JPH0726205B2 - Manufacturing method of aluminum nitride ceramic wiring board - Google Patents

Manufacturing method of aluminum nitride ceramic wiring board

Info

Publication number
JPH0726205B2
JPH0726205B2 JP61191887A JP19188786A JPH0726205B2 JP H0726205 B2 JPH0726205 B2 JP H0726205B2 JP 61191887 A JP61191887 A JP 61191887A JP 19188786 A JP19188786 A JP 19188786A JP H0726205 B2 JPH0726205 B2 JP H0726205B2
Authority
JP
Japan
Prior art keywords
substrate
aluminum nitride
nitride ceramic
wiring board
ceramic wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61191887A
Other languages
Japanese (ja)
Other versions
JPS6347382A (en
Inventor
昇 山口
悟 小川
出 吉澤
進 梶田
清隆 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP61191887A priority Critical patent/JPH0726205B2/en
Publication of JPS6347382A publication Critical patent/JPS6347382A/en
Publication of JPH0726205B2 publication Critical patent/JPH0726205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、電子基材として使用される窒化アルミセラ
ミック配線基板の製法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing an aluminum nitride ceramic wiring board used as an electronic base material.

〔背景技術〕[Background technology]

セラミック等の無機系配線基板からなる回路板を作る方
法として、従来、タングステンスラリーで焼成前のグリ
ーンセラミックシート上に回路を描き、還元性雰囲気中
で一体に焼成する方法、あるいは、Ag/Pd,Ag/Pt,Au,Cu
などの金属微粉末をガラスフリット,有機系ビヒクルと
混合しペースト化し、セラミック基板上にスクリーン印
刷した後、ガラスフリットがセラミック基板に溶融接合
する温度で焼成し、回路を形成する方法が一般的であ
る。これらの方法は、配線抵抗が大きいので微細配線に
は不向きで、かつ、ファインパターンを形成しにくい。
また、ガラス質を含むため、はんだ付着性が劣り、不良
品が出やすく、使用時に故障をおこしやすい等の欠点が
ある。
As a method of making a circuit board made of an inorganic wiring substrate such as ceramic, conventionally, a circuit is drawn on a green ceramic sheet before firing with a tungsten slurry and integrally fired in a reducing atmosphere, or Ag / Pd, Ag / Pt, Au, Cu
Generally, a method of forming a circuit by mixing fine metal powder such as glass frit with an organic vehicle to form a paste, screen-printing on a ceramic substrate, and then firing at a temperature at which the glass frit is melt-bonded to the ceramic substrate is generally used. is there. Since these methods have a large wiring resistance, they are not suitable for fine wiring and it is difficult to form a fine pattern.
In addition, since it contains glass, it has disadvantages such as poor solder adhesion, easy production of defective products, and easy failure during use.

セラミック基板と銅箔とを接着剤を用いて粘着し、所定
回路部分にエッチングレジスト被膜を形成し、所定回路
部分以外をエッチング除去し、その後、エッチングレジ
スト被膜を剥離することにより回路を形成する方法もあ
る。しかしながら、現在、無機系のよい接着剤がなく、
有機系の接着剤は耐熱性,耐薬品性,寸法安定性等の特
性の点で劣るため、この方法は一般に使用されていな
い。
A method of forming a circuit by adhering a ceramic substrate and a copper foil with an adhesive, forming an etching resist coating on a predetermined circuit portion, etching away the portion other than the predetermined circuit portion, and then peeling off the etching resist coating. There is also. However, currently there is no good inorganic adhesive,
Since organic adhesives are inferior in properties such as heat resistance, chemical resistance and dimensional stability, this method is not generally used.

セラミック配線基板の製法としては、この他、化学めっ
き法により形成する方法がある。化学めっき法は、上に
述べたような欠点を有しないため、実用性にすぐれた方
法と言える。しかし、基板と金属層との間に強い密着力
を得ることが困難でる。
In addition to this, as a method for manufacturing a ceramic wiring board, there is a method of forming it by a chemical plating method. Since the chemical plating method does not have the above-mentioned drawbacks, it can be said to be a method having excellent practicality. However, it is difficult to obtain a strong adhesion between the substrate and the metal layer.

