JP2749773B2 - Reflow solder plating square wire and method of manufacturing the same - Google Patents

Reflow solder plating square wire and method of manufacturing the same

Info

Publication number
JP2749773B2
JP2749773B2 JP8791994A JP8791994A JP2749773B2 JP 2749773 B2 JP2749773 B2 JP 2749773B2 JP 8791994 A JP8791994 A JP 8791994A JP 8791994 A JP8791994 A JP 8791994A JP 2749773 B2 JP2749773 B2 JP 2749773B2
Authority
JP
Japan
Prior art keywords
solder
square wire
reflow
layer
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8791994A
Other languages
Japanese (ja)
Other versions
JPH07268651A (en
Inventor
智 鈴木
和也 高橋
輝夫 川田
裕二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8791994A priority Critical patent/JP2749773B2/en
Priority to TW084109267A priority patent/TW324688B/en
Publication of JPH07268651A publication Critical patent/JPH07268651A/en
Application granted granted Critical
Publication of JP2749773B2 publication Critical patent/JP2749773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐食性、半田付性、曲
げ性、耐磨耗性に優れたリフロー半田めっき角線及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflow solder-plated square wire excellent in corrosion resistance, solderability, bending property and abrasion resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】銅又は銅合金線材にSn又はSn合金を
被覆した材料は、銅又は銅合金の持つ導電性と強度、S
n又はSn合金被覆層の持つ耐食性と半田接合性とがう
まく噛み合わされた高性能導体であり、端子、コネクタ
ー、リード線、電線ケーブル等に幅広く用いられてい
る。そして、前記コネクター等にはSn又はSn合金を
被覆した銅合金条の打抜き材が用いられていたが、打抜
き屑が出ないピン型コネクター(ピン・グリッド・アレ
イ等)が開発され、このピンに半田めっき角線が使われ
出した。
2. Description of the Related Art A copper or copper alloy wire coated with Sn or a Sn alloy is made of a material such as copper or copper alloy having conductivity and strength.
It is a high-performance conductor in which the corrosion resistance and the solder bonding property of the n or Sn alloy coating layer are well interlocked, and is widely used for terminals, connectors, lead wires, electric cables and the like. A punched material of a copper alloy strip coated with Sn or Sn alloy has been used for the connector and the like. However, a pin type connector (a pin grid array or the like) which does not produce punched debris has been developed. Solder-plated square wires have been used.

【0003】銅角線に半田めっきするには、安価な溶融
めっき法が一部で使用されている。この方法は偏肉が大
きく、又銅錫化合物層が厚く形成されて曲げ性や半田付
性に劣った。光沢電気めっき法は、均一厚さの薄めっき
層が得られる利点を有し多用されている。しかし、この
光沢電気めっき法には次の欠点があった。表面を光沢
化する光沢剤と表面を平滑にする平滑剤を電解液に添加
する為、これら添加剤がめっき層の結晶粒界に吸臓され
て結晶粒間の結合が弱まり、この粒界を銅が自由に拡散
して銅錫化合物層が厚く形成され、半田めっき角線の曲
げ性や半田付性が低下する。光沢剤により結晶粒が微
細化して粒界歪が大となり、銅の拡散を助長する。結
晶粒の微細化は、結晶粒界を核として生じる変色を促進
させ、結晶粒界や表面に残存する添加剤は変色を速め
る。結晶粒間の結合力弱化は、加工時にめっき層が治
具等と接触して半田粉を発生する原因ともなり、製造歩
留りを下げ又製品の耐磨耗性を低める。ウイスカーが
生じ易い。
In order to perform solder plating on copper square wires, an inexpensive hot-dip plating method is used in part. This method has a large uneven thickness and a thick copper-tin compound layer, resulting in inferior bendability and solderability. The bright electroplating method has an advantage that a thin plating layer having a uniform thickness can be obtained, and is often used. However, this bright electroplating method has the following disadvantages. Since a brightening agent for brightening the surface and a smoothing agent for smoothing the surface are added to the electrolytic solution, these additives are sucked into the crystal grain boundaries of the plating layer to weaken the bonding between the crystal grains, and this grain boundary is reduced. Copper is freely diffused to form a thick copper-tin compound layer, and the bendability and solderability of the solder-plated square wire are reduced. The brightening agent refines the crystal grains and increases the grain boundary strain, thereby promoting copper diffusion. Refinement of crystal grains promotes discoloration that occurs at crystal grain boundaries as nuclei, and additives that remain on crystal grain boundaries and surfaces accelerate color change. The weakening of the bonding force between the crystal grains causes the plating layer to come into contact with a jig or the like during processing, thereby generating solder powder, lowering the production yield and lowering the abrasion resistance of the product. Whiskers are likely to occur.

