In addition, the plating layer has a reduced wear resistance and is pulverized and easily peels off from the punched substrate surface.

このようなことから、本発明ではリフロー処理時の打抜加工基材の加熱炉中の走行速度Vを、0.8V0 ≦V≦0.96V0 (但しV0 はSnめっき層が溶融しない範囲の最も遅い走行速度)に規定した。
なお、結晶粒界に吸蔵されている電解液中の平滑剤などの添加剤はリフロー処理時に熱分解して除去される。
For this reason, in the present invention, the running speed V in the heating furnace of the punched base material during the reflow treatment is set to 0.8 V0 ≤ V ≤ 0.96 V0 (where V0 is the most in the range where the Sn plating layer does not melt). Slow travel speed).
Note that additives such as a smoothing agent in the electrolytic solution occluded in the crystal grain boundary are thermally decomposed and removed during the reflow treatment.

本願発明ではSnまたはSn合金からなるめっきを施すが、めっきの結晶粒径は2μm以上である。また、めっきを施した後リフロー処理を施すと、めっき第2層が溶融し、結晶粒径が2μm未満となる。よって、本願における溶融凝固組織とは結晶粒径が2μm未満であることを指す。また、めっき組織とは結晶粒径2μm以上であることを指す。   In the present invention, plating made of Sn or an Sn alloy is performed, and the crystal grain size of the plating is 2 μm or more. Further, when reflow treatment is performed after plating, the second plating layer is melted and the crystal grain size becomes less than 2 μm. Therefore, the melt-solidified structure in the present application means that the crystal grain size is less than 2 μm. Further, the plated structure means that the crystal grain size is 2 μm or more.

本発明のリフローSnめっき部材の製造方法において、前記打抜加工基材表面に無光沢Snめっき層(第1層)を電気めっきし、その上に光沢Snめっき層またはSnより融点の低いSn合金層(第2層)を電気めっきすると、前記光沢Snめっき層またはSn合金層は無光沢Snめっき層より融点が低いため、めっき表層部のみのリフロー処理が容易に行える。   In the method for producing a reflow Sn-plated member of the present invention, a matte Sn plating layer (first layer) is electroplated on the surface of the punched substrate, and a bright Sn plating layer or an Sn alloy having a lower melting point than Sn is formed thereon. When the layer (second layer) is electroplated, the bright Sn plating layer or the Sn alloy layer has a melting point lower than that of the matte Sn plating layer, so that the reflow treatment of only the plating surface layer portion can be easily performed.

Snめっき層の厚さは、めっき第1層とめっき第2層の合計が0.5μm以上20μm以下となるようにすることが好ましい。0.5μm以下であると、めっき層のSnと基材中のCuが拡散によりCu−Sn化合物を生成し易くなり、半田濡れ性が若干低下する。逆にめっきが厚過ぎるとコストが上がるため20μm以下とする。   The thickness of the Sn plating layer is preferably such that the total of the first plating layer and the second plating layer is not less than 0.5 μm and not more than 20 μm. When the thickness is 0.5 μm or less, Sn in the plating layer and Cu in the base material easily form a Cu—Sn compound due to diffusion, and solder wettability slightly decreases. Conversely, if the plating is too thick, the cost increases, so the thickness is set to 20 μm or less.

前記めっき第1層の厚さはめっき層全体の50%以上90%以下であることが好ましい。第1層の厚さがめっき層全体の50%未満であると、第2層が第1層より厚くなるため、リフロー処理時に第2層が溶融し偏肉し易くなるためである。逆に90%を超えると半田付け性が劣化する。より好ましくは第1層の厚さはめっき層全体の65%以上80%以下である。
以下に本発明を実施例により詳細に説明する。
The thickness of the first plating layer is preferably 50% or more and 90% or less of the entire plating layer. This is because if the thickness of the first layer is less than 50% of the entire plating layer, the second layer becomes thicker than the first layer, so that the second layer is melted and becomes unevenly thick during the reflow process. Conversely, if it exceeds 90%, solderability deteriorates. More preferably, the thickness of the first layer is 65% or more and 80% or less of the entire plating layer.
Hereinafter, the present invention will be described in detail with reference to examples.