一般に、配線基板において要求される第1の要素とし
て、基板材料と配線金属との密着力の良いことが挙げら
れる。したがって、化学めっき法における上記の欠点
は、この方法を実用化する上で重大な問題点であると言
える。ガラスエポキシ等の有機系配線基板材料に対して
は、この密着力を上げる手段の一つとして、基板表面を
粗化した後にメタライズし、いわゆるアンカー効果によ
って物理的に基板と金属層とを接合するという方法が酸
化物系セラミック等の無機系配線基板の製法に用いられ
ている例が多数ある。しかしながら、熱伝導率が非常に
よく、熱膨張率が搭載されるチップなどのシリコンとよ
く似ている窒化アルミなどの窒化物系セラミックは、エ
ッチング剤として用いられる酸やアルカリに対して非常
に弱いため、前記のように、基板表面を粗化した後にメ
タライズするという方法を用いた例がない。
Generally, the first element required for a wiring board is that the substrate material and the wiring metal have good adhesion. Therefore, it can be said that the above-mentioned drawbacks in the chemical plating method are serious problems in putting this method to practical use. With respect to organic wiring board materials such as glass epoxy, as one means for increasing the adhesion, the surface of the board is roughened and then metallized, and the board and the metal layer are physically joined by the so-called anchor effect. There are many examples in which this method is used for manufacturing an inorganic wiring substrate such as an oxide ceramic. However, nitride-based ceramics such as aluminum nitride, which has a very good thermal conductivity and closely resembles silicon such as chips in which the coefficient of thermal expansion is mounted, is very weak against acids and alkalis used as etching agents. Therefore, as described above, there is no example using the method of roughening the substrate surface and then metallizing.

〔発明の目的〕[Object of the Invention]

この発明は、このような現状に鑑みてなされたものであ
り、窒化アルミセラミック基板の強度が損なわれず、し
かも、金属導体により、微細配線パターンまで形成で
き、かつ、窒化アルミセラミックと前記導体との密着が
安定して強固である窒化アルミセラミック配線基板の製
法を提供することを目的とする。
The present invention has been made in view of the above circumstances, the strength of the aluminum nitride ceramic substrate is not impaired, and moreover, even a fine wiring pattern can be formed by the metal conductor, and the aluminum nitride ceramic and the conductor An object of the present invention is to provide a method for producing an aluminum nitride ceramic wiring board having stable and strong adhesion.

〔発明の開示〕[Disclosure of Invention]

この発明は、このような目的を達成するために、焼結し
た窒化アルミセラミック基板の表面にメタライジング法
により金属層を形成してセラミック配線基板を得るにあ
たり、前記セラミック基板表面をエッチング剤で粗化
し、この粗化基板を1200〜1500℃の範囲の温度で加熱処
理し、次いで表面活性化処理を施したのち前記金属層を
形成することを特徴とする窒化アルミセラミック配線基
板の製法を要旨とするものである。
In order to achieve such an object, the present invention provides a ceramic wiring substrate by forming a metal layer on the surface of a sintered aluminum nitride ceramic substrate by a metallizing method, and roughening the surface of the ceramic substrate with an etching agent. The roughened substrate is heat-treated at a temperature in the range of 1200 to 1500 ° C., and then the metal layer is formed after performing a surface activation treatment. To do.

以下に、この発明を、その1実施例をあらわす図面を参
照しつつ詳しく説明する。
The present invention will be described in detail below with reference to the drawings showing an embodiment thereof.

この発明にかかるセラミック配線基板の製造プロセスを
第1図に示す。以下、この図に従って製造プロセスを説
明する。
The manufacturing process of the ceramic wiring board according to the present invention is shown in FIG. The manufacturing process will be described below with reference to this drawing.

焼結した窒化アルミセラミック基板を準備する。 A sintered aluminum nitride ceramic substrate is prepared.