【0004】[0004]

【発明が解決しようとする課題】このようなことから、
光沢剤を用いず、平滑剤のみを添加して電気めっきし、
電気めっき後リフロー処理して光沢を出す方法が開発さ
れた。リフロー処理は、半田を電気めっきした銅角線を
走間炉に連続的に通して半田めっき層を溶融させて半田
めっき層に光沢を持たせる為の処理であり、同時に内部
応力の緩和、平滑剤の熱分解除去、結晶粒の粗大化もな
される。しかし、このリフロー処理では、リフロー処理
時の加熱によって銅錫化合物層が厚く形成されて、リフ
ロー半田めっき角線の曲げ性や半田付性が阻害された。
又製造中に半田粉が僅かながら発生した。又リフロー処
理で角線の角部分の半田が平面部に流れて薄層化して、
ここに角線のCuが半田層の表面にまで拡散して変色す
るという問題が生じた。
SUMMARY OF THE INVENTION
Do not use brightener, add only smoothing agent and electroplate,
A method has been developed in which a gloss is obtained by reflow treatment after electroplating. The reflow process is a process to melt the solder plating layer by continuously passing a copper square wire with electroplated solder through a running furnace to make the solder plating layer glossy. The agent is removed by thermal decomposition and the crystal grains are coarsened. However, in this reflow treatment, the copper-tin compound layer was formed thick by the heating during the reflow treatment, and the bendability and solderability of the reflow solder plating square wire were hindered.
Also, a small amount of solder powder was generated during the production. In the reflow process, the solder at the corners of the corner line flows to the flat part and becomes thinner,
Here, there was a problem that Cu of the square wire diffused to the surface of the solder layer and discolored.

【0005】[0005]

【課題を解決する為の手段】このような中で鋭意研究を
行い、リフロー処理材の半田付性、曲げ性、耐磨耗性
(半田粉発生)は、半田めっき層の結晶組織に左右され
ることを知見し、更に研究を進めて本発明を完成するに
至った。即ち、請求項1の発明は、Sn−Pb合金半田
層を電気めっきした銅又は銅合金角線に所定のリフロー
処理を施したリフロー半田めっき角線において、前記S
n−Pb合金半田層が、粒界にPbが析出したSnの多
結晶体からなることを特徴とするリフロー半田めっき角
線である。
In order to solve the problem, we have conducted intensive research and found that the solderability, bendability, and abrasion resistance (solder powder generation) of the reflow treated material depend on the crystal structure of the solder plating layer. The inventor found that the present invention was completed, and further research was carried out to complete the present invention. That is, the invention of claim 1 is a reflow solder-plated square wire in which a predetermined reflow process is performed on a copper or copper alloy square wire on which an Sn—Pb alloy solder layer is electroplated.
The reflow solder plating square wire, wherein the n-Pb alloy solder layer is made of a polycrystalline Sn having Pb precipitated at a grain boundary.

【0006】この発明の角線は、リフロー処理により形
成された銅錫化合物層に起因する半田付性、曲げ性、耐
磨耗性(半田粉発生)の低下を、半田めっき層の結晶組
織をSnの結晶粒界にPbが析出した組織にすることに
より防止したものである。この発明のリフロー半田めっ
き角線の、半田めっき層の結晶組織は、図1に示すよう
にSnの結晶粒界にPb相1が析出した組織である。こ
れに対し、従来のリフロー半田めっき角線は、図3に示
すようにSnの結晶粒2内に球状のPb相1がランダム
に析出した組織である。
The square line of the present invention can be used to reduce the solderability, bendability, and abrasion resistance (generation of solder powder) due to the copper-tin compound layer formed by the reflow treatment, and to reduce the crystal structure of the solder plating layer. This is prevented by forming a structure in which Pb is precipitated at the grain boundaries of Sn. The crystal structure of the solder plating layer of the reflow solder plating square wire of the present invention is a structure in which the Pb phase 1 is precipitated at the Sn crystal grain boundary as shown in FIG. On the other hand, the conventional reflow solder plating square wire has a structure in which a spherical Pb phase 1 is randomly precipitated in Sn crystal grains 2 as shown in FIG.