図1に示した形状の打抜加工後の黄銅条(厚み0.3mm、幅30mm)に、電解脱脂→水洗→酸洗→水洗の前処理工程を施し、次いでCu下地めっき(1.0μm厚み)→水洗→第1層として無光沢Snめっき→第2層として光沢Snめっき(または低融点Sn合金めっき)のめっき工程を施し、引き続き水洗→乾燥→リフロー処理→水急冷(水温40℃)→熱風乾燥のリフロー処理工程を施してリフローSnめっき部材とし、これをコイルに巻き取った。
前記Snめっき工程は、実施例1から実施例7については本発明規定内で施し、比較例1から比較例4については本発明規定外で施した。
The brass strip (thickness 0.3 mm, width 30 mm) after the punching process having the shape shown in FIG. 1 is subjected to a pretreatment step of electrolytic degreasing → water washing → acid washing → water washing, and then Cu base plating (1.0 μm thickness) ) → Washing → Glossy Sn plating as the first layer → Glossy Sn plating (or low melting point Sn alloy plating) as the second layer, followed by water washing → Drying → Reflow treatment → Water quench (water temperature 40 ° C.) → A reflow treatment step of hot air drying was performed to obtain a reflow Sn plated member, which was wound around a coil.
The Sn plating process was performed within the scope of the present invention for Examples 1 to 7, and was performed outside the scope of the present invention for Comparative Examples 1 to 4.

前記無光沢Snめっきには石原薬品(株)社製の平滑剤が添加された有機酸系電解液を用いた。前記光沢Snめっきには石原薬品(株)社製の平滑剤および光沢剤が添加された有機酸系電解液を用いた。
なお、Snめっき層の厚さは定電流アノード溶解法により測定した。
For the matte Sn plating, an organic acid electrolytic solution to which a smoothing agent manufactured by Ishihara Pharmaceutical Co., Ltd. was added was used. An organic acid electrolytic solution to which a smoothing agent and a brightening agent manufactured by Ishihara Pharmaceutical Co., Ltd. were added was used for the bright Sn plating.
The thickness of the Sn plating layer was measured by a constant current anodic dissolution method.

得られたリフローSnめっき部材1の幅狭打抜部2(幅0.8mm)について、(1)めっき層の結晶粒径、(2)偏肉度、(3)はんだ付け性を下記方法により調べた。
(1)めっき層の結晶粒径:リフローSnめっき条を塩酸系電解液に浸漬して、リフローSnめっき層を電流密度2A/dm2 の条件下でアノード溶解し、リフローSnめっき層の表面から0.1μm、0.5μm、1.0μmの深さの位置の結晶組織を顕出させ、走査電顕を用いて視野1000倍における結晶粒の各粒径を計測し、その平均値を算出した。
(2)偏肉度:蛍光X線微小部膜厚計(コリメータ径0.1mmφ)を用いて幅狭打抜部(幅0.5mm)のリフローめっき層の辺中央部の厚み(t1 )を測定し、また定電流アノード溶解法でリフローめっき層の平均厚み(t2 )を測定し、〔t1 /t2 〕で示される偏肉度を求めた。
(3)はんだ付け性:メニスコグラフ法によるゼロクロスタイム(秒)を測定して評価した。
はんだ浴:230℃の共晶はんだ、フラックス:25%ロジン/メタノール、浸漬速度:2mm/sec、浸漬深さ:2mm、浸漬時間:10secの条件でリフローSnめっき部材の幅狭打抜部をはんだ浴に浸漬し、浮力がゼロになるまでに要した時間(秒)を測定して評価した。この時間が短いほどはんだ付け性が優れる。このはんだ付け性はリフロー処理直後と大気加熱試験(155℃×24時間)後に測定した。
About the narrow punching part 2 (width 0.8mm) of the obtained reflow Sn plating member 1, (1) The crystal grain diameter of a plating layer, (2) Uneven thickness, (3) Solderability by the following method Examined.
(1) Crystal grain size of the plating layer: The reflow Sn plating strip is immersed in a hydrochloric acid electrolyte, and the reflow Sn plating layer is anodically dissolved under the condition of a current density of 2 A / dm 2 , from the surface of the reflow Sn plating layer. A crystal structure at a depth of 0.1 μm, 0.5 μm, and 1.0 μm was revealed, and each grain size of a crystal grain at a field of view 1000 times was measured using a scanning electron microscope, and an average value thereof was calculated. .
(2) Unevenness: Thickness (t1) at the center of the side of the reflow plating layer of the narrow punched part (width 0.5 mm) using a fluorescent X-ray micro part thickness meter (collimator diameter 0.1 mmφ) Further, the average thickness (t2) of the reflow plating layer was measured by a constant current anodic dissolution method, and the thickness deviation indicated by [t1 / t2] was determined.
(3) Solderability: Evaluation was made by measuring the zero crossing time (seconds) by the meniscograph method.
Solder bath: 230 ° C. eutectic solder, flux: 25% rosin / methanol, immersion speed: 2 mm / sec, immersion depth: 2 mm, immersion time: 10 sec. It was immersed in a bath, and the time (seconds) required until the buoyancy became zero was measured and evaluated. The shorter this time, the better the solderability. This solderability was measured immediately after the reflow treatment and after the atmospheric heating test (155 ° C. × 24 hours).