窒化アルミセラミック基板の表面粗化(エッチン
グ)を行う。表面粗化方法に用いるエッチング剤として
は、アルカリ系と酸系の2種類が挙げられる。アルカリ
系のエッチング剤としては、KOH,NaOH,LiOHからなるア
ルカリ溶液,溶融物、および、これらの混合物などが挙
げられ、酸系のエッチング剤としては、H3PO4,H2SO4,HN
O3,HCl,HFからなる酸溶液,溶融物、および、これらの
混合物などが挙げられる。アルカリ系のエッチング剤に
よる粗化条件は、エッチング剤を100〜400℃に加熱し、
この加熱エッチング剤中に基板を浸漬して粗化する方
法、あるいは、基板にエッチング剤を塗布したのち、基
板を100〜400℃に加熱して粗化する方法がある。一法、
酸系エッチング剤の場合も、同様に上記2種類の方法が
あり、処理温度は80〜400℃である。いずれの方法をも
ちいる場合にも、処理時間は、30分以下で充分である。
The surface of the aluminum nitride ceramic substrate is roughened (etched). As the etching agent used in the surface roughening method, there are two types of alkali type and acid type. Examples of the alkaline etching agent include alkaline solutions of KOH, NaOH, and LiOH, melts, and mixtures thereof. Examples of the acidic etching agent include H 3 PO 4 , H 2 SO 4 , and HN.
Examples thereof include an acid solution containing O 3 , HCl, and HF, a melt, and a mixture thereof. Roughening conditions with alkaline etching agent, heating the etching agent to 100 ~ 400 ℃,
There is a method of immersing the substrate in this heated etching agent to roughen it, or a method of applying the etching agent to the substrate and then heating the substrate to 100 to 400 ° C. to roughen it. One law,
Similarly, in the case of an acid-based etching agent, there are the two types of methods described above, and the treatment temperature is 80 to 400 ° C. Regardless of which method is used, a treatment time of 30 minutes or less is sufficient.

粗化後、水洗乾燥を充分に行う。After roughening, washing and drying are sufficiently performed.

表面粗化(エッチング)したセラミック基板を加熱
処理する。粗化基板には表面粗化の段階で多かれ少なか
れマイクロクラックが発生している。マイクロクラック
の発生の程度が著しい場合には基板そのものの強度が劣
化し、基板と金属層間の密着力よりも低くなってしまう
という不具合を生じる。また、その発生の程度が低い場
合であっても、クラック内に水洗などの洗浄によっても
除去し得ない極微量のエッチング液が残存することにな
る。エッチング液が基板に残存すると、後に形成される
金属層が時間とともに腐食され、導体信頼性に悪影響を
及ぼすのである。
The ceramic substrate whose surface is roughened (etched) is heat-treated. Microcracks are generated in the roughened substrate more or less at the stage of surface roughening. When the degree of occurrence of microcracks is significant, the strength of the substrate itself deteriorates, resulting in a problem that the adhesion strength between the substrate and the metal layer becomes lower. Further, even when the degree of its generation is low, an extremely small amount of etching solution that cannot be removed by washing such as washing with water remains in the crack. If the etching solution remains on the substrate, the metal layer that will be formed later will be corroded over time, which will adversely affect the reliability of the conductor.

したがって、基板内に発生したマイクロクラックを融着
させることによって解消するとともに、残存するエッチ
ング液の腐食性を排除するために加熱処理を行うのであ
る。
Therefore, heat treatment is performed to eliminate the microcracks generated in the substrate by fusing them and to eliminate the corrosiveness of the remaining etching solution.

処理温度としては1200〜1500℃が適当である。処理温度
が1200℃未満であると、マイクロクラックを融着してな
くすことができない。一方、処理温度が、1500℃を越え
ると、セラミック基板全体が焼結を起こし、粗化によっ
て形成された金属層との密着に有効に働く表面の凹凸の
数、あるいは,形状に影響を及ぼし、金属層とき密着力
が低下する。処理時間としては、特に、限定しないが、
15分以内が適当である。
A treatment temperature of 1200 to 1500 ° C is suitable. If the treatment temperature is less than 1200 ° C, the microcracks cannot be fused and eliminated. On the other hand, when the processing temperature exceeds 1500 ° C., the entire ceramic substrate is sintered, which affects the number of surface irregularities effectively acting for adhesion with the metal layer formed by roughening, or the shape, When a metal layer is used, the adhesion is reduced. The processing time is not particularly limited,
Within 15 minutes is appropriate.