【0007】この発明において、リフロー半田めっき層
の結晶組織を図1に示す結晶組織にすることにより、半
田付性、曲げ性、耐磨耗性が改善される。半田めっき層
のSnの結晶粒径の平均値を2μm以上に大きくするこ
とにより、結晶粒界が減少し、それに伴いCuの粒界拡
散量が低減し、銅錫化合物層が薄く生成される。半田め
っき層と角線の界面に生成する銅錫化合物層の厚さは0.
45μm以下にすることにより、曲げ性が大幅に改善され
る。
In the present invention, the reflow solder plating layer has the crystal structure shown in FIG. 1 to improve solderability, bendability, and abrasion resistance. By increasing the average value of the Sn crystal grain size of the solder plating layer to 2 μm or more, the crystal grain boundaries are reduced, the Cu grain boundary diffusion amount is reduced, and a thin copper-tin compound layer is formed. The thickness of the copper tin compound layer generated at the interface between the solder plating layer and the square wire is 0.
By setting the thickness to 45 μm or less, the bendability is greatly improved.

【0008】半田めっき層はリフロー処理により一時的
に溶融する。このとき溶融状態が長時間に及んだり、溶
融時に角線が激しく振動したりすると、溶融半田がその
表面張力により角部から平面部に流れて角部のめっき層
厚さが薄くなることがある。この場合角部はめっき層が
薄い為、加湿や加熱により酸化変色したり、化合物層が
露出したりして、半田付性が低下する。この為めっき層
の偏肉度kは1.5 以下にするのが望ましい。但し、偏肉
度kは次式により定義する。偏肉度k=(螢光X線膜厚
計で測定した半田めっき層の最大厚さ)/(定電流アノ
ード溶解法で測定した半田めっき層の平均厚さ)。尚、
蛍光X線膜厚計のコリメータ径は0.1mmとする。
[0008] The solder plating layer is temporarily melted by the reflow process. At this time, if the molten state lasts for a long time or the square wire vibrates violently during melting, the molten solder may flow from the corner to the flat part due to the surface tension and the plating layer thickness at the corner may become thin. is there. In this case, since the plating layer is thin at the corner, oxidative discoloration or exposure of the compound layer due to humidification or heating lowers the solderability. Therefore, it is desirable that the thickness deviation k of the plating layer be 1.5 or less. However, the thickness deviation k is defined by the following equation. Degree of thickness deviation k = (maximum thickness of solder plating layer measured by fluorescent X-ray film thickness meter) / (average thickness of solder plating layer measured by constant current anodic dissolution method). still,
The collimator diameter of the fluorescent X-ray film thickness meter is 0.1 mm.

【0009】この発明において、Sn−Pb合金半田に
は、Pbを5〜60wt%含有する通常のSn−Pb合金半
田が適用される。銅合金角線には、耐食性や機械的性質
に優れた黄銅、又はりん青銅、ベリリウム銅、コルソン
合金、洋白等のバネ材料が好適である。これら合金線に
は、必要に応じてCuを下地めっきしてから半田めっき
とリフロー処理を施す。
In the present invention, a normal Sn-Pb alloy solder containing 5 to 60 wt% of Pb is applied to the Sn-Pb alloy solder. For the copper alloy square wire, brass having excellent corrosion resistance and mechanical properties, or a spring material such as phosphor bronze, beryllium copper, Corson alloy, nickel silver or the like is suitable. These alloy wires are subjected to solder plating and reflow treatment after being plated with Cu as necessary.

【0010】請求項5の発明は、請求項1の発明のリフ
ロー半田めっき角線の製造方法である。即ち、Sn−P
b合金半田層を電気めっきした銅又は銅合金角線を、所
定温度に加熱した炉中を所定速度で走行させてリフロー
処理するリフロー半田めっき角線の製造方法において、
前記半田層をめっきした銅又は銅合金角線の炉中の走行
速度を、半田層が未溶融状態となる下限速度の80〜96%
の速度にすることを特徴とするものである。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a reflow solder plated square wire according to the first aspect of the present invention. That is, Sn-P
A method for producing a reflow solder-plated square wire in which a copper or copper alloy square wire having an electroplated b-alloy solder layer is run at a predetermined speed in a furnace heated to a predetermined temperature to perform a reflow process.
The running speed of the copper or copper alloy square wire plated with the solder layer in the furnace is 80 to 96% of the lower limit speed at which the solder layer is in an unmelted state.
It is characterized in that the speed is set to.