調査結果を表1に示す。表1にはSnめっき層の構成(厚さ、組成)、リフロー処理条件(加熱炉温度、打抜加工基材の走行速度)を併記した。   The survey results are shown in Table 1. Table 1 also shows the configuration (thickness and composition) of the Sn plating layer and the reflow processing conditions (heating furnace temperature, travel speed of the punched substrate).

Figure 2005105307
Figure 2005105307

表1から明らかなように、本発明例(試料No.1〜10)のリフローSnめっき部材は、めっき第2層が溶融凝固して結晶粒が粗大となり、十分な光沢が得られ、かつめっき層は偏肉が小さかった。まためっき第1層が結晶粒の微細なめっき組織のためはんだ付け性にも優れた。
これに対し、比較例(試料No.11〜14)のNo.11、13、14はめっき層が単層のため、No.12は走行速度が本発明規定外のため、いずれもめっき層の偏肉度が大きくなり、また半田付け性が劣った。
As is clear from Table 1, the reflow Sn plated member of the present invention example (sample Nos. 1 to 10) has the plating second layer melted and solidified, resulting in coarse crystal grains, sufficient gloss, and plating. The thickness of the layer was small. Moreover, since the plating first layer is a fine plating structure of crystal grains, the solderability is also excellent.
On the other hand, No. of a comparative example (sample No. 11-14). Nos. 11, 13, and 14 have a single plating layer. Since the running speed of No. 12 was outside the scope of the present invention, the uneven thickness of the plating layer was large and the solderability was inferior.

本発明のリフローSnめっき部材の1実施形態を示す平面図である。It is a top view which shows one Embodiment of the reflow Sn plating member of this invention.

符号の説明Explanation of symbols

1 リフローSnめっき部材
2 幅狭打抜部
1 Reflow Sn plating member 2 Narrow punching part

Claims (6)