表面活性化処理を行う。この処理は、普通、塩化第
1錫溶液と塩化パラジウム溶液を用いたセンシタイジン
グ−アクチベーション法により、セラミック基板表面に
金属パラジウムを析出させるものである。
Perform surface activation treatment. This treatment is usually to deposit metallic palladium on the surface of a ceramic substrate by a sensitizing-activation method using a stannous chloride solution and a palladium chloride solution.

化学めっきを行う。これは、普通、化学銅めっき、
あるいは、化学ニッケルめっきなどにより行う。
Perform chemical plating. This is usually a chemical copper plating,
Alternatively, it is performed by chemical nickel plating or the like.

必要に応じ、電解めっきを行う。電解めっきは、必
要とする金属層の厚みが厚い場合、前記化学めっきを基
板上に施したのち、銅めっき、あるいは、ニッケルめっ
きなどをして行う。
If necessary, electrolytic plating is performed. When the required metal layer is thick, the electrolytic plating is performed by performing the chemical plating on the substrate and then performing copper plating, nickel plating, or the like.

必要に応じ、エッチングによる回路形成を行う。化
学めっきまたはその上への電解めっきによって直ちに、
必要な回路が形成される場合もあるが、全面めっき等の
場合は、エッチングによる回路形成を行うのである。回
路形成法は、一般に用いられている方法による。
If necessary, a circuit is formed by etching. Immediately by chemical plating or electrolytic plating on it,
A necessary circuit may be formed in some cases, but in the case of plating on the entire surface, the circuit is formed by etching. The circuit forming method is based on a generally used method.

上記のような製法によると、酸・アルカリに弱い窒化ア
ルミセラミックの基本特性を損なうことなく、配線抵抗
の小さい金属導体により従来世の中になかったような微
細パターンを形成することが可能である。しかも、金属
層と窒化アルミセラミック基板との密着力も均一で安定
して強固な窒化アルミセラミック配線基板を得ることが
できる。
According to the manufacturing method as described above, it is possible to form a fine pattern which has never existed in the past with a metal conductor having a low wiring resistance without deteriorating the basic characteristics of the aluminum nitride ceramic which is weak against acid and alkali. Moreover, the adhesion between the metal layer and the aluminum nitride ceramic substrate is uniform and stable, and a strong aluminum nitride ceramic wiring substrate can be obtained.

(実施例1) 厚み0.635mmの窒化アルミセラミック焼結基板を準備し
た。この基板を250〜360℃に加熱したリン酸中に3〜10
分間浸漬し、基板表面を粗化した。粗化後、充分に水洗
し乾燥をおこなった。乾燥後、窒素雰囲気にした電気炉
に入れ、1200〜1400℃で加熱処理を行った。こののち、
表面活性化処理を行い、化学銅めっき、または、化学ニ
ッケルめっきにより、この試料に1μmの金属層を形成
した。つぎに、電解めっきにより銅、または、ニッケル
の金属層を形成し、金属層の厚みを35μmに調整した。
なお、前記基板の粗化後の表面粗さRmaxは3〜5μm
で、基板の曲げ強度も粗化前のものと同一値を示した。
また、金属層35μmに調整した基板を用い、エッチング
により回路パターンを形成し、90°ピール強度、およ
び、L字型引っ張り強度を測定した。
Example 1 An aluminum nitride ceramic sintered substrate having a thickness of 0.635 mm was prepared. This substrate is 3-10 in phosphoric acid heated to 250-360 ℃.
The substrate surface was roughened by dipping for a minute. After roughening, it was thoroughly washed with water and dried. After drying, it was placed in an electric furnace in a nitrogen atmosphere and heat-treated at 1200 to 1400 ° C. After this,
A surface activation treatment was performed, and a metal layer of 1 μm was formed on this sample by chemical copper plating or chemical nickel plating. Next, a metal layer of copper or nickel was formed by electrolytic plating, and the thickness of the metal layer was adjusted to 35 μm.
The surface roughness Rmax of the substrate after roughening is 3 to 5 μm.
The bending strength of the substrate also showed the same value as that before the roughening.
A circuit pattern was formed by etching using a substrate adjusted to have a metal layer of 35 μm, and 90 ° peel strength and L-shaped tensile strength were measured.

(実施例2) 厚み2.0mmの窒化アルミセラミック基板を準備した。こ
の基板を150〜250℃に加熱したアルカリ溶融混合物(Na
OH:KOH=1:1)中に5〜10分間浸漬し、基板表面を粗化
した。粗化後、充分に水洗中和洗浄し乾燥をおこなっ
た。乾燥後、酸化雰囲気にした電気炉に入れ、1300〜14
00℃で加熱処理を行った。こののち、実施例1と同様に
して、窒化アルミセラミック配線基板を得て、90°ピー
ル強度、および、L字型引っ張り強度を測定した。
Example 2 An aluminum nitride ceramic substrate having a thickness of 2.0 mm was prepared. This substrate was heated to 150-250 ° C and the molten alkali mixture (Na
It was immersed in OH: KOH = 1: 1) for 5 to 10 minutes to roughen the substrate surface. After roughening, it was thoroughly washed with water, neutralized and washed, and dried. After drying, put it in an electric furnace in an oxidizing atmosphere and
Heat treatment was performed at 00 ° C. Then, an aluminum nitride ceramic wiring board was obtained in the same manner as in Example 1, and the 90 ° peel strength and the L-shaped tensile strength were measured.

なお、粗化後の表面粗さRmaxは2〜6μmであった。The surface roughness Rmax after roughening was 2 to 6 μm.

(実施例3) 厚み1.5mmの窒化アルミセラミック基板を準備した。こ
の基板を150〜180℃に加熱した酸混合液(H2SO4:HNO3
=1:1)中に5〜10分間、または、濃H2SO4液中に10〜15
分間浸漬し、基板表面を粗化した。粗化後、充分に水洗
し乾燥をおこなった。乾燥後、酸化雰囲気にした電気炉
に入れ、1200〜1400℃で加熱処理を行った。こののち、
実施例1と同様にして、窒化アルミセラミック配線基板
を得て、90°ピール強度、および、L字型引っ張り強度
を測定した。
Example 3 An aluminum nitride ceramic substrate having a thickness of 1.5 mm was prepared. An acid mixture (H 2 SO 4 : HNO 3
= 1: 1) for 5-10 minutes or concentrated H 2 SO 4 solution for 10-15
The substrate surface was roughened by dipping for a minute. After roughening, it was thoroughly washed with water and dried. After drying, it was placed in an electric furnace in an oxidizing atmosphere and heat-treated at 1200 to 1400 ° C. After this,
In the same manner as in Example 1, an aluminum nitride ceramic wiring board was obtained, and 90 ° peel strength and L-shaped tensile strength were measured.

なお、粗化後の表面粗さRmaxは1〜3μmであった。The surface roughness Rmax after roughening was 1 to 3 μm.

(実施例4) 厚み1.0mmの窒化アルミセラミック基板を準備した。KO
H,NaOHあるいはLiOHの飽和溶液をこの基板表面に塗布し
150℃に保持した乾燥機中に30分間入れて乾燥した。乾
燥後、この基板を400℃の電気炉に10分間入れ、表面を
粗化した。粗化後、充分に水洗中和洗浄し乾燥をおこな
った。乾燥後、実施例1と同様にして、窒化アルミセラ
ミック配線基板を得て、90°ピール強度、および、L字
型引っ張り強度を測定した。
Example 4 An aluminum nitride ceramic substrate having a thickness of 1.0 mm was prepared. KO
Apply a saturated solution of H, NaOH or LiOH to the surface of this substrate.
It was placed in a dryer kept at 150 ° C. for 30 minutes to be dried. After drying, this substrate was placed in an electric furnace at 400 ° C. for 10 minutes to roughen the surface. After roughening, it was thoroughly washed with water, neutralized and washed, and dried. After drying, an aluminum nitride ceramic wiring board was obtained in the same manner as in Example 1, and the 90 ° peel strength and the L-shaped tensile strength were measured.