【0011】この発明において、半田層が未溶融状態と
なる下限速度とは、半田層が溶融する速度から走行速度
を次第に速めていったときに半田層が未溶融状態となる
下限速度である。この発明において、半田層をめっきし
た銅又は銅合金角線の炉中の走行速度を、半田層が未溶
融状態となる下限速度の80〜96%の速度に限定した理由
は、80%未満でも又96%を超えても、半田めっき層の結
晶組織が、Snの結晶粒界にPbが析出した組織になら
ない為である。又80%未満では、角線の角部のPb層が
平面部に流れて薄くなり、角線のCuが角部の半田層表
面にまで拡散して、変色が起きる。
In the present invention, the lower limit speed at which the solder layer becomes unmelted is the lower limit speed at which the solder layer becomes unmelted when the running speed is gradually increased from the speed at which the solder layer melts. In the present invention, the reason why the traveling speed of the copper or copper alloy square wire plated with the solder layer in the furnace is limited to a speed of 80 to 96% of the lower limit speed at which the solder layer is in an unmelted state, even if it is less than 80% Also, even if it exceeds 96%, the crystal structure of the solder plating layer does not become a structure in which Pb is precipitated at the Sn crystal grain boundary. If it is less than 80%, the Pb layer at the corner of the corner line flows to the flat portion and becomes thin, and the Cu of the corner line diffuses to the surface of the solder layer at the corner to cause discoloration.

【0012】[0012]

【作用】本発明のリフロー半田めっき角線は、半田めっ
き層の結晶組織が、粒界にPbが析出したSnの多結晶
体からなるので、結晶粒間の結合が強化され、曲げ加工
での割れの発生、治具との接触による磨耗粉の発生が防
止される。Cuの拡散経路となる粒界にCuと反応しな
いPbが析出しているので、Cuの拡散が抑制され銅錫
化合物層が薄く形成される。その結果、曲げ性が改善さ
れ又高温等での半田付性の劣化が防止される。この効果
は半田めっき層の結晶粒径の平均値が2μm以上とな
り、粒界面積が小さくなる程顕著である。前述の銅錫化
合物層は硬質の為割れの起源となる。その厚さは、0.45
μm以下にすることにより曲げ性が大幅に改善される。
リフロー処理における半田めっき角線の走行速度を半田
層が未溶融状態となる下限速度の80〜96%の速度にする
ことにより、Sn多結晶体の粒界にPbが析出した組織
が得られ、曲げ性や半田付性が改善される。又角線角部
の偏肉度が 1.5以下となり、加湿、加温下での変色が防
止される。
According to the reflow solder plating square wire of the present invention, since the crystal structure of the solder plating layer is composed of a polycrystalline Sn in which Pb is precipitated at the grain boundaries, the bonding between the crystal grains is strengthened and the bending process is performed. The generation of cracks and the generation of wear powder due to contact with the jig are prevented. Since Pb that does not react with Cu is precipitated at the grain boundary serving as a Cu diffusion path, the diffusion of Cu is suppressed and the copper-tin compound layer is formed thin. As a result, the bendability is improved and the deterioration of the solderability at high temperatures or the like is prevented. This effect is more remarkable as the average grain size of the solder plating layer becomes 2 μm or more and the grain boundary area becomes smaller. The above-mentioned copper-tin compound layer is a source of cracks due to its hardness. Its thickness is 0.45
By setting the thickness to not more than μm, the bendability is greatly improved.
By setting the traveling speed of the solder plating square wire in the reflow process to a speed of 80 to 96% of the lower limit speed at which the solder layer is in an unmelted state, a structure in which Pb is precipitated at the grain boundary of the Sn polycrystal is obtained, Bendability and solderability are improved. In addition, the thickness deviation of the corners of the square wire becomes 1.5 or less, and discoloration under humidification and heating is prevented.