打抜加工した導電性基材の表面に、第1層としてSnまたはSn合金からなる無光沢Snめっき、第2層としてSnまたはSn合金からなる光沢Snめっきが順次形成され、リフロー処理されているSnめっき部材において、前記第1層が結晶粒径2μm未満のめっき組織からなり、前記第2層が結晶粒径2μm以上の溶融凝固組織からなることを特徴とするリフローSnめっき部材。   On the surface of the punched conductive substrate, matte Sn plating made of Sn or Sn alloy as the first layer and glossy Sn plating made of Sn or Sn alloy as the second layer are sequentially formed and reflow-treated. An Sn plated member, wherein the first layer is made of a plated structure having a crystal grain size of less than 2 μm, and the second layer is made of a molten solidified structure having a crystal grain size of 2 μm or more. 打抜加工した導電性基材の表面に、第1層としてSnまたはSn合金からなる無光沢Snめっき、第2層としてSnより融点の低いSn合金からなるSnめっきが順次形成され、リフロー処理されているSnめっき部材において、前記第1層が結晶粒径2μm未満のめっき組織からなり、前記第2層が結晶粒径2μm以上の溶融凝固組織からなることを特徴とするリフローSnめっき部材。   On the surface of the punched conductive substrate, matte Sn plating made of Sn or Sn alloy as the first layer and Sn plating made of Sn alloy having a melting point lower than Sn as the second layer are sequentially formed and reflow processed. The reflow Sn-plated member according to claim 1, wherein the first layer is made of a plated structure having a crystal grain size of less than 2 μm, and the second layer is made of a melt-solidified structure having a crystal grain size of 2 μm or more. 打抜加工した導電性基材の表面に無光沢Snめっき層を電気めっきし、その上に光沢Snめっき層を電気めっきし、次いで前記導電性基材を所定温度の加熱炉中に走行させてリフロー処理するリフローSnめっき部材の製造方法において、前記導電性基材の前記加熱炉中での走行速度を、前記Snめっき層が溶融しない範囲の最も遅い走行速度の80〜96%の速度とすることを特徴とするリフローSnめっき部材の製造方法。   The surface of the punched conductive base material is electroplated with a matte Sn plating layer, the bright Sn plating layer is electroplated thereon, and then the conductive base material is run in a heating furnace at a predetermined temperature. In the manufacturing method of the reflow Sn plating member to be reflowed, the traveling speed of the conductive base material in the heating furnace is 80 to 96% of the slowest traveling speed in a range where the Sn plating layer does not melt. The manufacturing method of the reflow Sn plating member characterized by the above-mentioned. 打抜加工した導電性基材の表面に無光沢Snめっき層を電気めっきし、その上にSnより融点の低いSn合金めっき層を電気めっきし、次いで前記Snめっき層を形成した導電性基材を所定温度の加熱炉中に走行させてリフロー処理するリフローSnめっき部材の製造方法において、前記導電性基材の前記加熱炉中の走行速度を、前記Snめっき層が溶融しない範囲の最も遅い走行速度の80〜96%の速度とすることを特徴とするリフローSnめっき部材の製造方法。   A conductive base material in which a matte Sn plating layer is electroplated on the surface of the punched conductive base material, an Sn alloy plating layer having a melting point lower than Sn is electroplated thereon, and then the Sn plating layer is formed. In the method of manufacturing a reflow Sn-plated member that travels in a heating furnace at a predetermined temperature and performs reflow treatment, the traveling speed of the conductive base material in the heating furnace is the slowest travel in a range where the Sn plating layer does not melt. The manufacturing method of the reflow Sn plating member characterized by setting it as the speed of 80 to 96% of speed. 請求項1または請求項2記載のリフローSnめっき部材が用いられていることを特徴とする電気電子機器用部品。   A component for electrical and electronic equipment, wherein the reflow Sn-plated member according to claim 1 or 2 is used. 前記電気電子機器用部品がリード、端子またはコネクタであることを特徴とする請求項5記載の電気電子機器用部品。   6. The electrical and electronic equipment component according to claim 5, wherein the electrical and electronic equipment component is a lead, a terminal, or a connector.
JP2003337136A 2003-09-29 2003-09-29 REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER Pending JP2005105307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337136A JP2005105307A (en) 2003-09-29 2003-09-29 REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337136A JP2005105307A (en) 2003-09-29 2003-09-29 REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER

Publications (1)

Publication Number Publication Date
JP2005105307A true JP2005105307A (en) 2005-04-21

