JPS5884494A - Method of producing metal core printed circuit - Google Patents

Method of producing metal core printed circuit

Info

Publication number
JPS5884494A
JPS5884494A JP18212981A JP18212981A JPS5884494A JP S5884494 A JPS5884494 A JP S5884494A JP 18212981 A JP18212981 A JP 18212981A JP 18212981 A JP18212981 A JP 18212981A JP S5884494 A JPS5884494 A JP S5884494A
Authority
JP
Japan
Prior art keywords
printed circuit
core printed
metal core
producing metal
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18212981A
Other languages
Japanese (ja)
Inventor
慎一郎 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EREKUTORONIKUSU KOGYO KK
Original Assignee
EREKUTORONIKUSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EREKUTORONIKUSU KOGYO KK filed Critical EREKUTORONIKUSU KOGYO KK
Priority to JP18212981A priority Critical patent/JPS5884494A/en
Publication of JPS5884494A publication Critical patent/JPS5884494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は機械的強度に優れ、かつ高密度配線可能なる金
属芯印刷回路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal-core printed circuit that has excellent mechanical strength and is capable of high-density wiring.

従来印刷回路配線板としては紙基材フェノール樹脂積層
板、ガラス繊維エポキシ樹脂積層板などが用いられてい
る。しかし最近の電子機器の発達に伴って使用される印
刷回路配線板も、より高密度化、機械的強度、価格の低
減化が要求されるようになり、従来から行われている銅
張積層板を用いて製造する方法から゛、安価な鉄板上に
エポキシ系、ボIJ l:x−ステル系、或いはNBR
変性フェノール樹脂等の有機絶縁層を形成しその上に導
体回路を形成しようという試みがなされている。しかし
ながら、エポキシ系、ポリエステル系の有機絶縁層の上
に直接無電解メッキ及び電解メッキを行ない導体回路を
形成した印刷回路板は有機絶縁層と導体回路との密着性
が悪いため、溶融ハンダ法による部品を接続する際の高
温耐久性が低く、不良品発生率が極めて高いため殆んど
実用化されていないのが現状である。
Conventionally, paper-based phenol resin laminates, glass fiber epoxy resin laminates, and the like have been used as printed circuit wiring boards. However, with the recent development of electronic devices, the printed circuit wiring boards used are also required to have higher density, mechanical strength, and lower cost, and copper-clad laminates, which have been used in the past, have become more demanding. From the method of manufacturing using
Attempts have been made to form an organic insulating layer such as a modified phenolic resin and form a conductor circuit thereon. However, printed circuit boards in which conductive circuits are formed by direct electroless plating or electrolytic plating on epoxy-based or polyester-based organic insulating layers have poor adhesion between the organic insulating layer and the conductive circuits, so molten soldering is not recommended. At present, it is hardly put into practical use because it has poor high-temperature durability when connecting parts and has an extremely high rate of defective products.

また上記欠点の金属板と導体回路との密着性改善のため
、NBR変性フェノール樹脂を金属板上に静電塗装し、
導体回路を形成した場合、密着性は良いが塗膜状態が均
一でないため、高密度配線が出来ないという欠点がある
In addition, in order to improve the adhesion between the metal plate and the conductor circuit, which has the above drawback, NBR modified phenol resin is electrostatically coated on the metal plate.
When a conductor circuit is formed, the adhesion is good, but the coating film is not uniform, so there is a drawback that high-density wiring cannot be achieved.

そこで、本発明者はこのような欠点を改良するため金属
板にニトリルゴム変性フェノール樹脂を電着塗装し金属
板を絶縁化したのち導体回路を形成することにより機械
的強度、接着強度に優れかつ高密度配線可能なる金属芯
印刷回路板を開発するに到った。
Therefore, in order to improve these drawbacks, the inventor of the present invention has created a material that has excellent mechanical strength and adhesive strength by electrocoating a metal plate with nitrile rubber-modified phenol resin to insulate the metal plate and then forming a conductor circuit. We have developed a metal-core printed circuit board that enables high-density wiring.

以下図面により本発明方法を詳細に説明すると、第1図
〜第6図は本発明による金属芯印刷回路の製造工程にお
ける断面図である。すなわち第1図に示すように、金属
板lにスルホール2をあけたのち、第2図に示すように
金属板10表面にNBR変性フェノール樹脂を電着塗装
し、金属板lを電気絶縁板とした。金属板にNBR変性
フェノール樹脂を塗膜して絶縁板とする方法として、溶
剤型塗装、静電粉体塗装などの方法があるが、溶剤型塗
装は絶縁化として信頼のおける100μの塗装は困難で
ありまた静電粉体塗装は厚膜塗装はできるが塗膜状態が
不均一で高密度印刷が出来ない。
Hereinafter, the method of the present invention will be explained in detail with reference to the drawings. FIGS. 1 to 6 are cross-sectional views of the manufacturing process of the metal core printed circuit according to the present invention. That is, as shown in FIG. 1, after making a through hole 2 in the metal plate 1, as shown in FIG. did. There are methods such as solvent-based coating and electrostatic powder coating to coat a metal plate with NBR-modified phenolic resin to create an insulating plate, but it is difficult to achieve a 100μ coating that is reliable for insulating with solvent-based coating. Also, although electrostatic powder coating allows thick film coating, the state of the coating is uneven and high-density printing is not possible.

従って塗膜状態が良好でしかも膜厚コントロールが容易
な電着塗装した場合好結果が得られた。電着塗装におけ
る膜厚は電圧、時間、浴温で制御できるが電圧300v
時間2分浴温度25℃の電着条件で100μの電着膜を
得ることができた。電着膜の焼付は条件としては析出塗
膜中に少量の水を吸着しているため急激な加熱をすると
ピンホールを生じ第すいため風乾後80℃30分間処理
後、220℃20分間焼付けを行なう。焼付は後この絶
縁層3の表面に数μの無電解メッキ4を形成したのち導
体回路を形成すべき部分以外に電気メッキの析出を防止
する被覆剤として耐食インキ5を塗布する。次に第5図
に示すように電解メッキにより回路パターン6を形成し
、次いで第6図の如く前記耐食インキ5及びその下の無
電解メッキ膜4を除去して導体回路を形成することを特
徴とする金属芯印刷回路の製造方法である。以下実施例
にて説明する。
Therefore, good results were obtained when electrodeposition coating was used, which provided a good coating film condition and was easy to control the film thickness. The film thickness in electrodeposition coating can be controlled by voltage, time, and bath temperature, but the voltage is 300V.
An electrodeposited film of 100 μm could be obtained under electrodeposition conditions of 2 minutes and a bath temperature of 25° C. The conditions for baking the electrodeposited film are as follows: Since a small amount of water is adsorbed in the deposited film, rapid heating tends to cause pinholes. Let's do it. After baking, electroless plating 4 of several microns is formed on the surface of insulating layer 3, and then anti-corrosion ink 5 is applied as a coating material to prevent electroplating from depositing on areas other than those where conductive circuits are to be formed. Next, as shown in FIG. 5, a circuit pattern 6 is formed by electrolytic plating, and then, as shown in FIG. 6, the corrosion-resistant ink 5 and the electroless plating film 4 thereunder are removed to form a conductor circuit. This is a method for manufacturing a metal core printed circuit. This will be explained below using examples.

実施例 厚さ1.0順の鉄板に任意に直径1.1 amの孔あけ
をし、脱脂したのち、アクリルニトリル35%のニトリ
ルゴム70部、フェノール樹脂140部よりなるNBR
変性フェノール樹脂15チの水分散状態の電着液の中に
入れ鉄板を陰極、炭素板を陽極として直流電圧300v
を2分間印加し100μの電着膜を得た。風乾後80℃
30分間処理後、220℃20分間焼付けを行った。そ
の後クローム硫酸溶液にてエツチングし更に塩化パラジ
ウム−塩酸水溶液でアクチベーティングし水洗した。
Example: A hole with a diameter of 1.1 am was arbitrarily made in an iron plate with a thickness of 1.0 mm, and after degreasing, an NBR made of 70 parts of nitrile rubber containing 35% acrylonitrile and 140 parts of phenolic resin was prepared.
Place the modified phenol resin in a water-dispersed electrodeposition solution and apply a DC voltage of 300 V with the iron plate as the cathode and the carbon plate as the anode.
was applied for 2 minutes to obtain an electrodeposited film of 100μ. 80℃ after air drying
After processing for 30 minutes, baking was performed at 220°C for 20 minutes. Thereafter, it was etched with a chromium sulfuric acid solution, further activated with a palladium chloride-hydrochloric acid aqueous solution, and washed with water.

次に無電解ニッケルメッキで0.5μ程度の膜を形成し
水洗風乾後導体部となるべき部分以外に耐食インキで被
覆し更に100t/lのビロリン酸銅溶液中50℃2A
/dm’60分間の条件で電解メッキを行ない膜厚40
μの銅の回路を形成した。
Next, a film of about 0.5μ is formed by electroless nickel plating, washed with water and air-dried, and then coated with anti-corrosion ink on areas other than those that will become conductors.
/dm' Electrolytic plating was performed for 60 minutes to obtain a film thickness of 40
A copper circuit of μ was formed.

次に有機溶剤によ4シ耐食インキを溶解除去し、更にリ
ン酸−過酸化水素系のエツチング剤により回路部以外の
無電解メッキ膜、を除去し接着強度1.4に9/ cm
高温耐久性260’010秒以上耐アーク性135秒の
特質の金属芯印刷回路板を得た。
Next, the anti-corrosion ink was dissolved and removed using an organic solvent, and the electroless plating film other than the circuit area was removed using a phosphoric acid-hydrogen peroxide etching agent to increase the adhesive strength to 1.4/9/cm.
A metal core printed circuit board with high temperature durability of 260'010 seconds or more and arc resistance of 135 seconds was obtained.

以上実施例で説明したように本発明方法で機械的強度接
着強度の優れた、更に高密度配線の金属芯印刷回路板が
得られる。
As explained above in the Examples, a metal core printed circuit board with excellent mechanical strength and adhesive strength and high density wiring can be obtained by the method of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第6図は本発明による金属芯印刷回路板の製
造工程における断面図である。 1・・・・・・・・・金属板 2・・・・・・・・・スルホール 3・・・・・・:・・絶 縁 層 4・・・・・・・・・無電解メッキ層 5・・・・・・・・・耐食インキ 6・・・・・・・・・電解メッキ層 )!′ 1 図 り2圓 −++叩
1 to 6 are cross-sectional views of the manufacturing process of a metal core printed circuit board according to the present invention. 1...Metal plate 2...Through hole 3...Insulating layer 4...Electroless plating layer 5... Corrosion resistant ink 6... Electrolytic plating layer)! ' 1 Figure 2 yen - ++ hit

Claims (1)

【特許請求の範囲】[Claims] 孔あけをした金属板にニトリルゴム変性フェノール樹脂
の粉体を電着塗装し、電気絶縁板としたのち、その上に
直接無電解メッキの厚付け、もしくは無電解メッキ及び
電解メッキを併用して導体回路を形成することを特徴と
する金属芯印刷回路の製造方法。
After electrodepositing nitrile rubber modified phenol resin powder on a perforated metal plate to make an electrical insulating plate, apply thick electroless plating directly on top of it, or use a combination of electroless plating and electrolytic plating. A method for manufacturing a metal core printed circuit, comprising forming a conductor circuit.
JP18212981A 1981-11-12 1981-11-12 Method of producing metal core printed circuit Pending JPS5884494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18212981A JPS5884494A (en) 1981-11-12 1981-11-12 Method of producing metal core printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18212981A JPS5884494A (en) 1981-11-12 1981-11-12 Method of producing metal core printed circuit

Publications (1)

Publication Number Publication Date
JPS5884494A true JPS5884494A (en) 1983-05-20

Family

ID=16112830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18212981A Pending JPS5884494A (en) 1981-11-12 1981-11-12 Method of producing metal core printed circuit

Country Status (1)

Country Link
JP (1) JPS5884494A (en)

Similar Documents

Publication Publication Date Title
US2897409A (en) Plating process
US3163588A (en) Method of interconnecting pathway patterns of printed circuit products
US3469019A (en) Weldable printed circuit board
US3698940A (en) Method of making additive printed circuit boards and product thereof
JPH046115B2 (en)
JPS60207395A (en) Method of producing through-hole plated electric printed circuit board
JPS6142993A (en) Method of forming conductor layer to resin
US3357099A (en) Providing plated through-hole connections with the plating resist extending to the hole edges
JPH06318783A (en) Manufacturing method of multilayered circuit substrate
JPH0512878B2 (en)
JP3112128B2 (en) Method for producing metal-coated glass epoxy substrate
JPH06152105A (en) Manufacture of printed wiring board
JPS5884494A (en) Method of producing metal core printed circuit
JPH0573359B2 (en)
JPS5884495A (en) Method of producing metal core printed circuit board
JP2603097B2 (en) Manufacturing method of printed wiring board
JPS63177585A (en) Manufacture of printed wiring
JPS59163889A (en) Method of partially plating conductor on substrate
JP2922589B2 (en) Method for manufacturing multilayer circuit board
JPS6039891A (en) Method of producing conductor circuit for printed circuit
JPS6034095A (en) Method of producing printed circuit board
JPH02238696A (en) Method of improving adhesion between copper foil and resin
JPS6286896A (en) Manufacture of printed circuit board with metal core
JPS63224391A (en) Printed wiring board and manufacture of the same
JPH0272697A (en) Metal based wiring board