【0013】[0013]

【実施例】0.5mm角の黄銅線に 9/1半田を電気めっき
し、これをリフロー処理してリフロー半田めっき角線を
製造した。用いた装置の概略を図2に示した。図で、4
は黄銅角線、9は前記黄銅角線に半田層をめっきする半
田めっき槽、11は前記半田層をリフロー処理する走間炉
である。アンコイラー3から供給される黄銅角線4を、
電解脱脂槽5、水洗槽6、酸洗槽7、水洗槽16に順次通
してめっき前処理を行い、次いでCuめっき槽8にてC
uを 1.0μm厚さに下地めっきし、水洗槽26にて水洗
後、半田めっき槽9にて半田を 2.0μm厚さに電気めっ
きした。次にこれを水洗槽36にて水洗し、熱風乾燥器10
により乾燥後、走間炉11にてリフロー処理し、冷却水槽
12にて冷却後、コイラー13に巻き取った。半田めっき
は、平滑剤を添加したホウフッ酸系電解液を用いて行っ
た。リフロー処理条件は種々に変化させた。
EXAMPLE A 0.5 mm square brass wire was electroplated with 9/1 solder, and this was subjected to a reflow treatment to produce a reflow solder plated square wire. FIG. 2 schematically shows the apparatus used. In the figure, 4
Is a brass square wire, 9 is a solder plating tank for plating a solder layer on the brass square wire, and 11 is a running furnace for reflowing the solder layer. The brass square wire 4 supplied from the uncoiler 3 is
The plating pretreatment is performed by passing through the electrolytic degreasing tank 5, the washing tank 6, the pickling tank 7, and the washing tank 16 in this order.
u was base-plated to a thickness of 1.0 μm, washed with water in a washing tank 26, and then electroplated with solder to a thickness of 2.0 μm in a solder plating tank 9. Next, this is washed in a washing tank 36, and a hot air drier 10
After drying, the reflow process is performed in the running furnace 11 and the cooling water tank
After cooling at 12, it was wound around a coiler 13. Solder plating was performed using a borofluoric acid-based electrolyte to which a smoothing agent was added. Reflow processing conditions were variously changed.

【0014】こうして得られた各々のリフロー半田めっ
き角線について、耐食性、半田付性、曲げ性、耐磨耗性
を調べた。耐食性は下記条件で加速劣化試験を行い試験
後の変色有無で判定した。半田付性は、加速劣化試験後
のサンプルを用い下記条件にて調査した。曲げ性は、自
己径巻付後の表面割れを実体顕微鏡で1000倍に拡大して
観察し、割れの状態で判定した。耐磨耗性は、Bowden型
磨耗試験機を用い、半田粉の発生状況を調べた。摺動プ
ローブに先端5Rにプレス加工したリフロー錫めっき条
を用い、摺動距離50mm、荷重50gfの条件で 100往復させ
た。結果を表2に示した。表1にSnの結晶粒径、Pb
の析出状態、半田めっき層の偏肉度、銅錫化合物層の厚
さを示した。 加速劣化試験:耐湿試験、温度 105℃、相対湿度100%
RH、放置時間24時間。 大気加熱試験、温度 155℃、放置時間24時間。 半田付性試験(メニスコク゛ラフ法): 共晶半田使用、温度 230
℃、フラックス25%ロジン/メタノール、浸漬速度2mm
/sec、浸漬深さ2mm、浸漬時間10sec 、評価ゼロクロス
タイム。
With respect to each of the thus obtained reflow solder plated square wires, corrosion resistance, solderability, bending properties, and abrasion resistance were examined. The corrosion resistance was determined by performing an accelerated deterioration test under the following conditions and determining whether or not the test material was discolored. The solderability was examined under the following conditions using the sample after the accelerated deterioration test. The bendability was determined by observing a surface crack after self-diameter winding with a stereoscopic microscope at a magnification of 1000 times, and determining the state of the crack. The abrasion resistance was determined by using a Bowden-type abrasion tester to check the generation of solder powder. A reflow tin-plated strip pressed at the tip 5R was used as a sliding probe, and the probe was reciprocated 100 times under the conditions of a sliding distance of 50 mm and a load of 50 gf. The results are shown in Table 2. Table 1 shows the crystal grain size of Sn and Pb.
, The thickness of the solder plating layer, and the thickness of the copper-tin compound layer. Accelerated deterioration test: humidity resistance test, temperature 105 ° C, relative humidity 100%
RH, leaving time 24 hours. Atmospheric heating test, temperature 155 ° C, leaving time 24 hours. Solderability test (meniscograf method): using eutectic solder, temperature 230
℃, flux 25% rosin / methanol, immersion speed 2mm
/ sec, immersion depth 2mm, immersion time 10sec, evaluation zero cross time.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】表1及び表2より明らかなように、本発明
例品(No.1〜8)は、耐食性、半田付性、曲げ性、耐磨耗
性のいずれにも良好な特性を示した。このうちNo.7は、
Snの結晶粒径が 1.6μmとやや小さくなった為、結晶
粒界が増加して半田付性と耐磨耗性が若干低下した。又
No.8は偏肉度が1.6 とやや大きかった為、半田層が薄く
なった角部の表面に黄銅角線のCuが一部拡散して僅か
に変色を起こした。又化合物層の厚さがやや厚くなり、
加工性が悪化して曲げ性及び耐磨耗性が幾分低下した。
As is clear from Tables 1 and 2, the products of the present invention (Nos. 1 to 8) exhibited good properties in all of the corrosion resistance, solderability, bending property and abrasion resistance. . No. 7 of these is
Since the crystal grain size of Sn was slightly reduced to 1.6 μm, the crystal grain boundaries increased, and the solderability and abrasion resistance were slightly reduced. or
In No. 8, since the thickness unevenness was slightly large at 1.6, Cu of the brass square wire partially diffused on the surface of the corner where the solder layer was thinned, causing slight discoloration. Also, the thickness of the compound layer becomes slightly thicker,
Workability deteriorated and bendability and abrasion resistance were somewhat reduced.

【0018】これに対し、比較例のNo.9〜12は、耐食
性、半田付性、曲げ性、耐磨耗性のいずれかが低下し
た。耐湿試験後の外観では、No11,12 のサンプルに黄色
変色が見られた。これは結晶粒が小径(No.11,12)な為
で、特にNo.12 は添加剤の吸着が加わり変色が大きかっ
た。耐湿試験後の半田付性は、No.9〜12ともに濡れ時間
(ゼロクロスタイム)が1秒程度で顕著な差がなかっ
た。変色したNo.11,12でも、表面に生成したSnの酸化
物は溶融半田に短時間で容易に溶解する為、半田付性の
低下は見られなかった。
On the other hand, in Nos. 9 to 12 of the comparative examples, any one of the corrosion resistance, solderability, bending property and abrasion resistance was reduced. In the appearance after the moisture resistance test, the No. 11 and No. 12 samples showed yellow discoloration. This is because the crystal grains are small in diameter (Nos. 11 and 12), and especially in No. 12, the discoloration was large due to the addition of the additives. Regarding the solderability after the moisture resistance test, there was no significant difference in the wetting time (zero cross time) of about 1 second in all of Nos. 9 to 12. Even in the discolored Nos. 11 and 12, the oxide of Sn generated on the surface was easily dissolved in the molten solder in a short time, so that no decrease in solderability was observed.

【0019】大気加熱後の表面外観は、No.9〜10では角
部の半田が平面部に流れ、角部の半田厚さが減少した
(偏肉度大)為、この薄い半田層部分が、加熱により拡
散してきた角線のCuと反応して銅錫化合物を生成し、
これが露出して角部が灰色に変色した。No.11,12は半田
の結晶粒径が緻密であり又結晶粒間の間隔が広い為、角
線のCuが高速拡散して半田層全体が銅錫化合物層にな
り、全面が灰色に変色した。大気加熱後の半田付性は、
No.9〜12とも銅錫化合物が表面に露出した為、濡れ時間
が大幅に長くなった。
Regarding the surface appearance after heating in the atmosphere, in the case of Nos. 9 and 10, the solder at the corners flowed to the flat portion and the solder thickness at the corners was reduced (large thickness deviation). Reacts with the square Cu diffused by heating to produce a copper-tin compound,
This was exposed and the corners turned gray. In Nos. 11 and 12, since the crystal grain size of the solder is dense and the space between the crystal grains is wide, Cu in the square wire diffuses at high speed and the entire solder layer becomes a copper-tin compound layer, and the entire surface turns gray. did. Solderability after heating in air
In all of Nos. 9 to 12, the copper-tin compound was exposed on the surface, so that the wetting time was greatly increased.

【0020】自己径巻付試験(曲げ性)では、No.9,10
は銅錫化合物層が厚かった為、又No.11,12は半田層が未
溶解で、結晶粒間の密着度が弱かった為、いずれにも割
れが発生した。
In the self-diameter winding test (bendability), No. 9, 10
Nos. 11 and 12 had cracks because the copper-tin compound layer was thick, and Nos. 11 and 12 had unmelted solder layers and weak adhesion between crystal grains.

【0021】摩耗試験では、No.9〜12の全てに半田粉の
発生が認められた。No.9,10 での半田粉の発生原因は不
明であるが、硬質な金属間化合物層が厚く強靱となっ
て、半田めっき層が削られ易くなったものと考えられ
る。No.11,12では結晶粒間の結合力弱化が原因である。
In the abrasion test, generation of solder powder was observed in all of Nos. 9 to 12. Although the cause of the generation of the solder powder in Nos. 9 and 10 is unknown, it is considered that the hard intermetallic compound layer was thick and tough, and the solder plating layer was easily scraped. In Nos. 11 and 12, the weakening of the bonding strength between the crystal grains was caused.

【0022】[0022]

【効果】以上述べたように、本発明のリフロー半田めっ
き角線は、耐食性、半田付性、曲げ性、耐摩耗性が改善
され、又前記半田めっき銅角線はリフロー処理を所定条
件で施すことにより製造することができ、工業上顕著な
効果を奏する。
As described above, the reflow solder-plated square wire of the present invention has improved corrosion resistance, solderability, bendability, and abrasion resistance, and the solder-plated copper square wire is subjected to reflow treatment under predetermined conditions. By doing so, it is industrially significant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリフロー半田めっき角線の半田めっき
層の結晶組織図である。
FIG. 1 is a crystal structure diagram of a solder plating layer of a reflow solder plating square wire of the present invention.

【図2】本発明のリフロー半田めっき角線の製造方法の
概略図である。
FIG. 2 is a schematic view of a method for manufacturing a reflow solder plated square wire according to the present invention.

【図3】従来のリフロー半田めっき角線の半田めっき層
の結晶組織図である。
FIG. 3 is a crystal structure diagram of a solder plating layer of a conventional reflow solder plating square wire.

【符号の説明】[Explanation of symbols]

1─────Pb相 2─────Snの結晶粒 3─────アンコイラー 4─────黄銅角線 5─────電解脱脂槽 6,16,26,36─水洗槽 7─────酸洗槽 8─────Cuめっき槽 9─────半田めっき槽 10─────熱風乾燥器 11─────走間炉 12─────冷却水槽 13─────コイラー 1 Pb phase 2 Sn crystal grains 3 Uncoiler 4 Brass square wire 5 Electrolytic degreasing tank 6,16,26,36 ─Washing tank 7─────Pickling tank 8─────Cu plating tank 9─────Solder plating tank 10─────Hot air dryer 11─────Running furnace 12─ ────Cooling water tank 13─────Coiler