Family

ID=34533040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337136A Pending JP2005105307A (en) 2003-09-29 2003-09-29 REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER

Country Status (1)

Country Link
JP (1) JP2005105307A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097030A (en) * 2007-10-15 2009-05-07 Toyota Motor Corp Plated substrate having lead-free plated layer
WO2009123157A1 (en) * 2008-03-31 2009-10-08 古河電気工業株式会社 Connecting component metal material and manufacturing method thereof
JP2009263785A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
JP2009263786A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
US7700883B2 (en) 2007-04-20 2010-04-20 (Kobe Steel, Ltd.) Terminal for engaging type connector
JP2011204617A (en) * 2010-03-26 2011-10-13 Kobe Steel Ltd Copper alloy for component for connection and conductive material
JP2012023286A (en) * 2010-07-16 2012-02-02 Renesas Electronics Corp Semiconductor device
US8835771B2 (en) 2010-12-07 2014-09-16 Kobe Steel, Ltd. PCB terminal and method for manufacturing the same
US8940405B2 (en) 2010-03-26 2015-01-27 Kobe Steel, Ltd. Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076582B2 (en) 2007-04-20 2011-12-13 Kobe Steel, Ltd. Terminal for engaging type connector
US7700883B2 (en) 2007-04-20 2010-04-20 (Kobe Steel, Ltd.) Terminal for engaging type connector
JP2009097030A (en) * 2007-10-15 2009-05-07 Toyota Motor Corp Plated substrate having lead-free plated layer
JP2009263786A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
JP2009263785A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
WO2009123157A1 (en) * 2008-03-31 2009-10-08 古河電気工業株式会社 Connecting component metal material and manufacturing method thereof
US8101285B2 (en) 2008-03-31 2012-01-24 The Furukawa Electric Co., Ltd. Metallic material for a connecting part and a method of producing the same
JP2011204617A (en) * 2010-03-26 2011-10-13 Kobe Steel Ltd Copper alloy for component for connection and conductive material
US8940405B2 (en) 2010-03-26 2015-01-27 Kobe Steel, Ltd. Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
US8956735B2 (en) 2010-03-26 2015-02-17 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
US9373925B2 (en) 2010-03-26 2016-06-21 Kobe Steel, Ltd. Method for producing a mating-type connecting part
JP2012023286A (en) * 2010-07-16 2012-02-02 Renesas Electronics Corp Semiconductor device
US8835771B2 (en) 2010-12-07 2014-09-16 Kobe Steel, Ltd. PCB terminal and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7488408B2 (en) Tin-plated film and method for producing the same
JP2002100718A (en) Lead frame for semiconductor device, manufacturing method thereof, and semiconductor device using the lead frame
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
KR20070026832A (en) Tin-based plating film and method for forming the same
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
KR19990045402A (en) Metal Composite Band Manufacturing Method
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
KR100422026B1 (en) Manufacturing method of reflow plating member, reflow plating member obtained by the method
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP2005105307A (en) REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER
JP2010084228A (en) Lead frame material and semiconductor device using the same
JP2007039789A (en) Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP5185759B2 (en) Conductive material and manufacturing method thereof
KR101336559B1 (en) Composite material for electrical/electronic component and electrical/electronic component using the same
TWI479052B (en) Tin plating materials
JP6134557B2 (en) Copper strip or copper alloy strip and heat dissipating part provided with the strip
JP4560642B2 (en) Method for producing Sn-coated conductive material
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2007002341A (en) Electroconductive material plate for forming connecting parts and manufacturing method therefor
JPH111793A (en) Reflow solder plating material and its manufacture
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JP3378717B2 (en) Method for manufacturing reflow plated member
JP2749773B2 (en) Reflow solder plating square wire and method of manufacturing the same
JP2019073771A (en) Sn PLATED MATERIAL AND MANUFACTURING METHOD THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

RD02 Notification of acceptance of power of attorney

Effective date: 20080131

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080131

A977 Report on retrieval

Effective date: 20080627

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111