なお、粗化後の表面粗さRmaxは3〜7μmであった。The surface roughness Rmax after roughening was 3 to 7 μm.

(実施例5) 厚み1.5mmの窒化アルミセラミック基板を準備した。こ
の基板を150〜180℃に加熱した酸混合液(H3PO4:H2SO4
=10:5)中に5〜10分間、または、濃H2SO4液中に10〜1
5分間浸漬し、基板表面を粗化した。粗化後、充分に水
洗し乾燥をおこなった。乾燥後、実施例2と同様にし
て、窒化アルミセラミック配線基板を得て、90°ピール
強度、および、L字型引っ張り強度を測定した。
Example 5 An aluminum nitride ceramic substrate having a thickness of 1.5 mm was prepared. An acid mixture (H 3 PO 4 : H 2 SO 4
= 10: 5) for 5-10 minutes, or concentrated H 2 SO 4 solution for 10-1
It was immersed for 5 minutes to roughen the substrate surface. After roughening, it was thoroughly washed with water and dried. After drying, an aluminum nitride ceramic wiring board was obtained in the same manner as in Example 2, and 90 ° peel strength and L-shaped tensile strength were measured.

なお、粗化後の表面粗さRmaxは2〜6μmであった。The surface roughness Rmax after roughening was 2 to 6 μm.

なお、各実施例で得られた配線基板とも窒化アルミセラ
ミック本来の熱伝導率、熱膨張率、曲げ強度の低下はな
かった。しかも、微細パターンも線幅,線間隔30μmま
で作ることが可能であった。
It should be noted that the wiring boards obtained in each of the examples did not show a decrease in the original thermal conductivity, thermal expansion coefficient and bending strength of the aluminum nitride ceramic. Moreover, it was possible to make a fine pattern with a line width and line spacing of 30 μm.

上記実施例の90°ピール強度、および、L字型引っ張り
強度の結果を第1表に示す。
Table 1 shows the results of the 90 ° peel strength and the L-shaped tensile strength of the above examples.

第1表でみるとおり、実施例で得られた配線基板は、す
べて基板と金属層と密着強度が安定して強固であった。
As seen in Table 1, all the wiring boards obtained in the examples had stable and strong adhesion strength between the board and the metal layer.

(比較例1) 600℃で加熱処理した以外は、実施例1と同様の方法に
より金属層の形成を行った。その結果、基板の曲げ強度
については粗化前より10%の低下を示した。
(Comparative Example 1) A metal layer was formed in the same manner as in Example 1 except that the heat treatment was performed at 600 ° C. As a result, the bending strength of the substrate was 10% lower than that before roughening.

また、金属層の厚みを35μmに調整した基板を用い、エ
ッチングにより回路パターンを形成し、90度ピール強度
およびL字型引っ張り強度を測定したところ、第2表に
示すとおりL字型引っ張り強度では基板破壊現象が観察
されるとともに、強度においても実施例1よりも低い値
となった。このことから、1200℃未満の熱処理では十分
ではないことが分かる。
In addition, when a circuit pattern was formed by etching using a substrate in which the thickness of the metal layer was adjusted to 35 μm and 90-degree peel strength and L-shaped tensile strength were measured, as shown in Table 2, the L-shaped tensile strength was The substrate destruction phenomenon was observed, and the strength was also lower than that in Example 1. From this, it is understood that the heat treatment at less than 1200 ° C is not sufficient.

この発明にかかるセラミック配線基板の製法は、上記実
施例に限定されない。
The manufacturing method of the ceramic wiring board according to the present invention is not limited to the above embodiment.

〔発明の効果〕〔The invention's effect〕

この発明にかかるセラミック配線基板の製法は、以上の
ように、窒化アルミセラミック基板表面をエッチング剤
で表面粗化したのち、1200〜1500℃の範囲の温度で加熱
処理してマイクロクラックを無くしてから表面活性化処
理を施してメタライジングするので、窒化アルミセラミ
ック基板の強度が損なわれず、しかも、金属導体によ
り、微細配線パターンまで形成でき、かつ、セラミック
と前記導体との密着が安定して強固である窒化アルミセ
ラミック配線基板を作ることができる。
The method for manufacturing a ceramic wiring board according to the present invention is, as described above, after surface roughening the aluminum nitride ceramic substrate surface with an etching agent, and then removing the microcracks by heat treatment at a temperature in the range of 1200 to 1500 ° C. Since the surface activation treatment is applied to metallize, the strength of the aluminum nitride ceramic substrate is not impaired, and even a fine wiring pattern can be formed by the metal conductor, and the adhesion between the ceramic and the conductor is stable and strong. An aluminum nitride ceramic wiring board can be made.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明にかかるセラミック配線基板の製造プ
ロセスを示すブロック図である。
FIG. 1 is a block diagram showing a manufacturing process of a ceramic wiring board according to the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/18 A 7511−4E (72)発明者 梶田 進 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 脇 清隆 大阪府門真市大字門真1048番地 松下電工 株式会社内 (56)参考文献 特開 昭58−104079(JP,A) 特公 昭56−8515(JP,B2)Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H05K 3/18 A 7511-4E (72) Inventor Susumu Kajita 1048 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Ltd. (72) Inventor Kiyotaka Waki 1048, Kadoma, Kadoma-shi, Osaka, Matsushita Electric Works, Ltd. (56) Reference JP-A-58-104079 (JP, A) JP-B-56-8515 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】焼結した窒化アルミセラミック基板の表面
にメタライジング法により金属層を形成してセラミック
配線基板を得るにあたり、前記セラミック基板表面をエ
ッチング剤で粗化し、この粗化基板を1200〜1500℃の範
囲の温度で加熱処理し、次いで表面活性化処理を施した
のち前記金属層を形成することを特徴とする窒化アルミ
セラミック配線基板の製法。
1. When a metal layer is formed on the surface of a sintered aluminum nitride ceramic substrate by a metallizing method to obtain a ceramic wiring substrate, the surface of the ceramic substrate is roughened with an etching agent, and the roughened substrate A method for producing an aluminum nitride ceramic wiring board, comprising: performing a heat treatment at a temperature in the range of 1500 ° C., then performing a surface activation treatment, and then forming the metal layer.
【請求項2】エッチング剤が、KOH、NaOHまたはLiOHか
らなるアルカリの、溶液と溶融物とこれらの混合物とよ
りなる群から選ばれたうちの1つ;または、H3PO4、H2SO
4、HNO3、HClまたはHFからなる酸の、溶液と溶融物とこれ
らの混合物とよりなる群から選ばれたうちの1つである
特許請求の範囲第1項記載の窒化アルミセラミック配線
基板の製法。
2. The etchant is one selected from the group consisting of solutions, melts and mixtures thereof of alkalis consisting of KOH, NaOH or LiOH; or H 3 PO 4 , H 2 SO.
4. The aluminum nitride ceramic wiring board according to claim 1, which is one selected from the group consisting of a solution, a melt, and a mixture thereof of an acid consisting of 4 , HNO 3 , HCl, or HF. Manufacturing method.
【請求項3】メタライジングの方法が、化学めっきのみ
による方法、または、化学めっきした後、さらに、電解
めっきする方法である特許請求の範囲第1項または第2
項記載の窒化アルミセラミック配線基板の製法。
3. The method according to claim 1 or 2, wherein the metallizing method is a method using only chemical plating, or a method in which chemical plating is followed by electrolytic plating.
A method of manufacturing an aluminum nitride ceramic wiring board according to the item.
JP61191887A 1986-08-15 1986-08-15 Manufacturing method of aluminum nitride ceramic wiring board Expired - Fee Related JPH0726205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191887A JPH0726205B2 (en) 1986-08-15 1986-08-15 Manufacturing method of aluminum nitride ceramic wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191887A JPH0726205B2 (en) 1986-08-15 1986-08-15 Manufacturing method of aluminum nitride ceramic wiring board

Publications (2)

Publication Number Publication Date
JPS6347382A JPS6347382A (en) 1988-02-29
JPH0726205B2 true JPH0726205B2 (en) 1995-03-22

Family

ID=16282107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191887A Expired - Fee Related JPH0726205B2 (en) 1986-08-15 1986-08-15 Manufacturing method of aluminum nitride ceramic wiring board

Country Status (1)

Country Link
JP (1) JPH0726205B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141662A (en) * 1989-10-26 1991-06-17 Matsushita Electric Works Ltd Manufacture of ceramic wiring circuit board
JPH0832204A (en) * 1994-07-19 1996-02-02 Dowa Mining Co Ltd Production of ceramic wiring board
JP2001259548A (en) * 2000-03-23 2001-09-25 Honda Motor Co Ltd Method for treating surface of glass substrate
JP2003017837A (en) * 2001-06-28 2003-01-17 Tokuyama Corp Method of manufacturing printed wiring board
JP5439132B2 (en) * 2009-11-17 2014-03-12 昭和電工株式会社 Cleaning method for sintered aluminum nitride
CN111479408A (en) * 2020-04-07 2020-07-31 深圳市晶泓达光电工程技术有限公司 Transparent conductive circuit board manufacturing method, circuit board and transparent display device
US20230166972A1 (en) * 2020-04-14 2023-06-01 Kwansei Gakuin Educational Foundation Manufacturing method of modified aluminum nitride raw material, modified aluminum nitride raw material, manufacturing method of aluminum nitride crystals, and downfall defect prevention method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568515A (en) * 1979-07-03 1981-01-28 Toshiba Corp Level gauge
DE3150399A1 (en) * 1981-12-15 1983-07-21 Schering Ag, 1000 Berlin Und 4619 Bergkamen METHOD FOR ADHESIVE METALIZATION OF CERAMIC MATERIALS

Also Published As

Publication number Publication date
JPS6347382A (en) 1988-02-29

Similar Documents

Publication Publication Date Title
KR102387227B1 (en) Method for producing metal/ceramic circuit board
JPS6227393A (en) Formation of copper film on ceramic substrate
JPH0726205B2 (en) Manufacturing method of aluminum nitride ceramic wiring board
JPH09184076A (en) Manufacture of aluminum nitride metallized substrate
JPH0337319B2 (en)
EP0219122A2 (en) Metallized ceramic substrate and method of manufacturing the same
JPS61151081A (en) Manufacture of ceramic wire distribution substrate
JPH0637341B2 (en) Manufacturing method of ceramic wiring board
JPH0426560B2 (en)
JP2853551B2 (en) Manufacturing method of ceramic wiring board
JPH0891969A (en) Nickel metalizing method for ceramic base material
JPH073910B2 (en) Manufacturing method of ceramic wiring substrate
JPS61159792A (en) Making ceramic wiring circuit board
JPS61151080A (en) Manufacture of ceramic wire distribution substrate
JP4646373B2 (en) Wiring board and manufacturing method thereof
EP0254201A1 (en) Method of metallizing ceramic substrates
JP2558640B2 (en) Conductive circuit manufacturing method
JPH0533556B2 (en)
JPS6182493A (en) Manufacture of ceramic circuit board
JPS6163583A (en) Formation of metal film on ceramics
JPH01223796A (en) Hybrid ic having copper-plated conductor and manufacture thereof
JPS61121389A (en) Ceramic wiring board
JPH09148734A (en) Manufacture of ceramic circuit board
JPS63117485A (en) Ceramic printed wiring board
JPH01301574A (en) Production of substrate for forming plated circuit and production of circuit board using said substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees