JPH0426560B2 - - Google Patents

Info

Publication number
JPH0426560B2
JPH0426560B2 JP60102632A JP10263285A JPH0426560B2 JP H0426560 B2 JPH0426560 B2 JP H0426560B2 JP 60102632 A JP60102632 A JP 60102632A JP 10263285 A JP10263285 A JP 10263285A JP H0426560 B2 JPH0426560 B2 JP H0426560B2
Authority
JP
Japan
Prior art keywords
adhesive layer
ceramic
fine particles
ceramic substrate
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60102632A
Other languages
Japanese (ja)
Other versions
JPS61263189A (en
Inventor
Akira Enomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP10263285A priority Critical patent/JPS61263189A/en
Priority to US06/860,886 priority patent/US4752499A/en
Publication of JPS61263189A publication Critical patent/JPS61263189A/en
Priority to US07/357,693 priority patent/US5021472A/en
Publication of JPH0426560B2 publication Critical patent/JPH0426560B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミツク配線基板の製造方法に関す
るものであり、特に本発明は基板との密着の信頼
性および耐熱性に優れた無電解メツキを有するセ
ラミツク配線基板の製造方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board, and in particular, the present invention relates to a method of manufacturing a ceramic wiring board. The present invention relates to a method of manufacturing a ceramic wiring board.

〔従来の技術〕[Conventional technology]

近年、電子工業の進歩に伴い電子機器の小型化
あるいは高速化が進められており、その一環とし
てハイブリツトICやLSIを実装する配線基板にお
いても高密度化および高い信頼性が要求されてい
る。
In recent years, with advances in the electronics industry, electronic devices have become smaller and faster, and as part of this, wiring boards on which hybrid ICs and LSIs are mounted are also required to have higher density and higher reliability.

前記配線基板に用いられる基板材料としては信
頼性、寸法安定性、熱放散性などに優れたセラミ
ツク材料が広く使用されており、前記セラミツク
材料よりなるハイブリツトIC配線基板に導体回
路を形成する方法としては、例えば銀・パラジウ
ム系ペーストなどの厚膜導体ペーストをスクリー
ン印刷して焼成する方法が一般的に適用されてい
る。
Ceramic materials, which are excellent in reliability, dimensional stability, heat dissipation, etc., are widely used as substrate materials for the wiring boards, and as a method for forming conductor circuits on hybrid IC wiring boards made of the ceramic materials. For example, a method of screen printing and firing a thick film conductor paste such as a silver/palladium paste is generally applied.

しかしながら、前記厚膜ペーストにより形成さ
れる導体は最も重要なシート抵抗が高く、高周波
の伝達損失が大きく、フアインライン性も実用的
には0.20mm幅が限界であり、しかもハンダ付け性
やボンデング性にも劣る欠点を有しており、さら
に銀マイグレーシヨンに対する注意も必要であつ
た。
However, the conductor formed by the thick film paste has a high sheet resistance, which is the most important, high frequency transmission loss, a practical limit of fine line property of 0.20 mm width, and poor solderability and bonding properties. However, it had the disadvantage of being inferior to that of silver, and furthermore, it was necessary to pay attention to silver migration.

このような欠点を解決することのできる導体の
形成方法として、最近無電解メツキによりセラミ
ツク基板に導体を形成する方法が提案されている
が、無電解メツキにより形成される導体は基板材
料との接着性に劣るため、この接着性を向上させ
るための研究が種々行なわれている。
As a method for forming conductors that can solve these drawbacks, a method of forming conductors on ceramic substrates by electroless plating has recently been proposed, but conductors formed by electroless plating do not adhere well to the substrate material. Various studies have been conducted to improve this adhesive property.

例えば、1985年4月11日付で頒布されだ第11回
ISHM JAPAN技術講演会の講演予稿集第9〜
17頁の記載により、あらかじめセラミツク基板の
表面をケミカルエツチングすることにより基板材
料の表面を粗化してアンカー効果を発揮させて無
電解メツキする方法が知られている。また、特開
昭54−25469号公報に「印刷配線用基板の製造方
法」に係る発明が開示されている。
For example, the 11th edition distributed on April 11, 1985.
ISHM JAPAN Technical Lecture Proceedings Volume 9~
As described on page 17, a method is known in which electroless plating is performed by chemically etching the surface of a ceramic substrate in advance to roughen the surface of the substrate material and exert an anchor effect. Furthermore, Japanese Patent Application Laid-Open No. 54-25469 discloses an invention related to a "method for manufacturing a printed wiring board."

しかしながら、前記講演予稿集に記載の方法は
セラミツク基板の表面全体を均一にエツチングし
て粗化することはかなり困難であり、無電解メツ
キからなる導体の接着強度がバラツキ易く、信頼
性に乏しいという欠点があつた。また前記公報記
載の方法によれば、セラミツク板への適用も可能
であることが記載されているが、この発明は接着
層として結晶性ポリブタジエン樹脂を含有する接
着剤を使用する方法であり、セラミツク配線基板
として重要な特性である耐熱性が充分でない欠点
を有している。
However, with the method described in the aforementioned lecture proceedings, it is quite difficult to uniformly etch and roughen the entire surface of a ceramic substrate, and the adhesive strength of conductors made of electroless plating tends to vary, making it unreliable. There were flaws. Furthermore, according to the method described in the above publication, it is stated that it can also be applied to ceramic plates, but this invention is a method that uses an adhesive containing crystalline polybutadiene resin as an adhesive layer, and is applicable to ceramic plates. It has the disadvantage that it does not have sufficient heat resistance, which is an important property for a wiring board.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の如く、従来知られている方法よればセラ
ミツク基板と無電解メツキとの密着の信頼性およ
び耐熱性に優れた無電解メツキによる導体を形成
する方法および薄形の放熱特性に優れたセラミツ
ク配線基板を製造する方法は未だ知られていな
い。
As mentioned above, conventionally known methods include forming a conductor by electroless plating, which has excellent heat resistance and reliability of adhesion between a ceramic substrate and electroless plating, and thin ceramic wiring with excellent heat dissipation properties. The method of manufacturing the substrate is not yet known.

本発明は前述の如きセラミツク配線基板の有す
る欠点を解消し、セラミツク基板と無電解メツキ
との密着の信頼性および耐熱性に極めて優れた無
電解メツキによる導体を形成すると同時に薄形の
放熱特性に優れたセラミツク配線基板を製造する
方法を提供することを目的とするものであり、特
許請求の範囲記載の方法を提供することによつて
前記目的を達成することができる。
The present invention eliminates the above-mentioned drawbacks of ceramic wiring boards, forms a conductor using electroless plating that has extremely excellent heat resistance and reliability of adhesion between the ceramic board and electroless plating, and at the same time provides thin heat dissipation properties. The object of the present invention is to provide a method for manufacturing an excellent ceramic wiring board, and the above object can be achieved by providing the method described in the claims.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、セラミツク基板の表面に無機
質微粒子を含む合成樹脂を塗布して接着層を形成
し、前記接着層の表面を除去して前記無機質微粒
子の一部を前記接着層の表面に露出させた後、前
記露出させた無機質微粒子を溶解除去して接着層
の表面を粗化し、次いで無電解メツキを施して導
体層を形成する際、前記無機質微粒子として平均
粒径が5μm以下の主としてSiO2を含有するもの
を用い、そして前記接着層の厚さを10μm以下に
することを特徴とするセラミツク配線基板の製造
方法に関するものである。
According to the present invention, a synthetic resin containing inorganic fine particles is applied to the surface of a ceramic substrate to form an adhesive layer, and the surface of the adhesive layer is removed to expose a portion of the inorganic fine particles on the surface of the adhesive layer. After that, the exposed inorganic fine particles are dissolved and removed to roughen the surface of the adhesive layer, and then electroless plating is performed to form a conductive layer. The present invention relates to a method for producing a ceramic wiring board, characterized in that the thickness of the adhesive layer is 10 μm or less.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明は、セラミツク基板の表面に無機質微粒
子を含む合成樹脂を塗布して接着層を形成し、前
記接着層の表面を除去して前記無機質微粒子の一
部を前記接着層の表面に露出させた後、前記露出
させた無機質微粒子を溶解除去して接着層の表面
を粗化することが必要である。
In the present invention, a synthetic resin containing inorganic fine particles is applied to the surface of a ceramic substrate to form an adhesive layer, and the surface of the adhesive layer is removed to expose a part of the inorganic fine particles on the surface of the adhesive layer. Thereafter, it is necessary to dissolve and remove the exposed inorganic fine particles to roughen the surface of the adhesive layer.

前記無機質微粒子を含む合成樹脂を接着層に使
用する理由は、無機質微粒子は耐熱性と前記絶縁
性に優れており、かつこれを溶解除去することに
より明確なアンカーが形成され接着層の表面を均
一に粗化することができるので、セラミツク基板
と無電解メツキとの高い接着強度と接着の信頼性
が得られるからである。また、前記無機質微粒子
の一部を前記接着層の表面に露出させる理由は、
接着層の表面部分に存在する無機質微粒子の溶解
を効果的かつ接着層の全面で均一に行なわせるこ
とにある。
The reason why a synthetic resin containing inorganic fine particles is used for the adhesive layer is that inorganic fine particles have excellent heat resistance and insulation properties, and when they are dissolved and removed, clear anchors are formed and the surface of the adhesive layer is uniform. This is because high bonding strength and bonding reliability between the ceramic substrate and the electroless plating can be obtained since the ceramic substrate can be roughened to a high degree. Further, the reason why a part of the inorganic fine particles is exposed on the surface of the adhesive layer is as follows.
The objective is to effectively and uniformly dissolve the inorganic fine particles present on the surface of the adhesive layer over the entire surface of the adhesive layer.

ところで、プリント配線板の製造において無電
解メツキの密着力を向上せしめる方法として、特
開昭50−42377号公報に「積層板の製造方法」に
係る発明が開示されているが、前記発明はガラス
エポキシワニス布などの有機積層板よりなる基板
材料に無電解メツキする方法であり、また得られ
たメツキ導体と積層板の接着強度もピール強度で
0.6〜1.0Kg/cmと低いのに対して、本発明によれ
ば基板材料として耐熱性に優れたセラミツク材料
を使用する方法であり、得られた導体の接着強度
も実用に耐えられる1.0Kg/cm以上の極めて高い
値が得られる。前述の如く、前記発明と本発明と
は使用する基板材料の種類および得られる接着強
度の値において全く異なる。
By the way, as a method for improving the adhesion of electroless plating in the manufacture of printed wiring boards, an invention related to a ``method for manufacturing a laminate'' is disclosed in Japanese Patent Application Laid-open No. 50-42377. This is a method of electroless plating on substrate materials made of organic laminates such as epoxy varnish cloth, and the adhesive strength between the resulting plating conductor and laminate is determined by peel strength.
In contrast, according to the present invention, a ceramic material with excellent heat resistance is used as the substrate material, and the adhesive strength of the obtained conductor is 1.0 Kg/cm, which is sufficient for practical use. Extremely high values of cm or more can be obtained. As mentioned above, the above invention and the present invention are completely different in the type of substrate material used and the value of the adhesive strength obtained.

本発明を実施するのに用いるセラミツク基板
は、108Ω−cm以上の電気抵抗(体積抵抗率)を
有することが好ましい。その理由は、前記電気抵
抗が108Ω−cmよりも低いと無電解メツキよりな
る導体とセラミツク基板との電気絶縁性を確保す
るために電気絶縁性を有する前記接着層の厚さを
厚くする必要があり、セラミツク配線基板として
重要な特性である熱放散性が大巾に低下するから
である。また、セラミツク基板の材質としては、
アルミナ、ベリリア、ムライト、低温焼成セラミ
ツク、誘電体セラミツク、窒化アルミニウム、炭
化ケイ素などを使用することができる。
The ceramic substrate used to carry out the present invention preferably has an electrical resistance (volume resistivity) of 10 8 Ω-cm or more. The reason for this is that when the electrical resistance is lower than 10 8 Ω-cm, the thickness of the adhesive layer having electrical insulation properties is increased to ensure electrical insulation between the conductor made of electroless plating and the ceramic substrate. This is because the heat dissipation property, which is an important characteristic of a ceramic wiring board, will be greatly reduced. In addition, the material of the ceramic substrate is
Alumina, beryllia, mullite, low temperature fired ceramics, dielectric ceramics, aluminum nitride, silicon carbide, etc. can be used.

前記合成樹脂としては、熱的特性、電気絶縁性
および接着性などに優れた材料であれば使用する
ことができ、特に耐熱性の熱硬化性樹脂が好まし
く、なかでもエポキシ樹脂、耐熱エポキシ樹脂、
エポキシ変性ポリイミド樹脂、ポリイミド樹脂、
トリアジン樹脂のなかから選ばれる何れか少なく
とも1種であることが好適である。
As the synthetic resin, any material can be used as long as it has excellent thermal properties, electrical insulation properties, adhesive properties, etc. Heat-resistant thermosetting resins are particularly preferred, and among them, epoxy resins, heat-resistant epoxy resins,
Epoxy modified polyimide resin, polyimide resin,
Preferably, at least one selected from triazine resins is used.

本発明に使用する無機質微粒子は平均粒径が
5μm以下の大きさとすることが必要である。そ
の理由は、平均粒径が5μmよりも大きいと接着
層が厚くなりセラミツク配線基板の熱放散性が悪
くなり、溶解除去して形成されるアンカーの密度
が低くなるため接着強度とその信頼性が低下し、
さらに接着層の表面の凹凸が激しくなるので導体
のフアインパターンが得にくくなるからである。
前記無機質微粒子の材質としては、例えば塩酸、
硫酸、硝酸、フツ化水素酸あるいはそれらの混合
物などの強酸溶液あるいは水酸化ナトリウムなど
の強アルカリ溶液に可溶であり、かつ耐熱性、電
気絶縁性、前記強酸および強アルカリ以外の薬品
に対する安定性を有しているものであれば好適に
使用でき、例えば、シリカ、酸化チタン、ジルコ
ニア、酸化亜鉛、ガラスなどを挙げることがで
き、特に例えば、結晶性シリカ、溶融シリカ、ム
ライト、シリマナイト、シリカ系ガラスなどの
SiO2を主として含有する無機質微粒子はフツ化
水素酸水溶液に容易に溶解させることができ、特
性的にも優れているので有利である。
The inorganic fine particles used in the present invention have an average particle size of
It is necessary that the size is 5 μm or less. The reason for this is that if the average particle size is larger than 5 μm, the adhesive layer will become thicker and the heat dissipation of the ceramic wiring board will deteriorate, and the density of the anchor formed by melting and removal will decrease, resulting in lower adhesive strength and reliability. decreases,
Furthermore, the unevenness of the surface of the adhesive layer becomes severe, making it difficult to obtain a fine pattern of the conductor.
Examples of the material of the inorganic fine particles include hydrochloric acid,
Soluble in strong acid solutions such as sulfuric acid, nitric acid, hydrofluoric acid, or mixtures thereof, or strong alkaline solutions such as sodium hydroxide, and has heat resistance, electrical insulation properties, and stability against chemicals other than the above-mentioned strong acids and strong alkalis. For example, silica, titanium oxide, zirconia, zinc oxide, glass, etc. can be suitably used, and in particular, for example, crystalline silica, fused silica, mullite, sillimanite, silica-based glass etc.
Inorganic fine particles mainly containing SiO 2 are advantageous because they can be easily dissolved in an aqueous hydrofluoric acid solution and have excellent properties.

前記合成樹脂に対する前記無機質微粒子の配合
量は、合成樹脂固形分100重量部に対して10〜300
重量部の範囲が好ましく、特に50〜250重量部の
範囲内においてピール強度で1.0Kg/cm以上の導
体接着力を得ることができるので好適である。ま
た、前記接着層の熱放散性を向上させることを目
的として、前記強酸あるいは強アルカリ溶液に可
溶な無機質微粒子の他に熱伝導性にすぐれ電気絶
縁性のフイラーとして、例えば、アルミナ、ベリ
リア、シリコンナイトライド、ボロンナイトライ
ドなどの無機質フイラーを前記合成樹脂に添加す
ることができる。なお、前記合成樹脂と無機質微
粒子との密着性を向上させるために、無機質微粒
子の表面をカツプリング剤処理を行なうことがで
きる。
The blending amount of the inorganic fine particles in the synthetic resin is 10 to 300 parts by weight per 100 parts by weight of the synthetic resin solid content.
A range of parts by weight is preferred, and a range of 50 to 250 parts by weight is particularly preferred since it is possible to obtain conductor adhesion strength of 1.0 Kg/cm or more in terms of peel strength. In order to improve the heat dissipation properties of the adhesive layer, in addition to the inorganic fine particles soluble in the strong acid or strong alkaline solution, fillers having excellent thermal conductivity and electrical insulation properties such as alumina, beryllia, Inorganic fillers such as silicon nitride and boron nitride can be added to the synthetic resin. Incidentally, in order to improve the adhesion between the synthetic resin and the inorganic fine particles, the surface of the inorganic fine particles can be treated with a coupling agent.

前記無機質微粒子を含む合成樹脂をセラミツク
基板の表面に塗布する方法としては、例えばロー
ルコート法、デイツプコート法、スプレーコート
法、スピンナーコート法、スクリーン印刷法など
の手段が適用でき、塗布し乾燥して接着層が形成
される。前記接着層の厚さ(厳密には表面部分を
除去した後の厚さ)は10μm以下とする。この理
由は、前記接着層の厚さが10μmよりも大きい
と、セラミツク配線基板として特に重要な特性で
ある熱放散性が大巾に低下し、かつ熱ストレスが
著しい場合には接着層が剥離しやすくなるからで
ある。したがつて、セラミツク基板と導体の接着
強度が確保される範囲で接着層の厚さはできるだ
け薄い方が好ましく、5μm以下が特に好適であ
る。なお、前記接着層とセラミツク基板との密着
性を向上させるために、セラミツク基板の表面を
化学的あるいは物理的に粗化させるか、カツプリ
ング剤で処理することができる。
As a method for applying the synthetic resin containing inorganic fine particles to the surface of the ceramic substrate, for example, roll coating, dip coating, spray coating, spinner coating, screen printing, etc. can be used. An adhesive layer is formed. The thickness of the adhesive layer (strictly speaking, the thickness after removing the surface portion) is 10 μm or less. The reason for this is that if the thickness of the adhesive layer is greater than 10 μm, heat dissipation, which is a particularly important property for ceramic wiring boards, will be greatly reduced, and if the thermal stress is significant, the adhesive layer will peel off. This is because it becomes easier. Therefore, it is preferable that the thickness of the adhesive layer be as thin as possible within a range that ensures the adhesive strength between the ceramic substrate and the conductor, and a thickness of 5 μm or less is particularly preferable. In order to improve the adhesion between the adhesive layer and the ceramic substrate, the surface of the ceramic substrate can be chemically or physically roughened or treated with a coupling agent.

前記接着層の表面部分を除去する方法として
は、微粉研摩剤を用いてポリシングや液体ホーニ
ングする研摩手段、例えばクロム酸によるエツチ
ング手段などを採用することができ、そうするこ
とにより合成樹脂によつて被覆されている前記無
機質微粒子の一部を前記接着層の表面に露出させ
ることができる。次に、前記露出させた無機質微
粒子を溶解除去するには、前記強酸あるいは強ア
ルアリ溶液を用いてセラミツク基板をその溶液中
に浸漬するか、セラミツク基板に溶液をスプレー
することなどで実施でき、その結果、接着層の表
面を均一に粗化することができる。
As a method for removing the surface portion of the adhesive layer, polishing means such as polishing using a fine powder abrasive or liquid honing, for example, etching means using chromic acid, etc. can be adopted, and by doing so, the surface portion of the adhesive layer can be removed by A part of the coated inorganic fine particles can be exposed on the surface of the adhesive layer. Next, the exposed inorganic fine particles can be dissolved and removed by immersing the ceramic substrate in the strong acid or strong alkali solution, or by spraying the solution onto the ceramic substrate. As a result, the surface of the adhesive layer can be uniformly roughened.

本発明によれば、接着層の表面を粗化したセラ
ミツク基板に無電解メツキを施す。このようにし
て得られる無電解メツキで形成される導体はシー
ト抵抗が低く、高周波の伝達損失が少なく、かつ
フアインライン性などに優れている。前記無電解
メツキとしては、例えば無電解銅メツキ、無電解
ニツケルメツキ、無電解金メツキなどを挙げるこ
とができる。なお、無電解メツキを施した上に電
気メツキを行つたり、ハンダをコートしたりする
ことができる。
According to the present invention, electroless plating is applied to a ceramic substrate on which the surface of the adhesive layer has been roughened. The conductor formed by electroless plating thus obtained has low sheet resistance, low high frequency transmission loss, and excellent fine line properties. Examples of the electroless plating include electroless copper plating, electroless nickel plating, and electroless gold plating. Note that electroless plating can be followed by electroplating or coating with solder.

なお、本発明により得られた接着層の表面が粗
化されたセラミツク基板は従来知られたプリント
配線板について行なわれているサブトラクチブ法
あるいはアデイテイブ法により導体回路を形成す
ることができる。
Incidentally, a conductor circuit can be formed on the ceramic substrate obtained by the present invention, on which the surface of the adhesive layer is roughened, by a subtractive method or an additive method, which is conventionally used for printed wiring boards.

次に本発明を実施例によつて説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 下記(1)〜(5)の工程によつてセラミツク配線基板
を製作した。
Example 1 A ceramic wiring board was manufactured through the following steps (1) to (5).

(1) 96%アルミナセラミツク基板(外形寸法50.8
×50.8mm、厚さ0.635mm)を、シランカツプリ
ング剤(信越化学製、KBM−303)をメチ
ル・エチル・ケトンに溶解させた2%溶液中に
浸漬してから、乾かしてセラミツク基板の表面
をカツプリング処理した。
(1) 96% alumina ceramic substrate (external dimensions 50.8
× 50.8 mm, thickness 0.635 mm) was immersed in a 2% solution of silane coupling agent (Shin-Etsu Chemical, KBM-303) dissolved in methyl ethyl ketone, then dried to surface the ceramic substrate. was subjected to coupling processing.

(2) 耐熱エポキシ樹脂(三井石油化学製、TA−
1850)固形分100重量部に対して、シランカツ
プリング処理した平均粒径1.5μmの溶融シリカ
微粒子(滝森製、ヒユーズレツクス−X)を
150重量部の割合で混合し、ブチルカルビトー
ル溶剤を用いて粘度を200CPSに調整してから
三本ロールで混練した。得られたワニス状の合
成樹脂をロールコーターを使用してセラミツク
基板の片側表面に塗布した後、180℃で1時間
加熱硬化させて第1図Bに示すように厚さ5μ
mの接着層を形成した。
(2) Heat-resistant epoxy resin (Mitsui Petrochemical, TA-
1850) For 100 parts by weight of solid content, fused silica fine particles (manufactured by Takimori, Fuse Rex-X) with an average particle diameter of 1.5 μm that had been treated with silane coupling were added.
They were mixed at a ratio of 150 parts by weight, the viscosity was adjusted to 200 CPS using a butyl carbitol solvent, and then kneaded using a three-roll mill. The obtained varnish-like synthetic resin was applied to one side of the ceramic substrate using a roll coater, and then heated and cured at 180°C for 1 hour to form a 5μ thick layer as shown in Figure 1B.
An adhesive layer of m was formed.

(3) 接着層の表面を#1000のアルミナ微粉研摩材
を用いて回転ブラシ研摩機で軽く研摩して、第
1図Cに示すように溶融シリカ微粒子を接着層
の表面に露出させた。なお、研摩した後の接着
層の厚さは3〜4μmであつた。
(3) The surface of the adhesive layer was lightly polished with a rotary brush polisher using #1000 alumina fine powder abrasive to expose the fused silica particles on the surface of the adhesive layer as shown in FIG. 1C. The thickness of the adhesive layer after polishing was 3 to 4 μm.

(4) 研摩したセラミツク基板を濃度25%のフツ化
水素酸水溶液中に2分間浸漬して、第1図Dの
ように接着層の表面を粗化してから水洗した。
(4) The polished ceramic substrate was immersed in a 25% hydrofluoric acid aqueous solution for 2 minutes to roughen the surface of the adhesive layer as shown in FIG. 1D, and then washed with water.

(5) セラミツク基板の接着層が形成されていない
片面をマスクしてから、パラジウム触媒
(SHIPLEY社製、キヤタポジツト44)を付与
して接着層の表面を活性化させ、下記に組成を
示すアデイテイブ法用無電解銅メツキ液に3時
間浸漬して、第1図Eのようにメツキ厚さ7μ
mの無電解銅メツキを施した。
(5) After masking one side of the ceramic substrate on which the adhesive layer is not formed, a palladium catalyst (manufactured by SHIPLEY, Cataposi 44) is applied to activate the surface of the adhesive layer, and the additive method has the composition shown below. Immerse it in electroless copper plating solution for 3 hours to make the plating thickness 7μ as shown in Figure 1E.
Electroless copper plating was applied.

硫酸銅(CuSO4・5H2O) 0.06モル/ ホルマリン(37%) 0.3モル/ 苛性ソーダ(NaOH) 0.35モル/ EDTA 0.12モル/ 添加剤 少々 メツキ温度:70〜72℃ PH:12.4 以上のようにして製造されたセラミツク配線基
板は、硫酸銅メツキ浴中で電気メツキを施して銅
メツキの厚さを35μmにしてから、JIS−C6481に
従つてピール強度を測定したところ1.4〜1.8Kg/
cmと接着強度が高くて安定しており、さらに150
℃で500時間の高温放置試験後も接着強度の大巾
な低下は認められず耐熱性に優れていた。また、
パワートランジスタ(2SC2233)を実装して熱放
散性を調べたところ1.12℃/Wであり、極めて熱
放散性に優れていることが認められた。
Copper sulfate (CuSO 4 5H 2 O) 0.06 mol / Formalin (37%) 0.3 mol / Caustic soda (NaOH) 0.35 mol / EDTA 0.12 mol / Additives a little Plating temperature: 70-72℃ PH: 12.4 As above The manufactured ceramic wiring board was electroplated in a copper sulfate plating bath to make the copper plating thickness 35 μm, and the peel strength was measured according to JIS-C6481, and it was 1.4 to 1.8 kg/
cm and adhesive strength is high and stable, and even 150 cm
Even after a 500-hour high-temperature storage test at ℃, no significant decrease in adhesive strength was observed, indicating excellent heat resistance. Also,
When a power transistor (2SC2233) was mounted and the heat dissipation property was examined, it was found to be 1.12°C/W, which was found to be extremely excellent in heat dissipation property.

実施例 2 実施例1と同様ではあるが、接着層の厚さを約
50μmに変化させてセラミツク配線基板を作成し
た。得られた基板の熱放散性を実施例1と同様に
して調べたところ2.37℃/Wであり、実施例1に
比較して熱放散性に若干劣つていた。
Example 2 Same as Example 1, but the thickness of the adhesive layer was reduced to approx.
A ceramic wiring board was created by changing the thickness to 50 μm. The heat dissipation property of the obtained substrate was examined in the same manner as in Example 1, and was found to be 2.37° C./W, which was slightly inferior to that of Example 1.

実施例 3 セラミツク基板として、所定の箇所に0.5mmφ
の孔を配置した96%アルミナ・セラミツク基板
(外形寸法50.8×50.8mm、厚さ0.635mm)を用いて
実施例1と同様の工程で第2図に示すような両面
スルーホール・セラミツク配線基板を作成した。
Example 3 As a ceramic substrate, 0.5mmφ was placed at the specified location.
A double-sided through-hole ceramic wiring board as shown in Figure 2 was fabricated using the same process as in Example 1 using a 96% alumina ceramic substrate (external dimensions 50.8 x 50.8 mm, thickness 0.635 mm) with holes arranged in it. Created.

このようにして得られたセラミツク配線基板は
実施例1で得られたセラミツク配線基板とほぼ同
様に、セラミツク基板と無電解銅メツキとの密着
の信頼性および耐熱性に優れていた。さらにスル
ーホールの接続信頼性についても熱衝撃テスト
(MIL−STD−202E 107D、Cond.B)で200サイ
クル後において故障の発生はなく、高い信頼性を
示した。
The ceramic wiring board thus obtained was almost the same as the ceramic wiring board obtained in Example 1, and had excellent adhesion reliability and heat resistance between the ceramic board and electroless copper plating. Furthermore, with regard to the connection reliability of the through-holes, no failures occurred after 200 cycles in a thermal shock test (MIL-STD-202E 107D, Cond.B), demonstrating high reliability.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明のセラミツク配線基板
の製造方法によれば、セラミツク基板と無電解メ
ツキとの密着の信頼性および耐熱性に極めて優れ
た無電解メツキによる導体を形成することがで
き、かつセラミツク配線基板として重要な特性で
ある熱放散性にも優れている。さらに、本発明の
セラミツク配線基板は導体を無電解メツキで形成
するので導体のシート抵抗が低く、高周波伝達損
失が少なく、フアインライン性にも優れているな
どの利点があり、ハイブリツトICなどの用途に
おいて産業上極めて有用である。
As described above, according to the method of manufacturing a ceramic wiring board of the present invention, it is possible to form a conductor by electroless plating that has extremely excellent adhesion reliability and heat resistance between the ceramic substrate and electroless plating, and It also has excellent heat dissipation, which is an important property for ceramic wiring boards. Furthermore, since the conductor is formed by electroless plating, the ceramic wiring board of the present invention has advantages such as low sheet resistance of the conductor, low high frequency transmission loss, and excellent fine line properties, and is suitable for applications such as hybrid IC. It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aはセラミツク基板の縦断面図、同図B
は接着層が形成されたセラミツク基板の縦断面
図、同図Cは同図Bの接着層の表面無機質微粒子
が露出されている状態を示すセラミツク基板の縦
断面図、同図Dは接着層の表面が粗化されている
状態を示すセラミツク基板の縦断面図、同図Eは
無電解メツキが施されたセラミツク配線基板の縦
断面図、第2図は両面スルーホール・セラミツク
配線基板の縦断面図である。 1……セラミツク基板、2……接着層、3……
無電解メツキ、4……スルーホール。
Figure 1A is a vertical cross-sectional view of the ceramic substrate, Figure 1B
Figure C is a vertical cross-sectional view of the ceramic substrate on which the adhesive layer is formed, Figure C is a vertical cross-sectional view of the ceramic substrate in which the surface inorganic particles of the adhesive layer shown in Figure B are exposed, and Figure D is a vertical cross-sectional view of the ceramic substrate on which the adhesive layer is exposed. A vertical cross-sectional view of a ceramic substrate showing a roughened surface; Figure E is a vertical cross-sectional view of a ceramic wiring board that has been electrolessly plated; Figure 2 is a vertical cross-sectional view of a double-sided through-hole ceramic wiring board. It is a diagram. 1... Ceramic substrate, 2... Adhesive layer, 3...
Electroless plating, 4...Through hole.

Claims (1)

【特許請求の範囲】 1 セラミツク基板の表面に無機質微粒子を含む
合成樹脂を塗布して接着層を形成し、前記接着層
の表面を除去して前記無機質微粒子の一部を前記
接着層の表面に露出させた後、前記露出させた無
機質微粒子を溶解除去して接着層の表面を粗化
し、次いで無電解メツキを施して導体層を形成す
る際、 前記無機質微粒子として平均粒径が5μm以下
の主としてSiO2を含有するものを用い、そして
前記接着層の厚さを10μm以下にすることを特徴
とするセラミツク配線基板の製造方法。 2 前記セラミツク基板の電気抵抗は108Ω−cm
以上である特許請求の範囲第1項記載の方法。 3 前記合成樹脂は耐熱性の熱硬化性樹脂である
特許請求の範囲第1項または第2項に記載の方
法。 4 前記合成樹脂はエポキシ樹脂、耐熱エポキシ
樹脂、エポキシ変性ポリイミド樹脂、ポリイミド
樹脂、トリアジン樹脂のなかから選ばれるいずれ
か少なくとも1種である特許請求の範囲第1〜3
項のいずれかに記載の方法。
[Scope of Claims] 1. A synthetic resin containing inorganic fine particles is applied to the surface of a ceramic substrate to form an adhesive layer, and the surface of the adhesive layer is removed and a portion of the inorganic fine particles are applied to the surface of the adhesive layer. After exposing, the exposed inorganic fine particles are dissolved and removed to roughen the surface of the adhesive layer, and then electroless plating is applied to form a conductive layer. A method for manufacturing a ceramic wiring board, characterized in that the adhesive layer contains SiO 2 and the thickness of the adhesive layer is 10 μm or less. 2 The electrical resistance of the ceramic substrate is 10 8 Ω-cm
The method according to claim 1, which is the above. 3. The method according to claim 1 or 2, wherein the synthetic resin is a heat-resistant thermosetting resin. 4. Claims 1 to 3, wherein the synthetic resin is at least one selected from epoxy resins, heat-resistant epoxy resins, epoxy-modified polyimide resins, polyimide resins, and triazine resins.
The method described in any of the paragraphs.
JP10263285A 1985-05-16 1985-05-16 Manufacture of ceramic wiring board Granted JPS61263189A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10263285A JPS61263189A (en) 1985-05-16 1985-05-16 Manufacture of ceramic wiring board
US06/860,886 US4752499A (en) 1985-05-16 1986-05-08 Adhesive for electroless plating and method of preparation of circuit board using this adhesive
US07/357,693 US5021472A (en) 1985-05-16 1989-05-25 Adhesive for electroless plating and method of preparation of circuit board using this adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10263285A JPS61263189A (en) 1985-05-16 1985-05-16 Manufacture of ceramic wiring board

Publications (2)

Publication Number Publication Date
JPS61263189A JPS61263189A (en) 1986-11-21
JPH0426560B2 true JPH0426560B2 (en) 1992-05-07

Family

ID=14332612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10263285A Granted JPS61263189A (en) 1985-05-16 1985-05-16 Manufacture of ceramic wiring board

Country Status (1)

Country Link
JP (1) JPS61263189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056785A (en) * 1996-08-08 1998-02-24 Seiko Epson Corp Power generator and portable electronic apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136071A (en) * 1991-12-16 1992-08-04 Dow Corning Corporation Sodium borohydride as activator for phenylborane catalyzed disproportionation of arylsilanes
JP4749144B2 (en) * 2005-12-22 2011-08-17 富士通株式会社 Method for forming plating film base resin layer, plating method, and method for manufacturing semiconductor device
JP5354873B2 (en) * 2007-05-30 2013-11-27 富士フイルム株式会社 Conductive film and method for producing conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167492A (en) * 1984-02-10 1985-08-30 三菱電機株式会社 Method of forming conductor layer to resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167492A (en) * 1984-02-10 1985-08-30 三菱電機株式会社 Method of forming conductor layer to resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056785A (en) * 1996-08-08 1998-02-24 Seiko Epson Corp Power generator and portable electronic apparatus

Also Published As

Publication number Publication date
JPS61263189A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
US5021472A (en) Adhesive for electroless plating and method of preparation of circuit board using this adhesive
KR900003152B1 (en) Method for forming capacitive circuit on circuit board
JPH0568874B2 (en)
JPH0455555B2 (en)
JP3069476B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPH0518476B2 (en)
JP3786512B2 (en) Manufacturing method of multilayer wiring board
JPH0426560B2 (en)
JP2828032B2 (en) Method for manufacturing multilayer wiring structure
JP3217477B2 (en) Manufacturing method of printed wiring board
JPH01195281A (en) Catalyst for electroless plating
JPH0726205B2 (en) Manufacturing method of aluminum nitride ceramic wiring board
JPS63108793A (en) Manufacture of wiring board
JP3115435B2 (en) Adhesives and printed wiring boards
JP2826206B2 (en) Printed wiring board
JP3801334B2 (en) Semiconductor device mounting substrate and manufacturing method thereof
JPS61140195A (en) Making of ceramic wiring board
JPH05235519A (en) Manufacture of wiring board
JPS61151081A (en) Manufacture of ceramic wire distribution substrate
KR100352229B1 (en) Fabricating Method of Board for Hybrid IC Using Bonding Paste
WO1998019858A1 (en) Circuit comprising microstrip conductor and method for making the same
JPH0533556B2 (en)
JPS5884495A (en) Method of producing metal core printed circuit board
JPH0533555B2 (en)
JPS5895892A (en) Method of forming circuit board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term