JPH0518476B2 - - Google Patents

Info

Publication number
JPH0518476B2
JPH0518476B2 JP11889885A JP11889885A JPH0518476B2 JP H0518476 B2 JPH0518476 B2 JP H0518476B2 JP 11889885 A JP11889885 A JP 11889885A JP 11889885 A JP11889885 A JP 11889885A JP H0518476 B2 JPH0518476 B2 JP H0518476B2
Authority
JP
Japan
Prior art keywords
heat
resin
fine powder
adhesive
resistant resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11889885A
Other languages
Japanese (ja)
Other versions
JPS61276875A (en
Inventor
Akira Enomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP60118898A priority Critical patent/JPS61276875A/en
Priority to US06/860,886 priority patent/US4752499A/en
Publication of JPS61276875A publication Critical patent/JPS61276875A/en
Priority to US07/357,693 priority patent/US5021472A/en
Publication of JPH0518476B2 publication Critical patent/JPH0518476B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0773Dissolving the filler without dissolving the matrix material; Dissolving the matrix material without dissolving the filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は配線板とそれの製造方法、およびこの
配線板の製造に際して用いる無電解めつき用接着
剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wiring board, a method for manufacturing the same, and an adhesive for electroless plating used in manufacturing the wiring board.

〔従来の技術〕[Conventional technology]

近年、電子工業の進歩に伴い電子機器の小型化
あるいは高速化が進められており、このためプリ
ント配線板やLSIを実装する配線板においてもフ
アインパターンによる高密度化および高い信頼性
が要求されている。
In recent years, with the progress of the electronics industry, electronic devices have become smaller and faster, and for this reason, printed wiring boards and wiring boards on which LSIs are mounted are also required to have higher density and higher reliability using fine patterns. ing.

従来、プリント配線板に導体回路を形成する方
法としては、基板に銅箔を積層した後、フオトエ
ツチングすることにより、導体回路を形成するエ
ツチドフオイル方法が広く行なわれている。この
方法によれば、基板との密着性に優れた導体回路
を形成することができるが、銅箔の厚さが厚いた
めにエツチングにより高精度のフアインパターン
が得難いという大きな欠点があり、さらに製造工
程も複雑で効率が良くないなどの諸問題がある。
Conventionally, as a method for forming a conductor circuit on a printed wiring board, an etched foil method has been widely used in which the conductor circuit is formed by laminating copper foil on the board and then photoetching it. According to this method, it is possible to form a conductor circuit with excellent adhesion to the board, but it has the major drawback that it is difficult to obtain a fine pattern with high precision by etching because the copper foil is thick. There are also various problems such as the manufacturing process being complex and inefficient.

このため、最近配線板に導体を形成する方法と
して、ジエン系合成ゴムを含む接着剤を基板表面
に塗布して接着層を形成し、この接着層の表面を
粗化した後、無電解メツキを施して導体を形成す
るアデイテイブ法が採用されている。しかしなが
ら、この方法で一般的に使用されている接着剤は
合成ゴムを含むため、例えば高温時に密着強度が
大きく低下したり、ハンダ付けの際に無電解メツ
キ膜がふくれるなど耐熱性が低いことと、表面抵
抗などの電気特性が充分でない欠点があり、使用
範囲がかなり制限されている。
For this reason, a recent method for forming conductors on wiring boards is to apply an adhesive containing diene-based synthetic rubber to the substrate surface to form an adhesive layer, roughen the surface of this adhesive layer, and then use electroless plating. An additive method is adopted in which conductors are formed by applying However, since the adhesive commonly used in this method contains synthetic rubber, it may have low heat resistance, such as the adhesion strength decreasing significantly at high temperatures or the electroless plating film blistering during soldering. However, it has the drawback of insufficient electrical properties such as surface resistance, and its range of use is quite limited.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の如く、従来知られた方法によれば耐熱
性、電気特性および基板と無電解メツキ膜との密
着性などの特性を兼ねそなえ、かつ比較的容易に
実施できる無電解メツキを施すための接着剤とこ
の接着剤を用いた配線板の製造方法は未だ知られ
ていない。
As mentioned above, conventionally known methods provide adhesives for electroless plating that have properties such as heat resistance, electrical properties, and adhesion between the substrate and the electroless plating film, and are relatively easy to implement. A method for manufacturing a wiring board using this adhesive is not yet known.

本発明は前述の如き無電解メツキを施すための
接着剤が有する欠点を解消し、耐熱性、電気特性
および無電解メツキ膜との密着性に極めて優れ、
かつ比較的容易に実施できる無電解メツキ用接着
剤およびこの接着剤を用いた配線板の製造方法と
この方法の実施によつて得られる配線板を提案す
ることを目的とする。
The present invention eliminates the drawbacks of adhesives for electroless plating as described above, and has excellent heat resistance, electrical properties, and adhesion to electroless plating films.
Another object of the present invention is to propose an adhesive for electroless plating that is relatively easy to implement, a method for manufacturing a wiring board using this adhesive, and a wiring board obtained by implementing this method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、前記の如き諸問題を解決すべく
種々研究した結果、酸化剤に対して可溶性の予め
硬化処理された耐熱性樹脂微粉末が、硬化処理す
ることにより酸化剤に対して難溶性となる特性を
有する未硬化の耐熱性樹脂液中に分散されてなる
接着剤と、この接着剤を基板に塗布し乾燥硬化さ
せて接着層を形成し、前記接着層の表面部分に分
散している前記微粉末の少なくとも一部を溶解除
去して接着層の表面を粗化し、次いで無電解メツ
キを施すことを特徴とする配線板の製造方法と、
さらにこのような製造方法の下で製作された新規
な構成に係る配線板とを提供することによつて、
前記諸問題を解決できることを見出して本発明を
完成したものである。
As a result of various studies to solve the above-mentioned problems, the inventor of the present invention discovered that heat-resistant resin fine powder that is soluble in oxidizing agents and that has been hardened in advance becomes difficult to dissolve in oxidizing agents by hardening. an adhesive dispersed in an uncured heat-resistant resin liquid having the following characteristics; this adhesive is applied to a substrate, dried and hardened to form an adhesive layer; and the adhesive is dispersed on the surface of the adhesive layer. A method for manufacturing a wiring board, comprising: roughening the surface of the adhesive layer by dissolving and removing at least a portion of the fine powder, and then applying electroless plating;
Furthermore, by providing a wiring board with a new configuration manufactured using such a manufacturing method,
The present invention was completed by discovering that the above-mentioned problems could be solved.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明の配線板に用いる無電解メツキ用接着剤
は、酸化剤に対して可溶性の予め硬化処理された
耐熱性樹脂微粉末が、硬化処理することにより酸
化剤に対して難溶性となる特性を有する未硬化の
耐熱性樹脂液中に分散されてなる接着剤である。
このような接着剤とする理由は、前記接着剤は予
め硬化処理された耐熱性樹脂微粉末が耐熱性樹脂
液中に分散されており、この接着剤を基板に塗布
し乾燥硬化させるとマトリツクスを形成する耐熱
性樹脂(以下マトリツクスを形成する耐熱性樹脂
をマトリツクス耐熱性樹脂と略称する)中に耐熱
性樹脂微粉末が均一に分散した状態の接着層が形
成され、かつ前記耐熱性樹脂微粉末とマトリツク
ス耐熱性樹脂とは酸化剤に対する溶解性に差異が
あるため、前記接着層を酸化剤で処理することに
より接着層の表面部分に分散している微粉末が主
として溶解除去されることにより、明確なアンカ
ーが形成され接着層の表面を均一に粗化できるか
らできる。この結果、基板と無電解メツキ膜との
高い密着強度とその信頼性が得られるからであ
る。
The adhesive for electroless plating used in the wiring board of the present invention has a property that the heat-resistant resin fine powder, which is soluble in oxidizing agents and has been cured in advance, becomes hardly soluble in oxidizing agents through curing treatment. This is an adhesive that is dispersed in an uncured heat-resistant resin liquid.
The reason for using such an adhesive is that the adhesive consists of pre-hardened heat-resistant resin fine powder dispersed in a heat-resistant resin liquid, and when this adhesive is applied to a substrate and dried and hardened, the matrix is formed. An adhesive layer is formed in which heat-resistant resin fine powder is uniformly dispersed in the heat-resistant resin to be formed (hereinafter, the heat-resistant resin forming the matrix is abbreviated as matrix heat-resistant resin), and the heat-resistant resin fine powder is Since there is a difference in solubility in oxidizing agents between the heat-resistant matrix resin and the adhesive layer, by treating the adhesive layer with an oxidizing agent, the fine powder dispersed on the surface of the adhesive layer is mainly dissolved and removed. This is possible because clear anchors are formed and the surface of the adhesive layer can be uniformly roughened. This is because, as a result, high adhesion strength and reliability between the substrate and the electroless plating film can be obtained.

本発明に使用する耐熱性樹脂微粉末は、予め硬
化処理された耐熱性樹脂の微粉末である。その理
由は、前記耐熱性樹脂微粉末が硬化処理されてい
ない状態では、耐熱性樹脂液あるいはこの樹脂を
溶剤を用い溶解した液中に添加された際に液中に
溶解してしまうため、このような接着剤を基板に
塗布し乾燥硬化してもマトリツクス耐熱性樹脂と
耐熱性樹脂微粉末が共融した状態の接着層となる
ため、接着層が酸化剤に対してほぼ均一に溶解さ
れるので選択的に接着層の表面を溶解除去できな
くなる結果、明確なアンカーが形成できないから
である。これに対し、前記耐熱性樹脂微粉末が予
め硬化処理されていると耐熱性樹脂液あるいはこ
の樹脂を溶解する溶剤に対して難溶性となるた
め、マトリツクス耐熱性樹脂液中に耐熱性樹脂微
粉末が均一に分散している状態の接着剤を得るこ
とができる結果、前述の如く明確でしかも均一な
アンカーを形成することができるからである。
The heat-resistant resin fine powder used in the present invention is a heat-resistant resin fine powder that has been cured in advance. The reason for this is that if the heat-resistant resin fine powder is not hardened, it will dissolve in the heat-resistant resin liquid or a liquid in which this resin is dissolved using a solvent. Even if such an adhesive is applied to a substrate and dried and cured, the adhesive layer will be a eutectic mixture of the matrix heat-resistant resin and the heat-resistant resin fine powder, so the adhesive layer will be almost uniformly dissolved by the oxidizing agent. This is because the surface of the adhesive layer cannot be selectively dissolved and removed, and a clear anchor cannot be formed. On the other hand, if the heat-resistant resin fine powder has been hardened in advance, it becomes poorly soluble in the heat-resistant resin liquid or the solvent that dissolves this resin. This is because it is possible to obtain an adhesive in which the particles are uniformly dispersed, and as a result, a clear and uniform anchor can be formed as described above.

ところで、特開昭53−140344号公報に「プリン
ト配線板用樹脂組成物」に係る発明が開示されて
おり、その発明の要旨は特許請求の範囲に記載の
如く、「蝕刻により溶出し得、連続相を形成する
成分(A)と、成分(A)と非相溶性で、蝕刻されず、直
径0.5〜15μmの球状粒子となつて成分(A)の連続相
に分散する熱硬化性樹脂成分(B)とより成り、上記
成分(B)が、成分(A)(B)の和に対して20〜85体積%を
占める樹脂より成り、基板表面に塗布され、導体
の少なくとも、基板に直接接する部分が無電解メ
ツキにより形成されるプリント配線板の製造に使
用されるプリント配線板用樹脂組成物」である。
該発明の組成物中の球状粒子を形成する熱硬化性
樹脂成分(B)は蝕刻されないものであるのに対し、
本発明の接着剤中に分散している耐熱性樹脂微粉
末は酸化剤に対して可溶性であり、すなわち蝕刻
されるものである点において、前記公報記載の発
明は本発明と明確に異なつているだけでなく、前
記公報記載の発明によれば、その樹脂組成物が蝕
刻粗化されて得られる接着層は、該公報第3頁左
上欄に上載の如く、深さ20μm程度の凹凸となる
ため、この接着層の上に形成される導体は微細パ
ターンが得難く、パターン間の絶縁性も不良とな
り易く、さらに部品などを実装する上においても
好ましくないなどの欠点がある。
By the way, JP-A No. 53-140344 discloses an invention related to a "resin composition for printed wiring boards," and the gist of the invention is as stated in the claims, "a resin composition that can be eluted by etching, Component (A) that forms a continuous phase; and a thermosetting resin component that is incompatible with component (A) and is not etched and disperses in the continuous phase of component (A) as spherical particles with a diameter of 0.5 to 15 μm. (B), and the above component (B) is made of a resin that occupies 20 to 85% by volume of the sum of components (A) and (B), and is applied to the surface of the substrate, and is applied directly to the substrate at least on the conductor. "Resin composition for printed wiring boards used for manufacturing printed wiring boards whose contacting parts are formed by electroless plating."
While the thermosetting resin component (B) forming the spherical particles in the composition of the invention is not etched,
The invention described in the above publication is clearly different from the present invention in that the heat-resistant resin fine powder dispersed in the adhesive of the present invention is soluble in oxidizing agents, that is, it is etched. In addition, according to the invention described in the above publication, the adhesive layer obtained by etching and roughening the resin composition becomes uneven with a depth of about 20 μm as described above in the upper left column of page 3 of the publication. The conductor formed on this adhesive layer has drawbacks such as difficulty in obtaining a fine pattern, poor insulation between patterns, and undesirable mounting of components.

本発明の接着剤に用いる耐熱性樹脂微粉末の材
質は、耐熱性と電気絶縁性に優れ、通常の薬品に
対して安定であり、予め硬化処理することにより
耐熱性樹脂液あるいはこの樹脂を溶解する溶剤に
対して難溶性となすことができ、さらにクロム酸
などの酸化剤により溶解することができる特性を
具備する樹脂であれば使用することができ、特に
エポキシ樹脂、ポリエステル樹脂、ビスマレイミ
ド−トリアジン樹脂のなかから選ばれる何れか少
なくとも1種であることが好ましく、なかでもエ
ポキシ樹脂は特性的にも優れており最も好適であ
る。前記硬化処理する方法としては、加熱により
硬化させる方法あるいは触媒を添加して硬化させ
る方法などを用いることができ、特に加熱硬化さ
せる方法は最も実用的である。なお、前記酸化剤
としては、例えばクロム酸、クロム酸塩、過マン
ガン酸塩、オゾンなどがあり、特にクロム酸と硫
酸の混酸水溶液を有利に使用することができる。
The material of the heat-resistant resin fine powder used in the adhesive of the present invention has excellent heat resistance and electrical insulation properties, and is stable against ordinary chemicals, and can be cured in advance to dissolve heat-resistant resin liquid or this resin. Any resin can be used as long as it has the properties of being poorly soluble in solvents and can be dissolved by oxidizing agents such as chromic acid.Epoxy resins, polyester resins, bismaleimide resins, etc. It is preferable to use at least one selected from triazine resins, and among them, epoxy resins are the most preferable because they have excellent characteristics. As the method for the curing treatment, a method of curing by heating or a method of curing by adding a catalyst can be used, and in particular, a method of curing by heating is the most practical. The oxidizing agent includes, for example, chromic acid, chromate, permanganate, ozone, etc., and a mixed acid aqueous solution of chromic acid and sulfuric acid can be particularly advantageously used.

前記耐熱性樹脂微粉末の粒度としては、平均粒
径が10μm以下であることが好ましく、特に5μm
以下であることが好適である。その理由は、平均
粒径が10μmよりも大きいと、溶解除去して形成
されるアンカーの密度が低くなり、かつ不均一に
なり易いため、密着強度とその信頼性が低下し、
さらに接着層表面の凹凸が激しくなるので導体の
微細パターンが得にくく、かつ部品などを実装す
る上でも好ましくないからである。このような耐
熱性樹脂微粉末は、例えば耐熱性樹脂を熱硬化さ
せてからジエツトミルや凍結粉砕機などを用いて
微粉砕したり、硬化処理する前に耐熱性樹脂溶液
を噴霧乾燥して直接微粉末にするなどの各種の手
段により得ることができる。
The particle size of the heat-resistant resin fine powder is preferably an average particle size of 10 μm or less, particularly 5 μm.
It is preferable that it is the following. The reason is that when the average particle size is larger than 10 μm, the density of the anchor formed by dissolving and removing becomes low and tends to be non-uniform, resulting in a decrease in adhesion strength and reliability.
Furthermore, since the surface of the adhesive layer becomes extremely uneven, it is difficult to obtain a fine conductor pattern, and it is also unfavorable for mounting components. Such heat-resistant resin fine powder can be obtained, for example, by heat-curing the heat-resistant resin and then pulverizing it using a jet mill or freeze-pulverizer, or directly by spray-drying a heat-resistant resin solution before curing. It can be obtained by various means such as powdering.

本発明の接着剤に用いる耐熱性樹脂微粉末が分
散されているマトリツクス耐熱性樹脂は、耐熱
性、電気絶縁性、化学的安定性および接着性に優
れ、かつ硬化処理することにより酸化剤に対して
難溶性となる特性を有する樹脂であれば使用する
ことができ、特にエポキシ樹脂、エポキシ変成ポ
リイミド樹脂、ポリイミド樹脂、フエノール樹脂
のなかから選ばれる何れか少なくとも1種である
ことが好ましく、場合によつてはこれらの樹脂に
感光性を付与させたものであつてもよい。
The matrix heat-resistant resin in which the heat-resistant resin fine powder used in the adhesive of the present invention is dispersed has excellent heat resistance, electrical insulation, chemical stability, and adhesiveness, and is resistant to oxidizing agents by being cured. Any resin can be used as long as it has the property of being poorly soluble in water. In particular, it is preferably at least one selected from epoxy resins, epoxy-modified polyimide resins, polyimide resins, and phenolic resins. Furthermore, these resins may be imparted with photosensitivity.

このように、耐熱性樹脂微粉末と、硬化処理さ
れた後のマトリツクス耐熱性樹脂とには酸化剤に
対する溶解性に大きな差異があるため、前記接着
層の表面部分に分散している耐熱性樹脂微粉末を
酸化剤を用いて溶解除去すると、前記酸化剤に対
して難溶性のマトリツクス耐熱性樹脂はほとんど
溶解されずに基材として残りの明確なアンカーが
接着層の表面に形成される。なお、同じ種類の耐
熱性樹脂であつても、例えば耐熱性樹脂微粉末と
して酸化剤に溶け易いエポキシ樹脂を用い、他方
前記マトリツクス耐熱性樹脂として酸化剤に対し
て比較的溶け難いエポキシ樹脂を組合せて使用す
ることもできる。
As described above, since there is a large difference in solubility to oxidizing agents between the heat-resistant resin fine powder and the matrix heat-resistant resin after hardening treatment, the heat-resistant resin dispersed on the surface of the adhesive layer When the fine powder is dissolved and removed using an oxidizing agent, the matrix heat-resistant resin, which is hardly soluble in the oxidizing agent, is hardly dissolved and a clear anchor remains as a base material and is formed on the surface of the adhesive layer. Even if the same type of heat-resistant resin is used, for example, an epoxy resin that is easily soluble in oxidizing agents is used as the heat-resistant resin fine powder, and an epoxy resin that is relatively difficult to dissolve in oxidizing agents is used as the matrix heat-resistant resin. It can also be used as

前記微粉末が分散されている耐熱性樹脂液とし
ては、溶剤を含まない耐熱性樹脂液をそのまま使
用することもできるが、耐熱性樹脂を溶剤に溶解
している耐熱性樹脂液は低粘度となすことができ
るため、微粉末を均一に分散させることが容易で
あり、また基板に塗布し易いので有利に使用する
ことができる。前記耐熱性樹脂を溶解するに使用
する溶剤としては、通常の溶剤を用いることがで
き、例えばメチルエチルケトン、メチルセルソル
ブ、エチルセルソルブ、ブチルカルビトール、ブ
チルセルロース、テトラリン、ジメチルホルムア
ミド、ノルマルメチルピロリドンなどを挙げるこ
とができる。また、前記マトリツクスとなる耐熱
性樹脂液に、例えばシリカ、アルミナ、酸化チタ
ン、ジルコニアなどの無機質微粉末からなる充填
剤を適宜配合してもよい。
As the heat-resistant resin liquid in which the fine powder is dispersed, a heat-resistant resin liquid that does not contain a solvent can be used as it is, but a heat-resistant resin liquid in which a heat-resistant resin is dissolved in a solvent has a low viscosity. Therefore, it is easy to uniformly disperse the fine powder, and it is also easy to apply it to the substrate, so it can be used advantageously. As the solvent used to dissolve the heat-resistant resin, ordinary solvents can be used, such as methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, butyl carbitol, butyl cellulose, tetralin, dimethylformamide, n-methylpyrrolidone, etc. can be mentioned. Further, a filler made of inorganic fine powder such as silica, alumina, titanium oxide, zirconia, etc. may be appropriately blended into the heat-resistant resin liquid serving as the matrix.

前記マトリツクス耐熱性樹脂に対する耐熱性樹
脂微粉末の配合量は、マトリツクス耐熱性樹脂固
形分100重量部に対して5〜350重量部の範囲が好
ましく、特に20〜200重量部の範囲が基板と無電
解メツキ膜との高い密度強度を得ることができる
ので好適である。その理由は、耐熱性樹脂微粉末
の配合量が5重量部より少ない溶解除去して形成
されるアンカーの密度が低くなり基板と無電解メ
ツキ膜との充分な密度強度が得られず、一方350
重量部よりも多くなると接着層全体がほとんど溶
解されるので明確なアンカーが形成されないから
である。
The blending amount of the heat-resistant resin fine powder in the matrix heat-resistant resin is preferably in the range of 5 to 350 parts by weight, and particularly in the range of 20 to 200 parts by weight, based on 100 parts by weight of the solid content of the matrix heat-resistant resin. This is suitable because it can provide high density strength with electrolytically plated membranes. The reason for this is that the density of the anchor formed by dissolving and removing the heat-resistant resin fine powder is lower than 5 parts by weight, and sufficient density strength between the substrate and the electroless plating film cannot be obtained.
This is because if the amount exceeds the weight part, almost the entire adhesive layer will be dissolved and a clear anchor will not be formed.

次に本発明の接着剤を用いた配線板の製造方法
について説明する。
Next, a method for manufacturing a wiring board using the adhesive of the present invention will be explained.

本発明によれば、前記耐熱性樹脂微粉末がマト
リツクスとなる耐熱性樹脂液中に分散されてなる
接着剤を基板に塗布する。この方法としては、例
えばローラコート法、デイツプコート法、スプレ
ーコート法、スピナーコート法、カーテンコート
法、スクリーン印刷法などの各種の手段を適用す
ることができ、塗布し乾燥硬化して接着層が形成
される。前記接着層の厚さは通常2〜40μm程度
であるが、この接着層を金属基板や多層配線板の
層間絶縁膜を兼ねて使用する場合にはそれ以上に
厚く塗布することもできる。
According to the present invention, an adhesive comprising the heat-resistant resin fine powder dispersed in a heat-resistant resin liquid serving as a matrix is applied to the substrate. Various methods such as roller coating, dip coating, spray coating, spinner coating, curtain coating, and screen printing can be used for this purpose, and an adhesive layer is formed by coating, drying, and curing. be done. The thickness of the adhesive layer is usually about 2 to 40 μm, but when the adhesive layer is used also as an interlayer insulating film for a metal substrate or a multilayer wiring board, it can be applied thicker than that.

本発明に使用する基板としては、例えばプラス
チツク基板、セラミツク基板、金属基板、フイル
ム基板などを使用することができ、具体的にはガ
ラスエポキシ基板、ガラスポリイミド基板、アル
ミナ基板、低温焼成セラミツク基板、窒化アルミ
ニユウム基板、アルミニウム基板、鉄基板、ポリ
イミドフイルム基板などを使用することができ
る。これらの基板を用いて、片面配線板、両面ス
ルーホール配線板、例えばCu/ポリイミド多層
配線板のような多層配線板などを製作することが
できる。なお前記接着剤そのものを板状あるいは
フイルム状に成形して無電解メツキを施すことの
できる接着性を有する基体とすることもできる。
As the substrate used in the present invention, for example, a plastic substrate, a ceramic substrate, a metal substrate, a film substrate, etc. can be used, and specifically, a glass epoxy substrate, a glass polyimide substrate, an alumina substrate, a low temperature fired ceramic substrate, a nitride substrate, etc. can be used. An aluminum substrate, an aluminum substrate, an iron substrate, a polyimide film substrate, etc. can be used. These substrates can be used to manufacture single-sided wiring boards, double-sided through-hole wiring boards, multilayer wiring boards such as Cu/polyimide multilayer wiring boards, and the like. Note that the adhesive itself can be formed into a plate or film to provide a substrate with adhesive properties that can be subjected to electroless plating.

次に、前記接着層の表面に分散している耐熱性
樹脂微粉末の少なくとも一部を酸化剤を用いて溶
解除去する。この方法としては、前記酸化剤の溶
液を用いて接着層を形成した基板をその溶液中に
浸漬するか、基板に溶液をスプレーするなどの手
段によつて実施することができ、その結果接着層
の表面を粗化することができる。なお、前記耐熱
性樹脂微粉末の溶解除去を効果的に行なわせるこ
とを目的として、予め前記接着層の表面部分を例
えば微粉研摩剤を用いてポリシングや液体ホーニ
ングする研摩手段によつて軽く除去することは有
利である。
Next, at least a portion of the heat-resistant resin fine powder dispersed on the surface of the adhesive layer is dissolved and removed using an oxidizing agent. This method can be carried out by immersing a substrate on which an adhesive layer has been formed using a solution of the oxidizing agent in the solution, or by spraying the solution onto the substrate, and as a result, the adhesive layer is formed. The surface of can be roughened. In order to effectively dissolve and remove the heat-resistant resin fine powder, the surface portion of the adhesive layer is lightly removed in advance, for example, by polishing using a fine powder abrasive or liquid honing. That is advantageous.

本発明によれば、接着層の表面を粗化した基板
に無電解メツキを施す。前記無電解メツキとして
は、例えば無電解銅メツキ、無電解ニツケルメツ
キ、無電解スズメツキ、無電解金メツキ、無電解
銀メツキなどを挙げることができ、特に無電解銅
メツキ、無電解ニツケルメツキ、無電解金メツキ
の何れか少なくとも1種であることが好適であ
る。なお、前記無電解メツキを施した上に更に異
なる種類の無電解メツキあるいは電気メツキを行
なつたり、ハンダをコートしたりすることができ
る。
According to the present invention, electroless plating is applied to a substrate on which the surface of the adhesive layer has been roughened. Examples of the electroless plating include electroless copper plating, electroless nickel plating, electroless tin plating, electroless gold plating, electroless silver plating, etc. In particular, electroless copper plating, electroless nickel plating, electroless gold plating, etc. It is preferable to use at least one type of plating. In addition to the electroless plating described above, it is also possible to perform a different type of electroless plating or electric plating, or to coat it with solder.

次に、上述した製造方法の適用によつて得られ
る本発明の配線板は、基板上に設けた表面粗化さ
れた接着剤層とこの接着剤層上に形成された無電
解めつき膜の導体電回路を有する配線板におい
て、前記接着剤層は、酸化剤に対して可溶性の予
め硬化処理された耐熱性樹脂微粉末が、酸化剤に
対して難溶性の耐熱性樹脂中に分散されてなるも
のである。
Next, the wiring board of the present invention obtained by applying the above-mentioned manufacturing method consists of a surface-roughened adhesive layer provided on a substrate and an electroless plated film formed on this adhesive layer. In the wiring board having a conductor electric circuit, the adhesive layer is formed by dispersing fine powder of a heat-resistant resin that is soluble in an oxidizing agent and pre-hardened in a heat-resistant resin that is sparingly soluble in the oxidizing agent. It is what it is.

次に、本発明を実施例によつて説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 (1) エポキシ樹脂(三井石油化学工業製、商品
名;TA−1800)を熱風乾燥器内にて160℃で
1時間引き続いて180℃で4時間乾燥して硬化
させ、この硬化させたエポキシ樹脂を粗粉砕し
てから、液体窒素で凍結させながら超音速ジエ
ツト粉砕機(日本ニユーマチツク工業製、商品
名;ラボジエツト)を用いて微粉砕し、さらに
風力分級機(日本ドナルドソン製、商品名;ア
キユカツトB−18型)を使用して分級し平均粒
径1.6μmのエポキシ樹脂微粉末を作つた。
Example 1 (1) Epoxy resin (manufactured by Mitsui Petrochemical Industries, trade name: TA-1800) was cured by drying it in a hot air dryer at 160°C for 1 hour and then at 180°C for 4 hours. After coarsely pulverizing the epoxy resin, it is finely pulverized using a supersonic jet pulverizer (manufactured by Nippon Neumatics Industries, trade name: Labojet) while freezing with liquid nitrogen, and then finely pulverized using a wind classifier (manufactured by Nippon Donaldson, trade name: Labojet). Akiyukatsu Model B-18) was used to classify the resin to produce a fine epoxy resin powder with an average particle size of 1.6 μm.

(2) ジメチルホルムアミド溶剤に溶かされたエポ
キシ変成ポリイミド樹脂(三井石油化学工業
製、商品名;TA−160)固形分100重量部に対
して、前記エポキシ樹脂微粉末を120重量部の
割合で配合し、さらにジメチルホルムアミド溶
剤を添加しながらホモデイスパー分散機で粘度
120cpsに調整し、次いで三本ロールで混練して
接着剤を得た。
(2) Mix 120 parts by weight of the above epoxy resin fine powder with 100 parts by weight solids of epoxy modified polyimide resin (manufactured by Mitsui Petrochemical Industries, trade name: TA-160) dissolved in dimethylformamide solvent. Then, while adding dimethylformamide solvent, the viscosity was increased using a homodisper disperser.
The pressure was adjusted to 120 cps, and then kneaded with three rolls to obtain an adhesive.

(3) この接着剤をローラーコーター(サーマトロ
ニクス貿易製、商品名;MRC−450)を使用し
て銅箔が貼着されていないガラスポリイミド基
板(東芝ケミカル製、商品名;TLC−583、寸
法100×100×1.5mm)上に塗布した後、160℃で
1時間さらに200℃で6時間乾燥硬化させて厚
さ7〜9μmの接着層を形成した。
(3) Using a roller coater (manufactured by Thermatronics Trading Co., Ltd., product name: MRC-450), apply this adhesive to a glass polyimide substrate (manufactured by Toshiba Chemical, product name: TLC-583, dimensions 100 x 100 x 1.5 mm), and dried and cured at 160° C. for 1 hour and then at 200° C. for 6 hours to form an adhesive layer with a thickness of 7 to 9 μm.

(4) 接着層の表面を#1000のアルミナ微粉研摩材
を用いて回転ブラシ研摩機で軽く研摩した基板
を、クロム酸(CrO3)800g/水溶液中から
なる酸化剤に60℃で2分間浸漬して接着層の表
面を粗化してから、中和溶液(シプレイ社製、
商品名;PM950)に浸漬し水洗した。
(4) The surface of the adhesive layer was lightly polished with a rotating brush polisher using #1000 alumina fine powder abrasive, and the substrate was immersed in an oxidizing agent consisting of 800 g of chromic acid (CrO 3 ) in an aqueous solution at 60°C for 2 minutes. to roughen the surface of the adhesive layer, and then apply a neutralizing solution (manufactured by Shipley, Inc.,
It was soaked in PM950 (trade name: PM950) and washed with water.

(5) 接着層の表面を粗化し基板にパラジウム触媒
(シプレイ社製、商品名;キヤタポジツト44)
を付与して接着層の表面を活性化させ、下記に
組成を示すアデイテイブ法用無電解銅メツキ液
に3時間浸漬して、メツキ膜の厚さ7μmの無
電解銅メツキを施した。
(5) Roughen the surface of the adhesive layer and apply a palladium catalyst to the substrate (manufactured by Shipley, product name: Cataposi 44)
was applied to activate the surface of the adhesive layer, and immersed in an electroless copper plating solution for additive method having the composition shown below for 3 hours to perform electroless copper plating with a thickness of 7 μm.

硫酸銅(CuSO4・5H2O) 0.06モル/ ホルマリン(37%) 0.30モル/ 苛性ソーダ(NaOH) 0.35モル/l EDTA 0.12モル/l 添加剤 少々 メツキ温度:70〜72℃ PH:12.4 以上のようにして製造された配線板は、さらに
硫酸銅メツキ浴中で電気メツキを施して銅メツキ
の厚さを35μmにしてから、基板と銅メツキ膜と
の密着強度をJIS−C−6481の方法で測定したと
ころピール強度は1.6Kg/cmであり、また100℃の
煮沸水に2時間浸漬することによる接着層の表面
抵抗の変化は初期値7×1013Ω・cmに対して3×
1012Ω・cmであつた。さらに、表面温度を300℃
に保持したホツトプレートに配線板の表面を密着
させて10分間加熱する耐熱性試験を行なつた後に
も異常は認められなかつた。
Copper sulfate (CuSO 4.5H 2 O) 0.06 mol / Formalin (37%) 0.30 mol / Caustic soda (NaOH) 0.35 mol/l EDTA 0.12 mol/l Additives Slight plating Temperature: 70-72℃ PH: 12.4 As above The wiring board manufactured by the above process was further electroplated in a copper sulfate plating bath to make the copper plating thickness 35 μm, and then the adhesion strength between the board and the copper plating film was tested using the JIS-C-6481 method. The measured peel strength was 1.6 Kg/cm, and the change in surface resistance of the adhesive layer due to immersion in boiling water at 100°C for 2 hours was 3× compared to the initial value of 7×10 13 Ω・cm.
It was 10 12 Ω・cm. Furthermore, the surface temperature was increased to 300℃.
No abnormality was observed even after a heat resistance test was conducted in which the surface of the wiring board was brought into close contact with a hot plate held at a temperature of 100 mL and heated for 10 minutes.

比較例 (1) エポキシ樹脂(油化シエルエポキシ製、商品
名;エピコート−171)100重量部、アクリルニ
トリルブタジエン共重合ゴム(グツドリツチ社
製)、変成触媒としてトリフエニルスルホスフ
イン0.2重量部、ジシアンジアミド5重量部、
および2−ヘプタデシルイミダゾール0.2重量
部を配合し、ジメチルホルムアミド溶剤に溶か
して粘度200cpsの接着剤とした。
Comparative example (1) 100 parts by weight of epoxy resin (manufactured by Yuka Ciel Epoxy, trade name: Epicote-171), acrylonitrile-butadiene copolymer rubber (manufactured by Gutudoritsu), 0.2 parts by weight of triphenylsulfosphine as a modification catalyst, dicyandiamide 5 parts by weight,
and 0.2 parts by weight of 2-heptadecyl imidazole were blended and dissolved in a dimethylformamide solvent to obtain an adhesive with a viscosity of 200 cps.

(2) この接着剤を実施例1と同様にしてガラスポ
リイミド基板に塗布し、180℃で1時間乾燥硬
化させて厚さ30〜40μmの接着層を形成した。
(2) This adhesive was applied to a glass polyimide substrate in the same manner as in Example 1, and dried and cured at 180° C. for 1 hour to form an adhesive layer with a thickness of 30 to 40 μm.

(3) 接着層を設けた基板を実施例1と同様にして
接着層の表面を粗化してから、無電解銅メツキ
と電気銅メツキを施して配線板を製作した。
(3) After roughening the surface of the adhesive layer on the substrate provided with the adhesive layer in the same manner as in Example 1, electroless copper plating and electrolytic copper plating were applied to produce a wiring board.

このようにして得られた配線板は、基板と銅メ
ツキ膜とのピール強度が1.9Kg/cmであつたが、
煮沸試験による接着層の表面抵抗が初期値2×
1013Ω・cmから8×1010Ω・cmに変化し、かつ前
記ホツトプレートによる耐熱性試験により銅メツ
キ膜の全面にフクレが認められた。
The wiring board thus obtained had a peel strength of 1.9 kg/cm between the board and the copper plating film.
The surface resistance of the adhesive layer in the boiling test is the initial value 2×
The resistance changed from 10 13 Ω·cm to 8×10 10 Ω·cm, and blistering was observed on the entire surface of the copper plating film in the heat resistance test using the hot plate.

実施例 2 (1) アルミナ・セラミツク基板(純度95%、寸法
50.8×50.8×1.0mm)上に実施例1の接着剤をロ
ーラーコーターで塗布し乾燥硬化させて厚さ5
〜7μmの接着層を形成し、実施例1と同様に
して接着層の表面を粗化してからメツキ膜の厚
さ約5μmの無電解銅メツキを施し、次いで、
感光性ドライフイルム(デユポン社製、商品
名;リストン1015)を使用して銅メツキ膜をエ
ツチングして最小導体幅が50μmの導体回路を
形成した。
Example 2 (1) Alumina ceramic substrate (95% purity, dimensions
50.8 x 50.8 x 1.0 mm) using a roller coater and drying and curing to a thickness of 5 mm.
An adhesive layer of ~7 μm was formed, the surface of the adhesive layer was roughened in the same manner as in Example 1, and then electroless copper plating was applied to a plating film with a thickness of approximately 5 μm.
A conductive circuit having a minimum conductor width of 50 μm was formed by etching the copper plating film using a photosensitive dry film (manufactured by DuPont, trade name: Liston 1015).

(2) 導体回路を形成したセラミツク基板上にアデ
イテイブ用感光性ドライフイルム(デユポン社
製、商品名;リストンT−168)をラミネート
し、露光し現像して、ビア・ホール用に100μ
mφの穴をあけた後、ドライフイルムの穴の内
を無電解メツキで厚さ約25μmに充填して100μ
mφのビア・ホール用銅メツキ柱を形成してか
ら、ドライフイルムを剥離した。
(2) Laminate a photosensitive dry film for additive use (manufactured by Dupont, trade name: Riston T-168) on the ceramic substrate on which the conductive circuit is formed, expose and develop it to form a 100 μm film for via holes.
After drilling a hole of mφ, fill the inside of the hole in the dry film with electroless plating to a thickness of about 25μm, and then fill it with 100μm.
After forming a copper plating pillar for a via hole of mφ, the dry film was peeled off.

(3) ビア・ホール用銅メツキ柱を有するセラミツ
ク基板上に、スピンコーター(ミカサ製、ミカ
サスピナーIH−360型)を使用して実施例1の
接着剤を数回塗布して厚さ25〜32μmの層間絶
縁膜を形成してから、平面研削機(スピードフ
アム社製)を用いて表面を平行に研摩して、層
間絶縁膜ならびり銅メツキ柱の厚さを約20μm
とした。
(3) Apply the adhesive of Example 1 several times using a spin coater (manufactured by Mikasa, Mikasa Spinner IH-360 model) on a ceramic substrate having copper-plated pillars for via holes to a thickness of 25~25 mm. After forming an interlayer insulating film of 32 μm, the surface was ground in parallel using a surface grinder (manufactured by Speed FAM) to reduce the thickness of the interlayer insulating film and the copper-plated pillars to approximately 20 μm.
And so.

(4) 平行に研摩した層間絶縁膜の表面を実施例1
と同様にしてクロム酸水溶液で粗化し、メツキ
膜の厚さ5μmの無電解メツキを施し、次に感
光性ドライフイルムを使用して銅メツキ膜をエ
ツチングして最小導体幅が50μmの導体回路を
形成した。
(4) The surface of the interlayer insulating film polished in parallel is shown in Example 1.
In the same manner as above, the copper plating film was roughened with an aqueous chromic acid solution, electroless plating was applied to a plating film with a thickness of 5 μm, and then the copper plating film was etched using a photosensitive dry film to form a conductor circuit with a minimum conductor width of 50 μm. Formed.

(5) 上記(2)〜(4)の工程を繰返して行ないLSIを実
装するのに適した高密度なCu/ポリイミド多
層配線板を製作した。
(5) By repeating the steps (2) to (4) above, a high-density Cu/polyimide multilayer wiring board suitable for mounting LSI was manufactured.

実施例 3 (1) エポキシ樹脂(油化シエルエポキシ製、商品
名;エピコート−171)100重量部、酸無水物硬
化剤(日立化成工業製、商品名;HN−2200)
110重量部およびN,N−ジメチルベンジルア
ミン(東京化成工業製)1重量部を配合してエ
ポキシ樹脂液とした。
Example 3 (1) 100 parts by weight of epoxy resin (manufactured by Yuka Shell Epoxy, trade name: Epicoat-171), acid anhydride curing agent (manufactured by Hitachi Chemical Co., Ltd., trade name: HN-2200)
110 parts by weight and 1 part by weight of N,N-dimethylbenzylamine (manufactured by Tokyo Kasei Kogyo) were blended to prepare an epoxy resin liquid.

(2) このエポキシ樹脂液に実施例1に記載したエ
ポキシ樹脂微粉末を、エポキシ樹脂固形分100
重量部に対して80重量部の割合で添加配合し、
ジメチルホルムアミド溶剤を添加しながらホモ
デイスパー分散機で粘度120cpsに調整し、次い
で三本ロールで混練して接着剤を作つた。
(2) Add the epoxy resin fine powder described in Example 1 to this epoxy resin liquid so that the epoxy resin solid content is 100%.
Added and blended at a ratio of 80 parts by weight to parts by weight,
The viscosity was adjusted to 120 cps using a homodisper disperser while adding dimethylformamide solvent, and then kneaded using three rolls to prepare an adhesive.

(3) この接着剤をローラーコーターを使用して銅
箔が貼着されていない耐熱ガラスエポキシ基板
(利晶工業製、商品名;CS−3525、寸法100×
100×1.5mm)の両面に塗布した後、100℃で4
時間引き続き150℃で4時間乾燥硬化させて厚
さ7〜10μmの接着層を形成した。
(3) Use a roller coater to apply this adhesive to a heat-resistant glass epoxy substrate without copper foil (manufactured by Rikyo Kogyo, product name: CS-3525, dimensions 100×
100 x 1.5 mm) and then heated at 100℃ for 4 hours.
The adhesive layer was dried and cured at 150° C. for 4 hours to form an adhesive layer with a thickness of 7 to 10 μm.

(4) 接着層を形成した基板にNC多軸ドリル加工
機(Excellon Automation社製、商品名;
MarKV Driller)を使用して0.8mmφの孔をあ
けた後、クロム酸(CrO3)800g/水溶液か
らなる酸化剤に60℃で10分間浸漬して接着層の
表面を粗化し、中和処理してから水洗した。
(4) An NC multi-axis drilling machine (manufactured by Excellon Automation, product name;
After drilling a hole of 0.8 mmφ using a MarKV Driller, the surface of the adhesive layer was roughened by immersing it in an oxidizing agent consisting of 800 g of chromic acid (CrO 3 )/aqueous solution for 10 minutes at 60°C, and then neutralized. Then I washed it with water.

(5) この基板にパラジウム触媒を付与して接着層
の表面を活性化させてから、実施例1の無電解
銅メツキ液に11時間浸漬してメツキ膜の厚さが
約25μmの無電解銅メツキを施し、両面スルー
ホール配線板を製作した。
(5) After applying a palladium catalyst to this substrate to activate the surface of the adhesive layer, it was immersed in the electroless copper plating solution of Example 1 for 11 hours to obtain a plating film of about 25 μm thick. We applied plating and produced a double-sided through-hole wiring board.

このようにして得られた配線板は、基板と無電
解銅メツキ膜とのピール強度が1.3Kg/cmであり、
煮沸試験による表面抵抗の変化は初期値2×1014
Ω・cmに対して4×1012Ω・cmと少なく、ホツト
プレートによる耐熱性試験を行なつた後にも異常
が認められなかつた。
The wiring board thus obtained has a peel strength of 1.3 kg/cm between the substrate and the electroless copper plating film, and
The change in surface resistance due to the boiling test is the initial value 2×10 14
The resistance was as low as 4×10 12 Ω·cm compared to Ω·cm, and no abnormality was observed even after a heat resistance test using a hot plate was conducted.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の配線板とそれの製造
方法、および配線板の製造に当たつて用いる無電
解めつき用接着剤については、耐熱性、電気特性
および基板と無電解メツキ膜との密着性に極めて
優れており、かつ複雑な工程を経ることなく容易
に実施できる無電解メツキ用接着剤およびこの接
着剤を用いた配線板を得ることができ、利用分野
も高密度で高精度のプリント配線板、ハイブリツ
トIC配線板、LSIを実装する多層配線板などと広
く、産業上極めて有用である。
As mentioned above, the wiring board of the present invention, the manufacturing method thereof, and the adhesive for electroless plating used in manufacturing the wiring board are important in terms of heat resistance, electrical properties, and the characteristics of the substrate and electroless plating film. It is possible to obtain adhesives for electroless plating that have extremely excellent adhesion and can be easily performed without going through complicated processes, as well as wiring boards using this adhesive. It is extremely useful in a wide range of industries, including printed wiring boards, hybrid IC wiring boards, and multilayer wiring boards that mount LSIs.

Claims (1)

【特許請求の範囲】 1 基板上に設けた表面粗化された接着剤層とこ
の接着剤層上に形成された無電解めつき膜の導体
回路を有する配線板において、 前記接着剤層は、酸化剤に対して可溶性の予め
硬化処理された耐熱性樹脂微粉末が、酸化剤に対
して難溶性の耐熱性樹脂中に分散されてなるもの
である配線板。 2 基板上に、酸化剤に対して可溶性の予め硬化
処理された耐熱性樹脂微粉末が、硬化処理するこ
とにより酸化剤に対して難溶性となる特性を有す
る未硬化の耐熱性樹脂液中に分散されてなる接着
剤を塗布し、乾燥硬化させて接着剤層を形成し、
前記接着剤層の表面部分に分散している前記耐熱
性樹脂微粉末の少なくとも一部を溶解除去してこ
の接着剤層の表面を粗化し、次いでこの接着粗化
表面上に無電解めつきを施すことを特徴とする配
線板の製造方法。 3 予め硬化処理される前記耐熱性樹脂微粉末
は、エポキシ樹脂、ポリエステル樹脂、ビスマレ
イミドートリアジン樹脂のなかから選ばれるいず
れか少なくとも1種の樹脂微粉末である特許請求
の範囲第2項記載の方法。 4 前記耐熱性樹脂微粉末の平均粒径は10μm以
下の大きさである特許請求の範囲第2項または第
3項記載の方法。 5 前記樹脂微粉末が分散されている耐熱性樹脂
液は、エポキシ樹脂、エポキシ変成ポリイミド樹
脂、ポリイミド樹脂、フエノール樹脂のなかから
選ばれるいずれか少なくとも一種の樹脂液である
特許請求の範囲第2〜4項のいずれかに記載の方
法。 6 固形分で、耐熱性樹脂液100重量部に対し、
前記樹脂微粉末の配合量は微粉末が5〜350重量
部の範囲である特許請求の範囲第2〜5項のいず
れかに記載の方法。 7 前記無電解めつきは、無電解銅めつき、無電
解ニツケルめつき、無電解金めつきのいずれか少
なくとも一種である特許請求の範囲第2〜6項の
いずれかに記載の方法。 8 前記酸化剤は、クロム酸、クロム酸塩、過マ
ンガン酸塩、およびオゾンの中から選ばれるいず
れか少なくとも1種のものである特許請求の範囲
第2〜7項のいずれか1つに記載の方法。 9 酸化剤に対して可溶性の予め硬化処理された
耐熱性樹脂微粉末が、硬化処理することにより酸
化剤に対して難溶性となる特性を有する未硬化の
耐熱性樹脂液中に分散されてなる配線板に用いる
無電解めつき用接着剤。 10 予め硬化処理された前記耐熱性樹脂微粉末
は、エポキシ樹脂、ポリエステル樹脂、ビスマレ
イミドートリアジン樹脂のなかから選ばれるいず
れか少なくとも1種の樹脂微粉末である特許請求
の範囲第9項に記載の配線板に用いる無電解めつ
き用接着剤。 11 前記耐熱性樹脂微粉末の平均粒径は、10μ
m以下の大きさである特許請求の範囲第9項また
は10項に記載の配線板に用いる無電解めつき用
接着剤。 12 前記樹脂微粉末が分散されている耐熱性樹
脂液は、エポキシ樹脂、エポキシ変成ポリイミド
樹脂、ポリイミド樹脂、フエノール樹脂のなかか
ら選ばれるいずれか少なくとも1種の樹脂液であ
る特許請求の範囲第9〜11項のいずれかに記載
の配線板に用いる無電解めつき用接着剤。 13 固形分で、前記耐熱性樹脂液100重量部に
対し、前記樹脂微粉末の配合量は5〜350重量部
の範囲である特許請求の範囲第9〜12項のいず
れかに記載の配線板に用いる無電解めつき用接着
剤。 14 前記接着剤は、板状もしくはフイルム状で
ある特許請求の範囲第9〜13項のいずれか1つ
に記載の配線板に用いる無電解めつき用接着剤。
[Scope of Claims] 1. A wiring board having a surface-roughened adhesive layer provided on a substrate and a conductor circuit of an electroless plated film formed on the adhesive layer, wherein the adhesive layer comprises: A wiring board comprising pre-hardened heat-resistant resin fine powder that is soluble in oxidizing agents and dispersed in a heat-resistant resin that is sparingly soluble in oxidizing agents. 2. On the substrate, pre-hardened heat-resistant resin fine powder that is soluble in oxidizing agents is placed in an uncured heat-resistant resin liquid that has the property of becoming poorly soluble in oxidizing agents through hardening treatment. Apply the dispersed adhesive, dry and harden it to form an adhesive layer,
The surface of the adhesive layer is roughened by dissolving and removing at least a portion of the heat-resistant resin fine powder dispersed on the surface of the adhesive layer, and then electroless plating is performed on the roughened adhesive surface. A method of manufacturing a wiring board, characterized by: 3. The heat-resistant resin fine powder to be precured is at least one resin fine powder selected from epoxy resin, polyester resin, and bismaleimide triazine resin. Method. 4. The method according to claim 2 or 3, wherein the heat-resistant resin fine powder has an average particle size of 10 μm or less. 5. Claims 2 to 5, wherein the heat-resistant resin liquid in which the resin fine powder is dispersed is at least one resin liquid selected from epoxy resin, epoxy-modified polyimide resin, polyimide resin, and phenolic resin. The method described in any of Section 4. 6 In terms of solid content, per 100 parts by weight of heat-resistant resin liquid,
6. The method according to claim 2, wherein the amount of the fine resin powder is in the range of 5 to 350 parts by weight. 7. The method according to any one of claims 2 to 6, wherein the electroless plating is at least one of electroless copper plating, electroless nickel plating, and electroless gold plating. 8. According to any one of claims 2 to 7, the oxidizing agent is at least one selected from chromic acid, chromate, permanganate, and ozone. the method of. 9 Pre-hardened heat-resistant resin fine powder that is soluble in oxidizing agents is dispersed in an uncured heat-resistant resin liquid that has the property of becoming poorly soluble in oxidizing agents through hardening treatment. Adhesive for electroless plating used for wiring boards. 10. According to claim 9, the pre-cured heat-resistant resin fine powder is at least one resin fine powder selected from epoxy resin, polyester resin, and bismaleimide triazine resin. Electroless plating adhesive used for wiring boards. 11 The average particle size of the heat-resistant resin fine powder is 10μ
An adhesive for electroless plating used for a wiring board according to claim 9 or 10, which has a size of less than m. 12. Claim 9, wherein the heat-resistant resin liquid in which the resin fine powder is dispersed is at least one resin liquid selected from epoxy resin, epoxy-modified polyimide resin, polyimide resin, and phenol resin. An adhesive for electroless plating used for a wiring board according to any one of items 1 to 11. 13. The wiring board according to any one of claims 9 to 12, wherein the solid content of the fine resin powder is in the range of 5 to 350 parts by weight based on 100 parts by weight of the heat-resistant resin liquid. Adhesive for electroless plating used for. 14. The adhesive for electroless plating used for a wiring board according to any one of claims 9 to 13, wherein the adhesive is in the form of a plate or a film.
JP60118898A 1985-05-16 1985-06-03 Adhesive for electroless plating and production of wiring board using said adhesive Granted JPS61276875A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60118898A JPS61276875A (en) 1985-06-03 1985-06-03 Adhesive for electroless plating and production of wiring board using said adhesive
US06/860,886 US4752499A (en) 1985-05-16 1986-05-08 Adhesive for electroless plating and method of preparation of circuit board using this adhesive
US07/357,693 US5021472A (en) 1985-05-16 1989-05-25 Adhesive for electroless plating and method of preparation of circuit board using this adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118898A JPS61276875A (en) 1985-06-03 1985-06-03 Adhesive for electroless plating and production of wiring board using said adhesive

Publications (2)

Publication Number Publication Date
JPS61276875A JPS61276875A (en) 1986-12-06
JPH0518476B2 true JPH0518476B2 (en) 1993-03-12

Family

ID=14747894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118898A Granted JPS61276875A (en) 1985-05-16 1985-06-03 Adhesive for electroless plating and production of wiring board using said adhesive

Country Status (1)

Country Link
JP (1) JPS61276875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342682B1 (en) 1996-01-11 2002-01-29 Ibiden Co., Ltd. Printed wiring board and manufacturing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429479A (en) * 1987-07-23 1989-01-31 Ibiden Co Ltd Adhesive composition for electroless plating
JPS6447095A (en) * 1987-08-18 1989-02-21 Ibiden Co Ltd Printed wiring board and manufacture thereof
JPH0634447B2 (en) * 1987-08-31 1994-05-02 イビデン株式会社 Adhesive for additive, base material for additive and printed wiring board using the same
DE3913966B4 (en) * 1988-04-28 2005-06-02 Ibiden Co., Ltd., Ogaki Adhesive dispersion for electroless plating, and use for producing a printed circuit
JPH0649852B2 (en) * 1988-06-28 1994-06-29 イビデン株式会社 Adhesive for electroless plating
JPH0776281B2 (en) * 1989-01-10 1995-08-16 イビデン株式会社 Prepreg
JP2842631B2 (en) * 1989-08-24 1999-01-06 イビデン株式会社 Manufacturing method of printed wiring board
US5344893A (en) * 1991-07-23 1994-09-06 Ibiden Co., Ltd. Epoxy/amino powder resin adhesive for printed circuit board
EP0811480B1 (en) * 1995-12-26 2004-03-03 Ibiden Co, Ltd. Metal film bonded body, bonding agent layer and bonding agent
KR100448561B1 (en) 1997-04-15 2004-09-13 이비덴 가부시키가이샤 Adhesive for electroless plating, raw material composition for preparing adhesive for electroless plating and printed wiring board
EP1005261B1 (en) * 1997-04-15 2003-03-05 Ibiden Co., Ltd. Adhesive for electroless plating, feedstock composition for preparing adhesive for electroless plating, and printed wiring board
JP3142511B2 (en) * 1997-11-05 2001-03-07 イビデン株式会社 Adhesive for electroless plating and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844709A (en) * 1981-09-10 1983-03-15 マルコン電子株式会社 Method of producing condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844709A (en) * 1981-09-10 1983-03-15 マルコン電子株式会社 Method of producing condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342682B1 (en) 1996-01-11 2002-01-29 Ibiden Co., Ltd. Printed wiring board and manufacturing method thereof

Also Published As

Publication number Publication date
JPS61276875A (en) 1986-12-06

Similar Documents

Publication Publication Date Title
US5055321A (en) Adhesive for electroless plating, printed circuit boards and method of producing the same
US5021472A (en) Adhesive for electroless plating and method of preparation of circuit board using this adhesive
JPH0518476B2 (en)
JPH0455555B2 (en)
JPH02188992A (en) Multilayer printed wiring board and manufacture thereof
KR100417544B1 (en) A method for adding layers to a PWB which yields high levels of copper to dielectric adhesion
KR100235930B1 (en) Printed wiring board and method for preparing the same
JPH0564714B2 (en)
JPH07188935A (en) Adhesive having excellent anchor characteristic and printed circuit board formed by using this adhesive and its production
JP3090973B2 (en) Method of forming adhesive layer for additive printed wiring board
JP2877993B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH0669632A (en) Manufacture of printed wiring board
JPH05235546A (en) Multilayer printed board and manufacture thereof
JP3007648B2 (en) Method for manufacturing adhesive printed wiring board for electroless plating and printed wiring board
JP3115435B2 (en) Adhesives and printed wiring boards
JP3219827B2 (en) Heat-resistant resin particles for anchor formation, adhesive for electroless plating, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH028283A (en) Adhesive for nonelectrolytic plating
JPH0533840B2 (en)
JPH01275682A (en) Adhesive for electroless plating and manufacture of printed circuit board by using said adhesive
JPH01166598A (en) Multi-layer printed circuit board and manufacture therefor
JP2877992B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JP3076680B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH0426560B2 (en)
JP2000191910A (en) Heat-resistant resin composition, interlayer insulating film and multilayered circuit board
JPH04372193A (en) Printed wiring board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term