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−157893(JP,A) 特開 平3−191089(JP,A) 特開 平2−270987(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-7-157893 (JP, A) JP-A-3-191089 (JP, A) JP-A-2-270987 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Sn−Pb合金半田層を電気めっきした
銅又は銅合金角線に所定のリフロー処理を施したリフロ
ー半田めっき角線において、前記Sn−Pb合金半田層
が、粒界にPbが析出したSnの多結晶体からなること
を特徴とするリフロー半田めっき角線。
In a reflow solder plating square wire obtained by subjecting a Sn or Pb alloy solder layer to electroplating copper or a copper alloy square wire to a predetermined reflow treatment, the Sn—Pb alloy solder layer has Pb at a grain boundary. A reflow solder-plated square wire comprising a deposited polycrystalline Sn.
【請求項2】 半田めっき層のSnの結晶粒径の平均値
が2μm以上であることを特徴とする請求項1記載のリ
フロー半田めっき角線。
2. The reflow solder plating square wire according to claim 1, wherein the average value of the Sn crystal grain size of the solder plating layer is 2 μm or more.
【請求項3】 銅又は銅合金角線と半田めっき層の界面
に形成される金属間化合物層の厚さが0.45μm以下であ
ることを特徴とする請求項1又は請求項2記載のリフロ
ー半田めっき角線。
3. The reflow solder according to claim 1, wherein the thickness of the intermetallic compound layer formed at the interface between the copper or copper alloy square wire and the solder plating layer is 0.45 μm or less. Plating square wire.
【請求項4】 半田めっき層の偏肉度kが 1.5以下であ
ることを特徴とする請求項1乃至請求項3記載のリフロ
ー半田めっき角線。 但し、k=(蛍光X線膜厚計で測定した半田めっき層の
最大厚さ)/(定電流アノード溶解法で測定した半田め
っき層の平均厚さ)。 但し、蛍光X線膜厚計のコリメータ径は0.1mm とする。
4. The reflow solder plating square wire according to claim 1, wherein the thickness k of the solder plating layer is 1.5 or less. Here, k = (maximum thickness of the solder plating layer measured by the fluorescent X-ray film thickness meter) / (average thickness of the solder plating layer measured by the constant current anodic melting method). However, the collimator diameter of the fluorescent X-ray film thickness meter shall be 0.1 mm.
【請求項5】 Sn−Pb合金半田層を電気めっきした
銅又は銅合金角線を、所定温度に加熱した炉中を所定速
度で走行させてリフロー処理するリフロー半田めっき角
線の製造方法において、前記半田層をめっきした銅又は
銅合金角線の炉中の走行速度を、半田層が未溶融状態と
なる下限速度の80〜96%の速度にすることを特徴とする
請求項1記載のリフロー半田めっき角線の製造方法。
5. A method for producing a reflow solder plated square wire in which a copper or copper alloy square wire electroplated with a Sn—Pb alloy solder layer is reflow-treated by running at a predetermined speed in a furnace heated to a predetermined temperature. 2. The reflow method according to claim 1, wherein a traveling speed of the copper or copper alloy square wire plated with the solder layer in the furnace is set to a speed of 80 to 96% of a lower limit speed at which the solder layer is in an unmelted state. Manufacturing method of solder plated square wire.
JP8791994A 1994-03-31 1994-03-31 Reflow solder plating square wire and method of manufacturing the same Expired - Fee Related JP2749773B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8791994A JP2749773B2 (en) 1994-03-31 1994-03-31 Reflow solder plating square wire and method of manufacturing the same
TW084109267A TW324688B (en) 1994-03-31 1995-09-05 A reflow-plated member and a manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8791994A JP2749773B2 (en) 1994-03-31 1994-03-31 Reflow solder plating square wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07268651A JPH07268651A (en) 1995-10-17
JP2749773B2 true JP2749773B2 (en) 1998-05-13

Family

ID=13928335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8791994A Expired - Fee Related JP2749773B2 (en) 1994-03-31 1994-03-31 Reflow solder plating square wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2749773B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475910B2 (en) * 2000-05-24 2003-12-10 株式会社村田製作所 Electronic component, method of manufacturing electronic component, and circuit board

Also Published As

Publication number Publication date
JPH07268651A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
KR100422026B1 (en) Manufacturing method of reflow plating member, reflow plating member obtained by the method
JP5464869B2 (en) Sn-coated copper or copper alloy and method for producing the same
JP2975246B2 (en) Sn-plated wire for electrical contact and method of manufacturing the same
JP5185759B2 (en) Conductive material and manufacturing method thereof
TWI479052B (en) Tin plating materials
JPH06235086A (en) Lead steel wire for electronic parts and its production
JP2005105307A (en) REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER
JP2749773B2 (en) Reflow solder plating square wire and method of manufacturing the same
JP3303594B2 (en) Heat-resistant silver-coated composite and method for producing the same
JP3378717B2 (en) Method for manufacturing reflow plated member
WO2012133378A1 (en) Sn PLATING MATERIAL
JP2007002341A (en) Electroconductive material plate for forming connecting parts and manufacturing method therefor
JP2000030558A (en) Electric contact material and its manufacture
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JPH02145794A (en) Copper or copper alloy material plated with tin or solder reflowed and excellent in thermal peeling resistance
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JP2647656B2 (en) Method of manufacturing contacts
JP4014739B2 (en) Reflow Sn plating material and terminal, connector, or lead member using the reflow Sn plating material
JPH03188253A (en) Tinned copper alloy material
JPH0221508A (en) Conductor for minute wire winding
JPH07103477B2 (en) Steel for electronic parts and manufacturing method thereof
JPS6325078B2 (en)
JPH0674463B2 (en) Copper alloy for lead frame

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees