JPS5884495A - Method of producing metal core printed circuit board - Google Patents

Method of producing metal core printed circuit board

Info

Publication number
JPS5884495A
JPS5884495A JP18213081A JP18213081A JPS5884495A JP S5884495 A JPS5884495 A JP S5884495A JP 18213081 A JP18213081 A JP 18213081A JP 18213081 A JP18213081 A JP 18213081A JP S5884495 A JPS5884495 A JP S5884495A
Authority
JP
Japan
Prior art keywords
core printed
metal core
printed wiring
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18213081A
Other languages
Japanese (ja)
Inventor
慎一郎 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EREKUTORONIKUSU KOGYO KK
Original Assignee
EREKUTORONIKUSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EREKUTORONIKUSU KOGYO KK filed Critical EREKUTORONIKUSU KOGYO KK
Priority to JP18213081A priority Critical patent/JPS5884495A/en
Publication of JPS5884495A publication Critical patent/JPS5884495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は経済性、機械的強度に優れ、かつ高温耐久性、
接着性良好なるプリント配線板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has excellent economic efficiency, mechanical strength, high temperature durability,
The present invention relates to a method for manufacturing a printed wiring board with good adhesion.

従来一般に使用されているプリント配線板は、フェノー
ル樹脂、エポキシ樹脂等の有機質基材及びガラス繊維と
の複合体の絶縁積層板が用いられ5ている。しかし最近
の電子機器の発達に伴って使用されるプリント配線板も
、より高密度化、機械的強度、価格の低減化が要求され
るようになって来た。そのため種々のプリント配線板の
製造法が開発され、゛従来から行われている銅張積層板
を用いて製造する方法から、安価な鉄板上にエポキシ系
、ポリエステル系の有機絶縁層を形成しその上に導体回
路を形成しようという試みがなされている。しかしなが
らエポキシ系、ポリエステル系の有機絶縁層の上に直接
無電解メッキ、及び電解メッキ管行ない導体回路を形成
したプリント配線板は、有機絶縁層と導体回路との密着
性が悪いため電子機器組立工程の溶融ハンダ法による部
品を接続する際の高温耐久性が低く、不良品発生率が極
めて高いという重大な欠点を有しているため殆んど実用
化されていないのが現状である。
Conventionally, commonly used printed wiring boards are insulating laminates made of composites of organic base materials such as phenol resins and epoxy resins and glass fibers. However, with the recent development of electronic devices, the printed wiring boards used are also required to have higher density, mechanical strength, and lower cost. For this reason, various methods of manufacturing printed wiring boards have been developed, ranging from the conventional method of manufacturing using copper-clad laminates to forming an organic insulating layer of epoxy or polyester on an inexpensive iron plate. Attempts have been made to form conductive circuits thereon. However, printed wiring boards in which conductive circuits are formed by direct electroless plating or electrolytic plating on an epoxy or polyester organic insulating layer have poor adhesion between the organic insulating layer and the conductive circuit, so it is difficult to assemble electronic devices during the electronic device assembly process. The molten soldering method has serious drawbacks such as poor high-temperature durability and an extremely high rate of defective products when connecting parts, so it is hardly ever put into practical use.

プリント配線板の回路の接着強度は日本工業規格にも定
められているように、1.2〜1.4 Kg / cm
以上が実用に耐えるとされているが従来のエポキシ樹脂
、ポリエステル樹脂等の有機絶縁層上に直接無電解メッ
キ、電解メッキされた導体回路の接着強度は0.1〜0
.3 Kg / cmであり実用に供し得ないという技
術的制約がある。従って有機絶縁材としては、無電解メ
ッキ及び電解メッキにより導体回路として形成される金
属を強固に密着させること。260℃の溶融ハンダ法の
高温に於て、それ自身変質せず、しかも接着力を保持す
ること。良好な被メッキ性を有すること等の性質が要求
される。
The adhesive strength of circuits on printed wiring boards is 1.2 to 1.4 Kg/cm, as specified in the Japanese Industrial Standards.
Although the above is said to be durable for practical use, the adhesion strength of conductor circuits that are directly electroless plated or electrolytically plated on conventional organic insulating layers such as epoxy resin or polyester resin is 0.1 to 0.
.. 3 Kg/cm, which is a technical limitation that makes it impossible to put it into practical use. Therefore, as an organic insulating material, the metal that is formed as a conductor circuit by electroless plating and electrolytic plating must be tightly adhered. To maintain adhesive strength without deteriorating itself at the high temperature of 260°C in the molten soldering method. Properties such as good plating properties are required.

そこで本発明者は、ニトリルゴムとフェノール樹脂より
なる有機物の粉体を絶縁材として金属板に塗膜し、金属
板を絶縁化したのち、その上に導体回路を形成して、接
着強度、ハンダ耐熱の優れた金属芯プリント配線板を開
発するに到った。
Therefore, the present inventor coated a metal plate with an organic powder made of nitrile rubber and phenol resin as an insulating material to insulate the metal plate, and then formed a conductive circuit on it to improve adhesive strength and solderability. We have developed a metal core printed wiring board with excellent heat resistance.

本発明方法を以下図面により詳細如説明すると第1図〜
第6図は金属芯プリント配線板の製造工程における断面
図で、門属板lにスルホール2をあけたのち、第2図に
示すように、金属板1の表面にニトリルゴムとフェノー
ル樹脂よりなる粉体を塗膜し絶縁層3を形成し金属板夏
を電気絶縁板とした。金属板にニトリルゴムとフェノー
ル樹脂よりなる有機物を塗膜して絶縁・・材として使用
するためには、次の条件をある程度溝たす必要がある。
The method of the present invention will be explained in detail with reference to the drawings below.
Figure 6 is a cross-sectional view of the manufacturing process of a metal-core printed wiring board. After opening a through hole 2 in the metal plate 1, as shown in Figure 2, the surface of the metal plate 1 is made of nitrile rubber and phenolic resin. An insulating layer 3 was formed by coating the powder, and the metal plate was used as an electrical insulating plate. In order to coat a metal plate with an organic substance made of nitrile rubber and phenolic resin and use it as an insulating material, the following conditions must be met to some extent.

厚膜塗装が出来ること。金属板(鉄、アルミ)との密着
性が良好であること。塗膜状態が良好であること。従っ
て100μ以上の厚膜塗装をして絶縁層を形成する為に
は、溶液型では困難であるためニトリルゴムとフェノー
ル樹脂を粉末化したのち、静電粉体塗装を行ない絶縁化
した。
Thick film coating is possible. Good adhesion to metal plates (iron, aluminum). The coating must be in good condition. Therefore, since it would be difficult to form an insulating layer by coating with a thickness of 100 microns or more using a solution type, the nitrile rubber and phenol resin were powdered and then electrostatic powder coating was performed to insulate.

ニトリルゴムとしては、アクリロニトリル含量の低い、
いわゆる低ニトリルゴムから、高ニトリルゴムまでのす
べてのニトリルゴムが使用出来る。
As a nitrile rubber, it has a low acrylonitrile content.
All nitrile rubbers from so-called low nitrile rubber to high nitrile rubber can be used.

又フェノール樹脂としては、P−フェノール、フェニル
フェノール、ブチルフェノール等のフェノール類とホル
ムアルデヒドの反応により得られるレゾールタイプ或い
はノボラックタイプのフェノール樹脂である。
The phenol resin is a resol type or novolak type phenol resin obtained by the reaction of phenols such as P-phenol, phenylphenol, butylphenol, and formaldehyde.

ニトリルゴム−フェノール樹脂の粉体は、ニトリルゴム
を冷ロールにて累練りし、このもの70部に対し、フェ
ノール樹脂130部及び砂石微粉末10部を加え充分混
練する。このようにして出来た混線物を、フロンガス冷
却装置にて冷却したのち、粉砕し微粉末にして、更にブ
ロッキング防止のためフェノール樹脂粉末を10部添加
して得られる。
To obtain the nitrile rubber-phenol resin powder, nitrile rubber is kneaded using cold rolls, and 130 parts of the phenol resin and 10 parts of fine sandstone powder are added to 70 parts of the nitrile rubber and thoroughly kneaded. The thus-produced mixed material is cooled in a freon gas cooling device, and then ground to a fine powder, and further 10 parts of phenol resin powder is added to prevent blocking.

上記粉体の静電粉体塗装での膜厚は吐出量、吹き付は時
間、電圧により異なるが一般に100〜200μの厚さ
が容易であり、金属板を予熱することにより300〜4
00μの塗膜が得られる。
The film thickness in electrostatic powder coating of the above powder varies depending on the discharge amount, spraying time, and voltage, but in general, a thickness of 100 to 200μ is easy, and a thickness of 300 to 40μ is possible by preheating the metal plate.
A coating film of 00μ is obtained.

従って100μの塗膜厚さの場合には予熱を必要としな
い。
Therefore, no preheating is required for a coating thickness of 100 microns.

次にピンホール防止の為に80℃10分間予熱後、22
0℃20分間焼付けを行なう。
Next, to prevent pinholes, after preheating at 80℃ for 10 minutes,
Baking is performed at 0°C for 20 minutes.

焼付は後、この絶縁層3の表面に数μの無電解メッキ4
を形成したのち、導体回路を形成すべき部分以外に電気
メッキの析出を防止する被覆剤として耐食インキ5を塗
布する。
After baking, several micrometers of electroless plating 4 is applied to the surface of this insulating layer 3.
After forming, anti-corrosion ink 5 is applied as a coating material to prevent electroplating from depositing on areas other than the areas where conductor circuits are to be formed.

次に第5図に示すように、電解メッキにより回路パター
ン6を形成し、次いで第6図の如く前記耐食インキ5及
びその下の無電解メッキ皮膜4で除去して導体回路を形
成することを特徴とする金属芯プリント配線板の製造方
法である。以下実施例にて説明する。
Next, as shown in FIG. 5, a circuit pattern 6 is formed by electrolytic plating, and then, as shown in FIG. This is a method for manufacturing a metal-core printed wiring board. This will be explained below using examples.

をし、脱脂したのち、アクリロニトリル含量35チノニ
トリルゴム70部、フェノール4ttJ]140部の二
) IJルゴムーフェノール樹脂系の粉体で、静電粉体
塗装を行ない、100μの絶縁層を形成し電気絶縁板を
得た。次にクロム−硫酸溶液により、上記絶縁層表面を
エツチングし、水洗後、塩化第一7−ズー塩酸水溶液で
センシタイジングし更に塩化パラジウム−塩酸水溶液で
アクチペーティングし水洗した。次いで無電解ニッケル
メッキで膜厚0.3μ程度のメッキ層を形成し、水洗乾
燥後導体部となるべき部分以外に耐食インキで被覆し、
次に100 f/lのピロリン酸銀の溶液中、50℃2
A/drr?、60分間の条件で電解メッキを行ない、
膜厚40μの銅の回路パターンを形成した。次に有機溶
剤により耐食インキを溶解除去し更にリン酸−過酸化水
素系のエツチング剤により、回路パターン部以外の無電
解ニンケルメッキ膜を除去し、接着強度1.6 Kg 
/ cm 、高温耐久性260℃IO秒以上、耐アーク
性135秒の特質の金属芯プリント配線板を得た。
After degreasing, acrylonitrile content 35 tinonitrile rubber 70 parts, phenol 4ttJ] 140 parts 2) IJ rubber - phenol resin powder was electrostatically powder coated to form a 100μ insulating layer. An electrical insulation board was obtained. Next, the surface of the insulating layer was etched with a chromium-sulfuric acid solution, washed with water, sensitized with an aqueous solution of di-7-zoochloride-hydrochloric acid, activated with an aqueous palladium chloride-hydrochloric acid solution, and washed with water. Next, a plating layer with a thickness of about 0.3μ is formed by electroless nickel plating, and after washing and drying, the parts other than those that will become conductors are coated with anti-corrosion ink.
Then in a solution of 100 f/l silver pyrophosphate at 50°C2
A/drr? , electrolytic plating was carried out for 60 minutes,
A copper circuit pattern with a film thickness of 40 μm was formed. Next, the anti-corrosion ink was dissolved and removed using an organic solvent, and the electroless nickel plating film other than the circuit pattern area was removed using a phosphoric acid-hydrogen peroxide etching agent, resulting in an adhesive strength of 1.6 kg.
/cm, a metal core printed wiring board with high temperature durability of 260°C IO seconds or more and arc resistance of 135 seconds was obtained.

以上実施例で説明したように、本発明により製造される
金属芯プリント配線板は、機械的強度が高く、接着強度
、ノ・ンダ耐熱の優れたものである。
As described above in the Examples, the metal core printed wiring board manufactured by the present invention has high mechanical strength, excellent adhesive strength, and excellent heat resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第6図は本発明の金属芯プリント配線板の製
造工程における断面図である。 1・・・・・・・・・・・・金属板 2・・・・・・・・・・・・スルホール3・・・・・・
・・・・・・絶縁層 4・・・・・・・・・・・・無電解メッキ皮膜5・・・
・・・・・・・・・耐食インキ6・・・・・・・・・・
・・電解メッキ皮膜寸 1 図 r京−
FIGS. 1 to 6 are cross-sectional views of the manufacturing process of the metal core printed wiring board of the present invention. 1......Metal plate 2...Through hole 3...
...Insulating layer 4... Electroless plating film 5...
・・・・・・・・・Corrosion-resistant ink 6・・・・・・・・・・
・・Electrolytic plating film size 1 Figure R-

Claims (1)

【特許請求の範囲】[Claims] 孔あけをした金属板にニトリルゴムとフェノール樹脂を
主成分とする粉体を静電粉体塗装し、電気絶縁板とした
のち、その上に直接無電解メッキの厚付け、もしくは無
電解メッキ及び電解メッキを併用して導体回路を形成す
ること?:特徴とする金属芯プリント配線板の製造方法
A perforated metal plate is electrostatically powder coated with powder mainly composed of nitrile rubber and phenolic resin to create an electrically insulating plate, and then thick electroless plating or electroless plating is applied directly onto the plate. Is it possible to form a conductor circuit using electrolytic plating? : Characteristic manufacturing method of metal core printed wiring board
JP18213081A 1981-11-12 1981-11-12 Method of producing metal core printed circuit board Pending JPS5884495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18213081A JPS5884495A (en) 1981-11-12 1981-11-12 Method of producing metal core printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18213081A JPS5884495A (en) 1981-11-12 1981-11-12 Method of producing metal core printed circuit board

Publications (1)

Publication Number Publication Date
JPS5884495A true JPS5884495A (en) 1983-05-20

Family

ID=16112849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18213081A Pending JPS5884495A (en) 1981-11-12 1981-11-12 Method of producing metal core printed circuit board

Country Status (1)

Country Link
JP (1) JPS5884495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038337A (en) * 1989-06-06 1991-01-16 Fujitsu Ltd Manufacture of semiconductor device
US8299403B2 (en) 2006-04-25 2012-10-30 National University Corporation Tohoku University Heat resisting vacuum insulating material and heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038337A (en) * 1989-06-06 1991-01-16 Fujitsu Ltd Manufacture of semiconductor device
US8299403B2 (en) 2006-04-25 2012-10-30 National University Corporation Tohoku University Heat resisting vacuum insulating material and heating device

Similar Documents

Publication Publication Date Title
US4152477A (en) Printed circuit board and method for making the same
KR900003152B1 (en) Method for forming capacitive circuit on circuit board
KR900000509B1 (en) A multilayer printed-circuit board
JPH1140902A (en) Printed wiring board and manufacture thereof
JPS6142993A (en) Method of forming conductor layer to resin
KR900003158B1 (en) Method for producing electric circuits an a base board
JP3204545B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPH0759691B2 (en) Adhesive for additive printed wiring boards
JP3728068B2 (en) Multilayer wiring board
JPS5884495A (en) Method of producing metal core printed circuit board
JPH05327224A (en) Manufacture of multilayer wiring board and multi-layer wiring board manufactured by the manufacture
JPH01195281A (en) Catalyst for electroless plating
JPH0680894B2 (en) Metal core printed circuit board manufacturing method
JPH05235519A (en) Manufacture of wiring board
JP2603097B2 (en) Manufacturing method of printed wiring board
US3597333A (en) Process for simultaneously electroplating discrete areas of an insulative substrate
JPS584999A (en) Method of producing printed circuit board
JPH0426560B2 (en)
JPS5884494A (en) Method of producing metal core printed circuit
JPH10270853A (en) Manufacture of printed wiring board
JPH0239113B2 (en) TASOHAISENBANNOSEIZOHOHO
JPS5916439B2 (en) Method for manufacturing multilayer printed wiring board
JP2922589B2 (en) Method for manufacturing multilayer circuit board
JPS63272097A (en) Manufacture of multilayer circuit substrate
JPS5826839B2 (en) printed wiring board